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Abstract

Background: Accurate methods capable of predicting the impact of single nucleotide variants (SNVs) are assuming
ever increasing importance. There exists a plethora of in silico algorithms designed to help identify and prioritize
SNVs across the human genome for further investigation. However, no tool exists to visualize the predicted
tolerance of the genome to mutation, or the similarities between these methods.

Results: We present the Genome Tolerance Browser (GTB, http://gtb.biocompute.org.uk): an online genome
browser for visualizing the predicted tolerance of the genome to mutation. The server summarizes several in silico
prediction algorithms and conservation scores: including 13 genome-wide prediction algorithms and conservation
scores, 12 non-synonymous prediction algorithms and four cancer-specific algorithms.

Conclusion: The GTB enables users to visualize the similarities and differences between several prediction algorithms and
to upload their own data as additional tracks; thereby facilitating the rapid identification of potential regions of interest.

Keywords: SNVs, Mutation, Pathogenicity prediction, Prediction algorithm, Variant effect prediction, Genome browser,
Genome tolerance

Background
The rate at which single nucleotide variants (SNVs) are be-
ing identified across the genome has increased owing to
technological advances and the falling costs in whole-
genome sequencing [21]. The main challenge facing
clinicians and researchers is identifying which of these SNVs
contribute to disease predisposition [6]. There are many al-
gorithms capable of predicting the functional consequences
of these variants, including those focussing on nonsynon-
ymous SNVs (nsSNVs) that induce amino acid substitutions
[4, 18], SNVs that influence specific diseases such as cancer
[7, 17], or SNVs that fall within non-coding regions of the
genome [8, 14, 19]. However, each method employs a differ-
ent approach to variant effect prediction, which can some-
times lead to conflicting predictions for the same variant
being made. For example, sequence-based algorithms begin
with a multiple sequence alignment between the gene or
protein of interest and homologous sequences. Here, it is as-
sumed that conserved positions within the alignment indi-
cate that there are strong selective pressures acting on
particular residues; therefore, genomic variants occurring at
these positions are often considered to be functional. On

the other hand, structure-based algorithms use structural
properties, such as the accessible solvent area, to identify
putative functional variants. These algorithms assume that
variants falling at specific sites are functional regardless of
sequence conservation, e.g. buried residues. Recently, a new
class of prediction algorithms capitalizing on state-of-the-
art machine learning paradigms have emerged. These
algorithms combine several sequence and structure-based
annotations to train classifiers using known disease-causing
variants and neutral polymorphisms. A comprehensive
review on the underlying methodology of prediction algo-
rithms is given in Ng and Henikoff [12], and a comprehen-
sive comparative evaluation of algorithm performance has
been performed by Thusberg et al [22].
The wealth of available prediction algorithms makes

assessing the predicted impact of genomic variants a
tedious and time consuming task. As a result, databases
such as the dbNSFP [9] and the dbWGFP [24] have
begun to collate the output of several different predic-
tion algorithms; thereby allowing users to assess the
concordance between prediction algorithms. While the
reported correlation between existing algorithms varies
considerably, ranging from near zero to near perfect cor-
relation [10], no tool exists for visualizing these similar-
ities and differences. In this work, we present the
Genome Tolerance Browser (GTB): an online browser
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for visualizing the predicted tolerance of the genome to
mutation and for identifying potential similarities and
subtle differences between in silico prediction algorithms.

Construction and content
Prediction algorithms and conservation scores
We obtained exome-wide pre-computed predictions for
12 non-synonymous computational prediction algorithms,
including SIFT [11] and PolyPhen-2 [1], from dbNSFP
(version 3.1; [10]). Although dbNSFP includes predictions
from a number of genome-wide prediction algorithms and
conservation scores, e.g. CADD [8] and GERP++ [3],
these predictions are limited to just the coding regions of
the human genome. Therefore, we enhanced this dataset
to include the non-coding regions of the genome wher-
ever possible. In addition to genome-wide predictions, we
obtained exome-wide predictions from two cancer-
specific algorithms: FATHMM [17] and TransFIC [7]. The
composition of prediction algorithms included in the GTB
is summarized in Table 1.

Calculating genome tolerance
One of the main objectives of the GTB is to visualize the
predicted tolerance of the genome to mutation. To this
end, we summarize and normalize predictions from each
method at the individual base level as follows: we first
permute each base and obtain the corresponding predic-
tions from each algorithm. Where a mutation affects
multiple transcripts (within coding regions), we obtain
multiple scores per permutation. We normalize these
scores so that they fall between 0 and 1 using the follow-
ing formula:

x ¼
�
x−min

�

max−minð Þ

where min and max are the lower and upper bounds of
the prediction algorithm. Finally, we average these scores
across permutations to obtain the overall predicted toler-
ance of the position to mutation: higher scores indicate that
a position is less tolerant to mutation whereas lower scores
indicate those that are more tolerant to mutation. We
stress that these scores are not new or “transformed”
predictions per se, but instead these scores represent the
overall tolerance of a particular position to mutation as
predicted by the associated in silico algorithms, i.e. on aver-
age, how tolerant is the position to mutation. It should be
noted that a large proportion of prediction algorithms do
not consider variants outside of SNVs, e.g. insertions and
deletions, nor do they distinguish between gain-of-function
and loss-of-function mutations.

Visualization
A web-based version of the GTB is available at http://
gtb.biocompute.org.uk and has been built on top of the Dal-
liance genome browser [5]. By default, tracks representing
two popular non-synonymous prediction algorithms: SIFT
and PolyPhen-2, and two genome-wide prediction
algorithms: FATHMM-MKL and CADD, are displayed.
Using the available options, users can add additional tracks
representing a plethora of computational prediction
algorithms (see Table 1 for a full list of available methods),
or even upload custom annotation data in either bigWig or
bigBed format. The appearance of these tracks can be cus-
tomized, and publication quality images can be exported in
either SVG or PNG format. Users can also download the
entire GTB database or extract GTB scores for specific
regions by following the instructions given on the website.

Utility
In the following section, we demonstrate how the GTB can
be used to visualize, compare and contrast several predic-
tion algorithms. Understanding why various algorithms
agree in particular regions, but disagree in other regions, is
an important aspect when interpreting computational

Table 1 List of in silico prediction algorithms and conservation
scores summarized through the Genome Tolerance Browser

Non-Synonymous Prediction Algorithms

Generic Cancer-Specific
SIFT TransFIC (SIFT)

PolyPhen-2 (HumVar & HumDiv) TransFIC (PolyPhen-2)

MutationAssessor TransFIC (MutationAssessor)

FATHMM (Unweighted & Weighted) FATHMM (Cancer)

FATHMM-MKL (Coding)

MutationTaster2

PROVEAN

VEST

LRT

MetaLR

MetaSVM

Genome-Wide Prediction Algorithms

CADD

DANN

FATHMM-MKL (Non-coding)

fitCons

Conservation Scores

PhastCons (46-Way)

PhyloP (46-way; vertebrate, primates and placental mammals)

PhastCons (100-Way)

PhyloP (100-way; vertebrate, primates and placental mammals)

GERP++

SiPhy

Shihab et al. BMC Bioinformatics  (2017) 18:20 Page 2 of 6

http://gtb.biocompute.org.uk
http://gtb.biocompute.org.uk


predictions. In addition, when multiple algorithms all yield
different predictions and/or tolerance profiles, this could
suggest that variants falling in these regions are much
harder to predict. Therefore, users should treat predictions
with caution and not rely on a single algorithm for inter-
pretation. Further, the browser can also be used to identify
potential “regions of interest”. Here, long stretches of
intolerance predicted by multiple algorithms may indicate
regions worth exploring through in vitro experimentation.

Visualizing the characteristics of sequence- and structure-
based prediction algorithms
Figure 1 (see Additional file 1 for larger high resolution
images) shows the tolerance profile for HOXA5, a member
of the Homeobox gene cluster, as predicted by two
sequence-based algorithms, SIFT [11] and PROVEAN [2],
a structure-based algorithm, PolyPhen-2 [1], and two
genome-wide prediction algorithms, FATHMM-MKL [19]
and CADD [8]. While there are a number of sequence-
and structure-based prediction algorithms available in the
GTB, these algorithms were chosen due to their use and
general popularity in the scientific literature.
Although SIFT shows higher intolerance across

HOXA5, the overall profile shows similar regions of
intolerance to that of PROVEAN. For example, both
appear to show high intolerance towards the end of the

1st exon (see region highlighted in red). However, this
comes as no surprise given that these genes play a
crucial role during embryonic development and are
highly conserved across great evolutionary distances
[16]. In contrast, PolyPhen-2, which incorporates struc-
ture-based properties for variant prioritization, shows a
different tolerance profile. Here, it appears that it is spe-
cific regions of HOX5A that are intolerant to mutation.
This suggests that these regions may harbour important
structural constraints which are potentially missed when
using a pure sequence-based approach. Both PolyPhen-2
models, HumVar and HumDiv, share large regions of
similarity (highlighted in red). However, this also comes as
no surprise as they both utilize the same underlying pre-
diction algorithm but are trained using slightly different
training data [4]. Peaks of predicted intolerance can also
be observed across the non-coding region of HOXA5
when using genome-wide prediction algorithms such as
FATHMM-MKL and CADD; thereby suggesting that
these regions could also be functional. However, it is inter-
esting to note that FATHMM-MKL appears to give much
more granular peaks across the region than CADD. Both
algorithms are trained using similar genomic annotations.
Therefore, this observation appears to suggest that these
algorithms may place greater emphasis on different gen-
omic annotations across HOXA5.

Fig. 1 Tolerance profile of HOXA5 shows regions of similarity between sequence-based prediction algorithms: SIFT and PROVEAN. However, subtle
differences in tolerance can be observed when comparing these sequence-based algorithms with a structure-based algorithm, PolyPhen-2. Insight
into potential regions of interest can be also obtained from genome-wide prediction algorithms such as FATHMM-MKL and CADD

Shihab et al. BMC Bioinformatics  (2017) 18:20 Page 3 of 6



A similar trend can also be observed across LDLR: where
variants in this gene have been linked with the autosomal
dominant disorder, familial hypercholesterolemia [20].
Here, both SIFT and PROVEAN show similar patterns of
intolerance given that they depend solely on sequence
conservation for prediction whereas PolyPhen-2 shows a
more refined intolerance profile (Fig. 2). These differences
could be explained by structural constraints that are poten-
tially missed when using sequence conservation alone, or a
larger dependency on structure-based annotations, e.g. the
accessible solvent area, across the region. Unlike HOXA5,
FATHMM-MKL and CADD, are much more similar across
the non-coding regions of LDLR, which suggests that both
algorithms could be relying on the same genomic annota-
tions across this region.

Visualizing the impact of cancer-specific training
Next, we illustrate how the GTB can be used to visualize
the differences between traditional and cancer-specific
prediction algorithms. Figure 3 shows the tolerance profile
for the initial three coding exons of the tumour suppressor
gene TP53 whereas Fig. 4 shows the intolerance profile for
the largest exon in BRCA1. TP53 and BRCA1 both play a
pivotal antiproliferative role and mutations within it
predispose individuals to a wide spectrum of early-onset
cancers [13, 23]. While traditional germline algorithms
such as PolyPhen-2 and MutationAssessor [15] are
capable of identifying localized regions of intolerance,

cancer-specific transformations of these algorithms [7] are
capable of capturing the importance of the entire region
with respect to cancer. As a result, the entire region is
amplified compared to their original counterparts (e.g. see
the PolyPhen-2 region highlighted in red). These amplifi-
cations could be the direct result of the cancer-specific
training employed in these methods, i.e. these methods
are specifically trained to discriminate between cancer-
associated variants and all other variants (both germline
disease mutations and neutral polymorphisms). Small
peaks of predicted intolerance can also be observed in
non-coding regions when using genome-wide prediction
algorithms (highlighted in red). However, it should be
noted that these genome-wide predictions were trained on
germline mutations and not cancer-associated mutations.
Therefore, the ability of these methods to detect intoler-
ance with respect to cancer remains to be seen. Once
again, while there are multiple algorithms in the GTB, we
selected the above algorithms due to their overall use and
popularity in the scientific literature when predicting the
effects of cancer-associated variants.

Discussion
The Genome Tolerance Browser (GTB) offers a platform
to effectively compare and visualize differences in func-
tional predictions between a wide range of algorithms at
(or below) the gene level. This enables the researcher to
clearly understand the nature of differences in

Fig. 2 A similar trend in intolerance can be observed across LDLR using sequence- and structure-based prediction algorithms, i.e. sequence-based
methods tend to agree on intolerance given that they both rely on sequence conservation whereas structure-based algorithms utilize the additional
structure-based properties made available to them to show a different tolerance profile. Unlike HOXA5, genome-wide prediction algorithms appear to
agree on potential peaks of intolerance across the non-coding region of LDLR
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performance and make a more informed decision about
the best algorithm to use for a particular scenario. For
example, the browser can be used to identify cases in
which particular algorithms place greater emphasis on
similar annotations during prediction, as illustrated by the
emphasis on sequence conservation we observed when
comparing SIFT and PROVEAN. The GTB can also be
used to detect subtle differences between prediction
algorithms. For example, we observed clear discrepancies
in predicted intolerance between generic prediction

algorithms and cancer-specific prediction algorithms across
cancer-associated regions of the genome, illustrating that
these different methodologies place greater emphasis on
different annotations during prediction.
The potential utility of the GTB goes beyond simply

visualizing computational prediction algorithms. For
example, other research questions that could be asked
include: are prediction algorithms affected by genomic
annotations such as open chromatin, transcription factor
binding sites and histone modifications; and can some of

Fig. 3 Subtle differences between generic and cancer-specific prediction algorithms can be observed across TP53. For example, cancer-specific
transformations of traditional germline prediction algorithms amplify intolerance across the entire region

Fig. 4 Cancer-specific transformations of traditional germline prediction algorithms amplifies the intolerance of BRCA1
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the observed variability between prediction algorithms
be explained by these annotations; given specific
genomic annotations, under what circumstances should
we use particular prediction algorithms (or particular
methodologies towards prediction)?
Finally, the GTB can be used to identify potential

regions of interest across the genome, e.g. long
stretches of predicted intolerance. In future releases,
we plan on developing algorithms for automatically
detecting and characterizing these regions of interest.

Conclusions
The GTB is a visualization platform that enables
users to compare a range of existing variant effect
prediction algorithms (and other data as additional
tracks) in specific regions of the human genome. The
GTB enables differences in prediction to be evaluated
and facilitates rapid identification of potential regions
of interest.

Availability and requirements
The GTB is freely available online at http://gtb.biocompute.
org.uk and the source code for local hosting is available at
https://github.com/HAShihab/gtb.

Additional file

Additional file 1: High resolution versions of Figs. 1, 2, 3 and 4.
(DOCX 823 kb)

Abbreviations
GTB: Genome tolerance browser; nsSNVs: non-synonymous single nucleotide
variant; PNG: Portable network graphics; SNV: Single nucleotide variant;
SVG: Scalable vector graphics
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