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Abstract

Background: Missing value imputation is important for microarray data analyses because microarray data with
missing values would significantly degrade the performance of the downstream analyses. Although many microarray
missing value imputation algorithms have been developed, an objective and comprehensive performance comparison
framework is still lacking. To solve this problem, we previously proposed a framework which can perform

a comprehensive performance comparison of different existing algorithms. Also the performance of a new
algorithm can be evaluated by our performance comparison framework. However, constructing our framework is not
an easy task for the interested researchers. To save researchers’ time and efforts, here we present an easy-to-use web
tool named MVIAeval (Missing Value Imputation Algorithm evaluator) which implements our performance comparison

framework.

Results: MVIAeval provides a user-friendly interface allowing users to upload the R code of their new algorithm and
select (i) the test datasets among 20 benchmark microarray (time series and non-time series) datasets, (i) the compared
algorithms among 12 existing algorithms, (jii) the performance indices from three existing ones, (iv) the comprehensive
performance scores from two possible choices, and (v) the number of simulation runs. The comprehensive
performance comparison results are then generated and shown as both figures and tables.

Conclusions: MVIAeval is a useful tool for researchers to easily conduct a comprehensive and objective
performance evaluation of their newly developed missing value imputation algorithm for microarray data
or any data which can be represented as a matrix form (e.g. NGS data or proteomics data). Thus, MVIAeval
will greatly expedite the progress in the research of missing value imputation algorithms.

Keywords: Web tool, Missing value imputation, Microarray data, Performance index, Performance

comparison, Algorithm

Background

Microarray technology is one of the most powerful
high-throughput tools in biomedical and biological re-
search. It has been successfully applied to various
studies such as cancer classification [1], drug discov-
ery [2], stress response [3, 4], and cell cycle regula-
tion [5, 6]. Microarray data contain missing values
due to various technological limitations such as poor
hybridization, spotting problems, insufficient reso-
lution, and fabrication errors. Unfortunately, the

* Correspondence: wessonwu@mail.ncku.edu.tw
Department of Electrical Engineering, National Cheng Kung University,
Tainan, Taiwan

( BioMed Central

missing values in microarray data would significantly
degrade the performance of downstream analyses such
as gene clustering and identification of differentially
expressed genes [7-9]. Therefore, missing value im-
putation has become an important pre-processing
step in microarray data analyses.

One way to deal with the missing values is to re-
peat the experiments but it is expensive and time
consuming. Another way is to discard the genes with
missing values but this loses valuable information.
Filling missing values with zeros or with the row
average is a simple imputation strategy, but it is far
from optimal. Therefore, many advanced algorithms
have been developed to impute the missing values in
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microarray data [10-12]. The existing algorithms can
be divided into four categories [11]: global approach,
local approach, hybrid approach and knowledge-
assisted approach. Global approach algorithms include
SVD [13] and BPCA [14]. Local approach algorithms
include KNN [13], SKNN [15], IKNN [16], LS [17],
LLS [18], SLLS [19], ILLS [20], Shrinkage LLS [21]
and so on. Hybrid approach algorithms include
LinCmb [22] and RMI [23]. Knowledge-assisted ap-
proach algorithms include GOimpute [24], POCSim-
pute [25] and HAlimpute [26].

In order to know which algorithm performs best
among the dozens of existing ones, an objective and
comprehensive performance comparison framework
is urgently needed. To meet the need, we previously
developed a performance comparison framework [12]
which provides 13 testing microarray datasets, three
types of performance indices, 9 existing algorithms,
and 110 runs of simulation. We found that no single
algorithm can perform best for all types of micro-
array data. The best algorithms are different for
different microarray data types (time series and non-
time series) and different performance indices,
showing the usefulness of our framework for
conducting a comprehensive performance compari-
son [12].

Actually, the most important value of our frame-
work is to give an objective and comprehensive per-
formance evaluation of a new algorithm. Using our
framework, bioinformaticians who design new algo-
rithms can easily know their algorithms’ performance
and then refine their algorithms if needed. However,
constructing our framework is not an easy task for
the interested bioinformaticians. It involves collecting
and processing many microarray raw data from the
public domain and using programming languages to
implement many existing algorithms and three per-
formance indices. In order to save bioinformaticians’
efforts and time, we present an easy-to-use web tool
named MVIAeval (Missing Value Imputation Algo-
rithm evaluator) which implements our performance
comparison framework.

Implementation

Twenty benchmark microarray datasets and twelve
existing algorithms used for performance comparison

In MVIAeval, we collected 20 benchmark microarray
datasets [27-46] of different species and different types
(see Table 1 for details). In addition, we implemented 12
existing algorithms including two global approach algo-
rithms and 10 local approach algorithms (see Table 2 for
details). Do note that we did not include hybrid ap-
proach algorithms and knowledge-assisted algorithms
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because they either are difficult to implement or need
extra information from outside data sources which are
not always available.

Three existing performance indices used for performance
evaluation

In MVIAeval, we used three existing performance in-
dices for performance evaluation. First, the inverse of
the normalized root mean square error (1/NRMSE)
[13] is used to measure the numerical similarity be-
tween the imputed matrix (generated by an imput-
ation algorithm) and the original complete matrix.
Therefore, the higher the 1/NRMSE value is, the bet-
ter the performance of an imputation algorithm is.
Second, the cluster pair proportion (CPP) [47] is used
to measure the similarity of the gene clustering re-
sults of the imputed matrix and the complete matrix.
High CPP value means that the imputed matrix (gen-
erated by an imputation algorithm) has very similar
gene clustering results as the complete matrix does.
Therefore, the higher the CPP value is, the better the
performance of an imputation algorithm is. Third, the
biomarker list concordance index (BLCI) [7] is used
to measure the similarity of the differentially
expressed genes identification results of the imputed
matrix and the complete matrix. High BLCI value
means that differentially expressed genes identified
using the imputed matrix (generated by an imputation
algorithm) are very similar to those identified using
the complete matrix. Therefore, the higher the BLCI
value is, the better the performance of an imputation
algorithm is. In summary, 1/NRMSE measures the
numerical similarity, while CPP and BLCI measure
the similarity of downstream analysis results (gene
clustering and differentially expressed genes identifica-
tion) of the imputed matrix and the complete matrix.
Fig. 1 shows how the scores of these three perform-
ance indices are calculated.

Evaluating the performance of an algorithm for a
benchmark microarray data matrix using a specific
performance index

The simulation procedure for evaluating the perform-
ance of an imputation algorithm (e.g. KNN) for a
given complete benchmark microarray data matrix
using a performance index (e.g. CPP) is divided into
four steps. Step 1: generate five testing matrices hav-
ing missing values (generated as missing completely
at random) with different percentages (1%, 3%, 5%,
8% and 10%) from the complete matrix. Step 2: gen-
erate five imputed matrices by imputing the missing
values in the five testing matrices using KNN. Step 3:
calculate five CPP scores using the complete matrix
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Table 1 The 20 benchmark microarray datasets of different types and different species

GEO Dataset Size Type Organism Title

GDS3323[27] 45101x6 Non-time series Mus musculus Na+/H+ exchanger 3 deficiency effect on the colon

GDS3215[28] 12625%6 Non-time series Homo sapiens 13-cis retinoic acid effect on SEB-1 sebocyte cell line

GDS3485[29] 45011x6 Non-time series Mus musculus Zinc transporter SLC39A13 deficiency effect on chondrocytes

GDS3476[30] 45011x6 Non-time series Mus musculus NF-E2-related factor 2 Nrf2 activation effect on the liver

GDS3197[31] 45101x6 Non-time series Mus musculus Transcriptional coactivator PGC-Tbeta hypomorphic mutation
effect on the liver

GDS3149[32] 45101x6 Non-time series Mus musculus Suppressor of cytokine signaling 3 deficiency effect on the
regenerating liver

GDS2107[33] 15923x6 Non-time series Rattus norvegicus Long-term ethanol consumption effect on pancreas

GDS3464[34] 15617x6 Non-time series Danio rerio SPT5 mutant embryos

GDS3426[35] 23015x6 Non-time series Staphylococcus Staphylococcus epidermidis SarZ mutant

epidermidis

GDS3421[36] 10208x6 Non-time series Escherichia coli Frag cells response to ionic and non-ionic hyperosmotic stress

GDS3360[37] 22575x8 Time series Homo sapiens Chlamydia pneumoniae infection effect on HL epithelial cells:
time course

GDS2863([38] 31099x6 Time series Rattus norvegicus Tienilic acid effect on the liver: time course

GDS5057[39] 34760x8 Time series Mus musculus Mepenzolate bromide effect on lung: time course

GDS5055[40] 45307x10 Time series Mus musculus Histone demethylase KDM1A deficiency effect on 3 T3-L1
preadipocytes: time course

GDS3428[41] 22283x9 Time series Homo sapiens Immature dendritic cell response to butanol fraction of Echinacea
purpurea: time course

GDS4484[42] 45101x8 Time series Mus musculus Cerebellar neuronal cell response to thyroid hormone: time course

GDS3785[43] 17589x8 Time series Homo sapiens Osteoarthritic chondrocytes and healthy mesenchymal stem cell
during chondrogenic differentiation: time course

GDS3930[44] 8799x9 Time series Rattus norvegicus Bone morphogenic protein effect on cultured sympathetic neurons:
time course

GDS4321[45] 10208x8 Time series Escherichia coli Escherichia coli O157:H7 response to cinnamaldehyde: time course

GDS3032[46] 22277x8 Time series Homo sapiens Quercetin effect on intestinal cell differentiation in vitro: time course

and five imputed matrices. Step 4: repeat Steps 1-3
for B times, where B is the number of simulation
runs per missing percentage. Then the final CPP
score of KNN for the given benchmark microarray
data matrix is defined as the average of the 5*B CPP
scores. Fig. 2 illustrates the whole simulation
procedure.

Two existing comprehensive performance scores

In MVIAeval, we implemented two existing comprehen-
sive performance scores [48, 49] to provide the overall
performance comparison results for the selected bench-
mark microarray datasets and performance indices. The
first one, termed the overall ranking score (ORS), is de-
fined as the sum of the rankings of an algorithm for the
selected performance indices and benchmark microarray
datasets [48, 49]. The ranking of an algorithm for a spe-
cific performance index and a specific benchmark
microarray dataset is d if its performance ranks #d
among all the compared algorithms. For instance, the
best algorithm has ranking 1. Therefore, small ORS

indicates that an good overall
performance.

The other comprehensive performance score, termed
the overall normalized score (ONS), is calculated by the

sum of the normalized scores for the benchmark

algorithm  has

Table 2 The 12 existing algorithms implemented in MVIAeval

Algorithm Year of Publication Category Reference
SVD 2001 Global [13]
BPCA 2003 Global [14]
KNN 2001 Local [13]
SKNN 2004 Local [15]
IKNN 2007 Local [16]
LS 2004 Local 1171
LLS 2005 Local [18]
ILLS 2006 Local [19]
SLLS 2008 Local [20]
Shrinkage LLS 2013 Local [21]
Shrinkage SLLS 2013 Local [21]
Shrinkage ILLS 2013 Local [21]
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* Randomly generate
missing values
Vanswer = [1,—2.1,-0.4]

a
Complete matrix Matrix with missing values Imputed matrix
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Fig. 1 Three performance indices implemented in MVIAeval. MVIAeval i
¢ BLCI. Here we provide an example to show how the scores of these t
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mplements three performance indices, which are a 1/NRMSE, b CPP and
hree performance indices are calculated

microarray datasets and performance indices [48, 49]. The
ONS of the algorithm k is calculated like the following:
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ONS(k) =Y Nyk) = >~

I I
i=1 j=1 i=1

J=1

)

(s

where S;(k) and N;j(k) is the original score and the nor-
malized score of the algorithm k for the selected per-
formance index i and benchmark microarray dataset j,
respectively; I is the number of the selected indices; J is
the number of the selected benchmark microarray data-
sets and m is the number of the algorithms being
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randomly generate five testing matrices
with missing rates (1%,3%,5%,8%,10%)
y

> Stepl

generate five imputed matrices by
Step2 | imputing the missing values in
Ty, -+, Ts using KNN

<
<

Step3 | Calculate five CPP scores for I, -+, I5

y
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Final step Calculate the final CPP scores

Y2 (CPPy j+CPP j+CPP3 j+CPP, j+CPPs ;)
Final CPP = == : : ' ' :
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Fig. 2 The simulation procedure for evaluating the performance of an algorithm. The simulation procedure for evaluating the performance of
an imputation algorithm (e.g. KNN) for a given complete benchmark microarray data matrix using a performance index (e.g. CPP) is divided into
four steps

MVIAeval Choose Settings

@
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Input Output (Webpage)

Email the webpage link
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Upload the R code of
a user’s newly
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Comprehensive
performance

Performance q
comparison results

indices

Comprehensive
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Fig. 3 The flowchart of MVIAeval. The flowchart shows how MVIAeval conducts a comprehensive performance comparison for a new algorithm
. J
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a

Evaluate the performance of the user's algorithm

Input your e-mail address:

UserEmailAddress@gmail.com

Valid

b

Upload Successfully

USER.R

Simulation Runs
25

25 30 35 40

Check All Dataset Dim Type Organism Title
GDS3421 10208*6 Non-time Series Escherichia coli Fragl cells response to ionic and non-ionic hyperosmotic stress
GDS4321 10208*8 Time Series Escherichia coli Escherichia coli 0157:H7 response to cinnamaldehyde: time course
@ GDS3215 126256 Non-time Series Homo sapiens 13-cis retinoic acid effect on SEB-1 sebocyte cell line
GDS3464 15617*6 Non-time Series Danio rerio SPTS mutant embryos
GDS2107 15923*6 Non-time Series Rattus norvegicus Long-term ethanol consumption effect on pancreas
v GDS3785 17589*8 Time Series Homo sapiens il cytes and healthy mesenchymal stem cell during chondi time course
Cc
Parameters
“Uncheck All Algonthm
K Nearest Neighbors | Similarity Measure | Number of Iterations
< SVD
o BPCA
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@ IKNN 15 (5<x<300) 1/EuDist OPCor ®Angle 5
@ LS 300 |(5<x<300) ®1/EuDist OPCor OAngle
@ LLS 300 |(5<x<300) 1/EuDist ®PCor OAngle
% SLLS 300 |(5<x<300) 1/EuDist OPCor ®Angle
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@ IShrLLS 300 |(5<x<300) 1/EuDist ®PCor OAngle 5
Performance Indices Comprehensive Performance Scores
v 1/NRMSE @ Comprehensive Ranking Score
v CPP Comprehensive Normalized Score
a BLCI

Fig. 4 The input and five settings of MVIAeval. Users need to a upload the R code of their new algorithm, b select the test datasets among 20
benchmark microarray (time series or non-time series) datasets, ¢ select the compared algorithms among 12 existing algorithms, d select the
performance indices from three existing ones, the comprehensive performance scores from two possible choices, and the number of simulation runs
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Fig. 5 The output of MVIAeval. For demonstration purpose, we upload the R code of a sample algorithm as the user's new algorithm and

select two benchmark datasets (GDS3215 and GDS3785), 12 existing algorithms, three performance indices, the overall ranking score as the
comprehensive performance score, and 25 simulation runs. a The webpage of the comprehensive performance comparison results shows that
the overall performance of the user’s algorithm (denoted as USER) ranks six among all the 13 compared algorithms. b By clicking “details” in the
row of BLCI for the benchmark dataset GDS3785, users can see the performance comparison results using only BLCI score for the benchmark
dataset GDS3785. It can be seen that the user's algorithm ranks five among the 13 compared algorithms using only BLCI score for the benchmark
dataset GDS3785. The details of BLCI score for each algorithm can also be found
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compared. Note that 0<Nj;(k)<1 and N;(k)=1 when
the algorithm k performs best for the selected perfor-
mance index i and benchmark microarray dataset j
(ie. S;(k) = max(S;(1), S(2), ..., S;(m))). Therefore, large
ONS indicates that an algorithm has good overall
performance.

Results and discussion

Usage

Figure 3 illustrates the usage of MVIAeval. The easy-to-
use web interface allows users to upload the R code of
their newly developed algorithm. Subsequently five types
of settings of MVIAeval need to be set. First, the test
datasets have to be chosen from 20 benchmark micro-
array datasets. The collected benchmark datasets consist
of two types of data: 10 non-time series data and 10 time
series data. Second, the compared algorithms have to be
chosen from 12 existing algorithms. The collected exist-
ing algorithms consist of two global approach algorithms
and 10 local approach algorithms. Third, the perform-
ance indices have to be chosen from three existing ones
(I/NRMSE, CPP and BLCI). Fourth, the comprehensive
performance scores have to be chosen from two existing
ones (ORS and ONS). Fifth, the number of simulation
runs have to be specified. The larger the number of
simulation runs is, the more accurate the comprehensive
performance comparison result is. But be cautious that
the simulation time increases linearly with the number
of simulation runs. After submission, a comprehensive
performance comparison between the user’s algorithm
and the selected existing algorithms is executed by
MVIAeval using the selected benchmark datasets and
performance indices. Then a webpage of the comprehen-
sive performance comparison results is generated and
the webpage link is sent to the users by e-mails.

A case study

In MVIAeval, the R code of a sample algorithm is pro-
vided. For demonstration purpose, we regard the sam-
ple algorithm as the user’s newly developed algorithm
and would like to use MVIAeval to conduct a compre-
hensive performance comparison of this new algo-
rithm (denoted as USER) to various existing
algorithms. For example, users may upload the R code
of the new algorithm and select (i) two benchmark
datasets, (ii) 12 existing algorithms, (iii) three per-
formance indices, (iv) the overall ranking score as the
comprehensive performance score, and (v) 25 simula-
tion runs (see Fig. 4). After submission, MVIAeval
outputs the comprehensive comparison results in both
tables and figures. Among the 13 compared algo-
rithms, the overall performance of the new algorithm
ranks six (see Fig. 5). Actually, MVIAeval can provide
the performance comparison results in many scenarios
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(see Table 3). It can be concluded that the new algo-
rithm is mediocre because its performance is always in
the middle of all the 13 compared algorithms in differ-
ent data types (time series or non-time series), differ-
ent performance indices (1/NRMSE, BLCI or CPP)
and different comprehensive performance scores (ORS
or ONS). Receiving the comprehensive comparison
results from MVIAeval, researchers immediately know
that there is much room to improve the performance
of their new algorithm.

Conclusions

Missing value imputation is an inevitable pre-processing
step of microarray data analyses. This is why the compu-
tational imputation of the missing values in microarray
data has become a hot research topic. The newest algo-
rithm is published in year 2016 [50] and we believe that
many new algorithms will be developed in the near fu-
ture. Using MVIAeval, bioinformaticians can easily get a
comprehensive and objective performance comparison
results of their new algorithm. Therefore, bioinformati-
cians now can focus on developing new algorithms in-
stead of putting a lot of efforts for conducting a
comprehensive and objective performance evaluation of
their new algorithm. In conclusion, MVIAeval will defin-
itely be a very useful tool for developing missing value
imputation algorithms.

Table 3 MVIAeval can provide the performance comparison
results in many scenarios

Performance Benchmark Ranking of USER Ranking of USER
datasets using ORS using ONS
Index
1/NRMSE Five Time Series 5 6
[37-41]
Five Non-time 6 6
Series [27-31]
CPP Five Time Series 7 9
[37-41]
Five Non-time 1 8
Series [27-31]
BLCI Five Time Series 3 4
[37-41]
Five Non-time 7 7
Series [27-31]
1/NRMSE + Five Time Series 6 7
CPP +BLCI [37-41]
Five Non-time 6 6
Series [27-31]

The performance comparison results of the user’s algorithm (denoted as USER)
and various existing algorithms using different types of datasets (time series
or non-time series), different performance indices (1/NRMSE, CPP or BLCI), and
different overall performance scores (overall ranking score (ORS) or overall
normalized score (ONS)) are shown. More details could be seen at http://cos
bi.ee.ncku.edu.tw/MVIAeval/A_Case_Study
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