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Abstract

Background: Although different protein-protein physical interaction (PPI) datasets exist for Escherichia coli, no
common methodology exists to integrate these datasets and extract reliable modules reflecting the existing biological
process and protein complexes. Naive Bayesian formula is the highly accepted method to integrate different PPI
datasets into a single weighted PPl network, but detecting proper weights in such network is still a major problem.

Results: In this paper, we proposed a new methodology to integrate various physical PPl datasets into a single
weighted PPl network in a way that the detected modules in PPI network exhibit the highest similarity to available
functional modules. We used the co-expression modules as functional modules, and we shown that direct functional
modules detected from Gene Ontology terms could be used as an alternative dataset. After running this integrating
methodology over six different physical PPl datasets, orthologous high-confidence interactions from a related
organism and two AP-MS PPl datasets gained high weights in the integrated networks, while the weights for one
AP-MS PPI dataset and two other datasets derived from public databases have converged to zero. The majority of
detected modules shaped around one or few hub protein(s). Still, a large number of highly interacting protein
modules were detected which are functionally relevant and are likely to construct protein complexes.

Conclusions: We provided a new high confidence protein complex prediction method supported by functional

studies and literature mining.
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Background

With the advent of new technologies and computational
methods, large set of pair-wise physical protein-protein
interactions and protein complexes have became avail-
able. The pair-wise interactions can be obtained through
high throughput interactions [1-4], public databases such
as DIP [3, 5], 3D structure based interactions includ-
ing the prediction based on domain-domain interac-
tions and docking [2, 3, 5-8], and homologous pairs of
known interacting proteins [3, 9]. For example, for a
well-studied organism like E. coli three large datasets of
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pair-wise protein-protein interactions are available which
are measured by high-throughput tandem affinity purifi-
cation followed by mass spectrometry (AP-MS) [1, 10, 11].
In addition, a large set of protein-protein interactions
derived by yeast two-hybrid (Y2H) method has also
recently became available for E. coli [12]. Furthermore,
a large set of experimentally validated protein com-
plexes has been registered for this organism in EcoCyc
database [13]. Availability of large set of pair-wise phys-
ical protein-protein interactions, protein complexes, and
protein functions for different organisms have facilitated
the study of relations among them. It is generally accepted
that interacting proteins are more likely to be function-
ally related, and a set of highly interacting proteins are
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more likely to constitute protein complexes. A natural
way to represent protein-protein interactions relations
passes through a network: each node corresponds to a
protein and each undirected connection corresponds to
a protein-protein interaction. This protein-protein inter-
action (PPI) network can be unweighted in the case that
all the interactions come from a reliable data source, or it
can be weighted if a certain value of confidence would be
assigned to each connection. Different clustering and clas-
sification methods have been applied over PPI networks
and the results have been compared to known protein
complexes and functional categories [3]. MCL [14], clique
percolation method [15, 16], and ClusterONE aglorithm
[17] are among the most famous clustering methods.
Naive Bayesian is the most common classifier so far that
has been applied over PPI network [1, 4-6].

In naive Bayesian classifier, a confidence score is usually
assigned to each protein pair through the naive Bayesian
formula. Through the naive Bayesian procedure, a con-
fidence score is assigned to each of the used datasets.
This procedure needs to preset gold standard positive and
negative sets. Positive sets consist of functionally related
and probably experimentally validated interacting pro-
teins. Determining negative set is less straight-forward. To
build negative set protein pairs with unrelated function
[1, 4, 5], locating in different part of the cell (differ-
ent localization) [18] and non-interacting proteins from
negatome database [3] have been used. Although, proteins
in negative set are less likely to interact, interaction among
protein pairs in negative set is still plausible. Small number
of experimentally validated interacting proteins is another
shortcoming of this procedure because positive set may
include proteins for which physical interactions are highly
understudied.

Due to the mentioned problems, some studies just
focused on high-confidence protein-protein interactions
data which are small set of all possible interactions
and this data was further validated with functional data
sources such as co-expression and literature mining [19].
PPI network study in Mycoplasma Pneumonia along with
CompPASS [20] and ComPLEAT [21] methods are three
examples of successful PPI studies.

In this study, we introduce a new methodology to inte-
grate different protein-protein interaction datasets into a
reliable weighted PPI network. Here, the weight of each
protein pair is calculated through the highly used naive
Bayesian formula and frequently used MCL clustering
method is employed afterward to determine protein mod-
ules from this weighted network. The similarity between
the detected modules and provided functional modules
are used as the criteria for optimization. Modules deleted
from PPI network can be compared with the other func-
tional module sets using the Normalized Mutual Informa-
tion (NMI) measure. The main idea is that characterizing
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the best confidence score for protein-protein interaction
datasets will maximize the similarity of detected modules
from the PPI network with the other functional modules.
This obviates the usage of problematic gold standard. We
characterized the best confidence score of dataset using
a global optimization method referred to as Harmony
search. Using this methodology we integrated a large set of
physical protein-protein interaction datasets of E. coli into
a single weighted PPI network and we detected function-
ally relevant PPI modules which lead to new predictions
in protein complexes.

Methods

PPl datasets

Three AP-MS high-throughput experiments of protein-
protein interactions datasets were downloaded from
the original papers [1, 10, 11]. Experimentally vali-
dated protein-protein interactions were downloaded from
DIP database [22]. Protein-protein interactions from two
databases, namely BIND [23] and IntAct [24], were also
downloaded directly from the mentioned databases. High
confidence protein-protein interactions from the evolu-
tionary related organism Mycoplasma Pneumonia were
retrieved from the original paper [19] and their ortholo-
gous proteins in E. coli, derived from co-complex database
[13], were used as another data source. Finally pro-
tein complexes in E. coli were downloaded from EcoCyc
database [13] and all the protein pairs in these complexes
were considered as co-complex proteins. The mentioned
data sources were used to build a weighted PPI net-
work. All these datasets were downloaded on 18 January
2013. More recently released yeast two-hybrid (Y2H) PPI
dataset experiments in E. coli [12] was downloaded from
the original paper, but this dataset was just used for the
validation part.

Co-expression, Co-function, and Co-regulation modules
Co-expression, Co-function, and Co-regulation modules
are derived as explained in Additional file 1.

Reconstructing weighted PPI network

To integrate PPI data sources into a single weighted PPI
network, we used the confidence score for each pair of
proteins through the confidence score of each data source
and the naive Bayesian formula as follows:

Similarity (pi,p;) =1 — 1_[ (1=S, (pisp))) (1)
P

where p; stands for the ith protein and S, shows the con-
fidence score (weight) of the pth dataset. This score is
between 0 and 1. Therefore, S,(p;, p;) is zero if the inter-
action was not predicted in the pth dataset, and it is equal
to S, otherwise. Consequently, the similarity between two
proteins is zero if their interaction is not predicted by
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any dataset. This similarity increases proportional to the
confidence of each dataset for which the interaction was
predicted. In addition, as more datasets predict a certain
interaction, the corresponding similarity value increases.
We just optimized the confidence scores S, for each PPI
dataset by a global optimization method in such a way
that the detected modules in the integrated PPI network
show the highest similarity with the co-expression, co-
function, or co-regulation modules (see the next part). For
this aim, we considered the weights between co-complex
proteins or interacting proteins in DIP dataset as 1, and
the remaining weights were optimized.

Detecting optimized modules in the weighted PPl network
MCL method [14] was used to detect PPI modules in
each iteration of optimization. Normalized Mutual Infor-
mation (NMI) measure [25, 26] was used to compare
the detected modules from PPI network with external
functional module sets (co-expression, co-function, or co-
regulation modules). A Harmony search method was then
used to find the optimized weight scores of data sources
in the confidence score formula in such a way that largest
NMI value would be retrieved.

The Harmony search is a metaheuristic optimization
algorithm, inspired by the underlying principles of the
musicians’ improvisation of the harmony. There are usu-
ally three possible choices for a musician to compose a
harmony: 1) play any famous piece of music exactly from
their memory; 2) play something similar to a known piece
(thus adjusting the pitch slightly); or 3) compose new or
random notes. The usage of harmony ensures that the
best harmonies will be carried over to the new harmony
memory, which corresponds to the choice of the best-fit
individuals. Pitch adjustment means to change the fre-
quencies, which corresponds to generate a slightly differ-
ent solution. The randomization is then used to increase
the diversity of the solutions. The used parameters in our
Harmony search method were memory size= 100, num-
ber of variables= 6, memory considering rate= 0.8, pitch
adjusting rate= 0.3 and bandwidth range= 0.5. The opti-
mization was performed for 10000 iterations to increase
the chance of reaching to the global optimality.

Expression data source

The microarray compendium of E. coli was obtained from
[27] and the Pearson correlation over all conditions in
the compendium was used to calculate the gene pair
co-expression.

Visualizing detected modules

PPI networks inside each module were visualized by
Cytoscape software [28]. To show the gene pairs co-
expression, the value of 0.2132 was used as cut-off because
70% of co-complex protein pairs exhibited co-expression
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over this cut-off value. On the other hand, less than 5%
of all gene pairs were above this cut-off. Gene pairs inside
each module that exhibit higher co-expression than the
mentioned threshold were linked by a solid line (see Fig. 4
and Additional file 1: Figures S1-S7) and visualized by
Cytoscape software.

Detecting central proteins in PPl modules

Central proteins interact with a large set of proteins inside
a PPI module. We considered proteins with node degree
larger than two times of average node degree of all consti-
tuting proteins of the modules as central proteins.

Functional and gene essentiality analysis

EcoCyc database [13] was used for functional and gene
essentiality analysis of central genes/proteins. Further
literature mining was also performed using EcoCyc
database. For the essentiality analysis, the data presented
in [1] has considered as the main data source to detect
essential genes in the main E .coli K-12 strain (substrain
MG1655) in normal condition. In addition to this dataset,
EcoCyc database provides data for other conditions and
other strains for each gene from other studies.

Results and discussion

Constructing an integrated weighted PPl network and
detecting modules

In this section, we explain how we integrate different
PPI datasets to construct a single weighted PPI network.
First, we studied the average gene pairs co-expression of
interacting proteins in each PPI dataset. Then we per-
formed our proposed method to detect the weights of
each dataset and integrate them through naive Bayesian
formula (Fig. 1). Finally, we checked the relations between
gene pairs co-expression of interacting proteins in each
dataset and their final weights.

The average gene pair co-expression in each dataset
is shown in Fig. 2. The known co-complex gene pairs
exhibit the highest gene pairs co-expression, followed by
orthologous proteins of M. Pneumonia high confidence
interacting protein dataset. As it can be seen in Fig. 2,
the average gene pairs co-expression in some of the PPI
dataset (green bars) exhibit similar distribution pattern
to the existing gene pairs co-expression shown as pink
background. This means that these distributions are sim-
ilar to a randomly chosen gene set. This is in contrast
to the known co-complex proteins which exhibit much
higher gene pair co-expression in comparison to a ran-
dom set. Therefore, from the first step, we could expect
lower weights in the naive Bayesian formula for these PPI
datasets with lower gene pairs co-expression.

As mentioned above, the protein datasets were inte-
grated through naive Bayesian formula. The weights were
optimized by a global optimization algorithm referred to
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Fig. 1 General protein complex prediction framework

as Harmony search algorithm [29]. This algorithm was
run for 10000 iterations. In each iteration, MCL clus-
tering method was applied over this network and the
result was compared to co-expression modules. Based on
the similarity between the PPI and co-expression mod-
ules, measured by NMI, the weights were updated by
Harmony search algorithm. The best NMI value in each
iteration is shown in Fig. 3a. Although the optimization
was performed using the co-expression network, as the
major functional relation network, the other functional
networks such as co-functionality network derived from
Gene Ontology terms and co-regulation network derived
from the regulatory interactions could be used as alterna-
tive options (Fig. 3).

The final weights of different PPI datasets for naive
Bayesian formula are listed in Table 1. These weights for
three PPI datasets (BIND, IntAct, and Arifuzzaman) have
been clearly converged to zero. In contrast, three other

PPI datasets (Hu, Butland, and M. Pneumonia ortholo-
gous) clearly show higher confidence level.

Analyzing detected modules

Our proposed methodology not only determines the con-
fidence level of the PPI datasets, but also generates high
confidence modules similar to a given set of functional
modules, which is co-expression modules here. To ana-
lyze modules, we studied a large number of PPI modules
and complexes as well as their central/hub proteins. We
also inspected how our result can accommodate recently
published yeast two-hybrid PPI predictions [12].

Most of the detected PPI modules contain a highly con-
nected central protein. We picked a measure (introduced
in Materials and Methods) to detect these central/hub
proteins. Additional file 1: Table S1 summarizes these pro-
teins and their functions. Functional studies revealed that
the majority of these hub proteins have certain functions.
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They are chaperone, ribosomal, and membrane hub pro-
teins, or they are involved in kinase activity and RNA
synthesis. The essentiality of the hub proteins were also
more related to the function than the number of connec-
tions. For example, chaperone and ribosomal hub proteins
which are involved in RNA synthesis are more likely to
be essential genes at genome level. This is not the case
for membrane hub proteins as well as hub proteins with
kinase activity.

We also studied several major large complexes such as
Ribosome, RNA polymerase, DNA polymerase III, and
primosomal complexes, as well as some interlaying mem-
brane complexes. As the co-complex proteins have been
connected by higher weights in the integrated PPI net-
work, our prior expectation was to find all the large
complexes or interlaying complexes in a single module,
but it was not the case. Although most of the proteins
constituting a certain protein complex were detected in
the same module (Additional file 1: Table S2), proteins of
large complexes were detected in more than one module.
Ribosomal proteins were detected in four different
modules along with elongation factors, degradosome

Table 1 Average co-expression and detected weight for each
data source

Dataset Numberof  Average Detected
interactions  coexpression  weight

HU 5993 0.092 0.686
Ariffuzaman 11447 0.033 0.015
Butland 6227 0.133 0.653
IntAct 14437 0.081 0.005
BIND 487 0.068 0.036
DIp 10758 0.105 1

M. pneumoniae orthologous 3303 0.339 0418
Co-complex 55414 0448 1

@All co-complex protein pairs have been considered

proteins, some RNA modifications and synthesis proteins,
and some cell division/cytoskeleton proteins (Additional
file 1: Figure S1). Co-complex literature mining revealed
that the majority of these proteins and protein complexes
interact with both ribosome and each other. This is the
reason why the ribosome complex was not detected in a
single module. All the constituting proteins in other com-
plexes such as RNA polymerase (Additional file 1: Figure
S2), DNA polymerase III (Additional file 1: Figure S3),
and primosome complex (Additional file 1: Figure S4)
were not detected in the same PPI module because of the
same reason. Using gene pair co-expression, as an exter-
nal data source, can lead to more accurate prediction in
RNA polymerase, DNA polymerase III, and primosome
complex because the proteins which constitute these com-
plexes exhibit high pair-wise gene co-expression. In the
case of ribosomal proteins, even non-ribosomal proteins
show high gene pair co-expression, and in this case even
expression data source cannot help to predict the exact
set of proteins constituting the complex. Similar to large
protein complexes, we also expected that overlapping pro-
tein complexes had to be found in the same module.
Therefore, we inspected two examples of highly interact-
ing outer membrane proteins TolC and BtuB (Additional
file 1: Figure S5). These proteins were connected to sev-
eral protein complexes and these complexes were found in
one large module in these two examples.

Although detecting meaningful modules in PPI network
is challenging, we could highlight some new predictions
which could be further validated by functional study and
literature mining. Flagellum complex was found in the
large module (Module 6 in Additional file 1: Figure S6)
but this is not the only complex related to Flagella syn-
thesis and motility. Four chemotaxis signaling complexes:
ribose/galactose/glucose sensing, dipeptide sensing, ser-
ine sensing, and aspartate sensing were detected in mod-
ule 30 (Fig. 4). Two proteins CheA and CheW are in
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the core of these four complexes. Co-complex literature
mining revealed that CheY, CheZ, CheR, and CheB also
interact with either these complexes or CheA. Additional
file 1: Figure S6 includes other detected modules with one
or more protein complex(es) as their core(s). The inter-
acting genes with these protein complexes are potential
predictions for complex expansion. We could also detect
modules which are potentially new protein complexes
(Additional file 1: Figure S7). Recently published Pilus
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assembly complex [30] is among these predictions. In
addition to the mentioned functionally relevant PPI mod-
ules, some protein sets, exhibiting co-expression, that
may have related biological functions are summarized in
Additional file 1: Table S4.

Most recently published Y2H PPI predictions [12] were
also compared with the detected modules as well as other
available datasets. We could annotate 2048 PPI pairs in
these datasets. Out of 2048 pairs, only 467 interactions
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have been identified in the used datasets of this study. In
total, 575 interactions (28%) in Y2H dataset were either
in other employed datasets or co-exists in detected PPI
modules. By including the Y2H interactions which con-
tain one of the detected central/hub proteins of this study,
this number reaches 707 interactions (34%). Additional
file 1: Table S3 summarizes the obtained results for Y2H
interactions. Therefore, most of the interactions of Y2H
data are not included in previously publish datasets or
they could not be predicted from them. The average
co-expression among gene pairs constituting these inter-
actions is just 0.0465 which means that these proteins are
not co-expressed and probably this dataset would not be
able to gain higher weight in the integration methodology
that was introduced here. It is also mentioned in the orig-
inal paper that the majority of the interacting proteins in
this network do not constitute protein complexes [12].

Conclusions

In this study, we introduced a new methodology to inte-
grate the available PPI datasets into a weighted PPI net-
work in such a way that the detected modules exhibit the
highest similarity to predefined sets of modules. We used
co-expressed module to show that direct functional mod-
ules detected from Gene Ontology terms could lead to
similar results. New possible complexes were highlighted
among the results.

The global optimization used in this study highlighted
the more proper PPI datasets that can be used for pre-
dicting interacting proteins involved in the same bio-
logical process and protein complex. BIND and IntAct
databases do not provide relevant information for this
aim, while highly stable high confidence PPI from a rel-
evant organism can provide highly relevant information
as we have highlighted this fact using M. pneumoniae
orthologous proteins in E.coli. The results for high-
throughput datasets were varied since three datasets,
namely AP-MS datasets in E. coli, Hu [1], and Butland
[10], provide high confidence PPI interactions while this
was not the case for Arifuzzaman [11] dataset. This has
been recently reported that Hu and Butland PPI datasets
contain much more interactions among components of
the same complex in comparison to Arifuzzaman [11].
The recently published Y2H dataset [12] may not be a high
confidence dataset for module detection based analysis as
the interacting proteins in this dataset do not exhibit high
co-expression and the original authors have reported that
Y2H experiments include less stable and more transient
interactions in comparison to AP-MS [12].

Clusterability of PPI networks is still a major problem.
Identifying protein complexes and relevant functional
modules from PPI networks is still a challenge and a wide
range of algorithms have been developed for this aim
(see the recent review [31]). Still the precisions of the
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predictions seem to be more related to the input data than
the method itself. In a recent study, [32] several methods
have been applied to three PPI networks of yeast, and it
was shown that the precision of the prediction is highly
sensitive to the input dataset. The lowest precision of pre-
diction was derived using Y2H input dataset [32]. The
same phenomenon has been reported in E. coli that the
majority of Y2H predictions in this organism do not con-
stitute protein complexes [12]. Integrating expression data
with PPI networks seems to be a standard procedure to
gain more accurate modules as co-complex proteins are
highly co-expressed. In this study, we have highlighted
some protein complexes such as ribosome, degradosome,
and elongation factor that are highly interacting and co-
expressed with several other proteins. In this case, even
integrating expression data cannot solve the clusterabil-
ity problem. The best way to gain reliable module seems
to be using more stable interactions as the input dataset.
A recent study has proposed a new methodology to gain
more accurate interactions dataset for protein complex
retrieval [33].

Large set of AP-MS and Y2H data sources will become
available in near future. Based on this study, we pro-
pose that more stable interactions from AP-MS exper-
iments provide a reliable dataset for module detection
and protein complex prediction studies like this. On the
other hand, less stable AP-MS and Y2H interactions pro-
vide a better dataset for studying hub proteins, post-
translational modifications, protein chaperoning, and
connections between different protein complexes. Inte-
grating expression and functional dataset as well as PPI
networks from related organisms is more useful for sta-
ble protein complex detection studies than more transient
interactions studies such as post-translation modification
studies. The reason is that the transient interactions may
not remain conserved in the evolution and genes involved
in these kinds of interactions may not exhibit high co-
expression. On the other hand, more stable interactions
and protein complexes are highly conserved in the evo-
lution [34, 35] and the interacting proteins are highly
co-expressed [35].

Additional file

Additional file 1: The details of module detection procedure are
presented. Figure S1. Ribosomal modules. Figure S2. RNA polymerase.
Figure S3. DNA polymerase Ill. Figure S4. Primosome complex. Figure S5.
Highly interacting outer membrane examples TolC and BtuB. Figure S6.
Detected modules with a single complex as their cores. Figure S7.
Detected modules as possible new complexes. Table S1. Central proteins
in detected modules. Table S2. Protein complexes constituting from more
than one kind of protein (hetero-oligomer) and the detected PPl module(s)
entailing their proteins. Table S3. Locus tag and gene id of detected
protein interaction in Y2H data. Table S4. Co-expressed genes/proteins
which are detected in the same PPl module and their biological functions.
(PDF 1443 kb)
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