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Abstract

Background: Epistasis marker effect models incorporating products of marker values as predictor variables in a
linear regression approach (extended GBLUP, EGBLUP) have been assessed as potentially beneficial for genomic
prediction, but their performance depends on marker coding. Although this fact has been recognized in literature, the
nature of the problem has not been thoroughly investigated so far.

Results: We illustrate how the choice of marker coding implicitly specifies the model of how effects of certain allele
combinations at different loci contribute to the phenotype, and investigate coding-dependent properties of EGBLUP.
Moreover, we discuss an alternative categorical epistasis model (CE) eliminating undesired properties of EGBLUP and
show that the CE model can improve predictive ability. Finally, we demonstrate that the coding-dependent
performance of EGBLUP offers the possibility to incorporate prior experimental information into the prediction
method by adapting the coding to already available phenotypic records on other traits.

Conclusion: Based on our results, for EGBLUP, a symmetric coding {—1,1} or {—1,0, 1} should be preferred, whereas
a standardization using allele frequencies should be avoided. Moreover, CE can be a valuable alternative since it does
not possess the undesired theoretical properties of EGBLUP. However, which model performs best will depend on
characteristics of the data and available prior information. Data from previous experiments can for instance be

incorporated into the marker coding of EGBLUP.
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Background

Genomic prediction aims at forecasting qualitative or
quantitative properties of individuals based on known
genetic information. The genetic information can for
instance be given by single-nucleotide-polymorphisms
(SNPs) or other kinds of genetic data of individual ani-
mals, plant lines or humans. Applied to animals and
plants, genomic prediction is of central importance for
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breeding within the concept of genomic selection [1, 2].
Moreover, genomic prediction can also be used in
medicine or epidemiology for risk assessment or preva-
lence studies of (partially) genetically determined diseases
(e.g. [3]). One of the standard approaches for genomic
prediction of quantitative traits is based on a linear regres-
sion model in which the phenotype is described by a
linear function of the genotypic markers. In more detail,
the standard additive linear model is defined by the
equation

y=1p+MB +e€ (1)
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where y is the n x 1 vector of phenotypes of the n
individuals, 1 the n x 1 vector with each entry equal to 1,
the fixed effect and M the # x p matrix giving the p marker
values of the # individuals. Moreover, B is the p x 1 vec-
tor of unknown marker effects and € a random # x 1 error

j.id.
vector with ei”~ N(0, 0'62). Since the number of markers
p is typically much larger than the number of individu-

als #, the additional assumption that f; Hid. N, 05) is
usually made (and all random terms together are consid-
ered as stochastically independent). In particular, using
an approach of maximizing the density of a certain dis-
tribution [4], this assumption allows us to determine the
penalizing weight in a Ridge Regression approach which is
known as ridge regression best linear unbiased prediction
(RRBLUP) and which is fully equivalent to its relationship
matrix-based counterpart genomic best linear unbiased
prediction (GBLUP)! [5, 6]. The answer to the question
which type of marker coding is appropriate in M depends
on the combination of the type of genotypic marker and
ploidy of the organism dealt with. For instance, if haploid
organisms are considered or presence/absence markers
are used, a possible coding for the j-th marker value of the
i-th individual M;; is the set {0,1}. Counting the occur-
rence of an allele of a diploid organism, the sets {0, 1,2} or
{—1,0, 1}, or rescaled variants can be used. If the marker
effects B and the fixed effect u are predicted/estimated as
,é and [ on the basis of a training set, the expected pheno-
types of individuals from a test set, which were not used
to determine f and /i, can be predicted by using their
marker information in Eq. (1) with f{, ﬁ . We will call the
difference between the predicted expected phenotype and
the estimated fixed effect the predicted genetic value. For
the purely additive model of Eq. (1) and a diploid organ-
ism with possible genotypes aa, aA and AA for locus j, the
choice of how to translate these possibilities into numbers
was reported not to affect the predictive ability notably, as
long as the difference between the coding of aa and 4A is
the same as between aA and AA and equal for all mark-
ers [5, 7-9]. However, an extension of the additive model,
which we call the extended GBLUP model (EGBLUP)
[10, 11]

» P p
yi=pA Y M+ Y Y MiiMighi+ €, (2)
j=1 k=1 j=k

has been shown to exhibit strong coding dependent per-

formance [12, 13]. Here, ;¢ Hid- N (0, ahz) is the pairwise
interaction effect of markers j and k and all other vari-
ables as previously defined (all terms stochastically inde-
pendent). Compared to Eq. (1), this model additionally
incorporates pairwise products of marker values as pre-
dictor variables and thus allows us to model interactions
between markers. Moreover, the interaction of a marker
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with itself gives a possibility to model dominance effects
(see e.g. [11, 14-16]). The epistasis model of Eq. (2) and
some variations with restrictions on which markers can
interact have been the main object of investigation in sev-
eral publications and models incorporating epistasis have
been viewed as potentially beneficial for the prediction
of complex traits [10, 11, 17-19], but a marker coding
dependent performance was observed [12, 13].

In this work, we investigate how the marker coding
specifies the effect model for markers with two or three
possible values and show how we can find the marker
coding for an a priori specified model. We discuss advan-
tages and disadvantages of different coding methods and
investigate properties of alternative linear models based
on categorical instead of numerical dosage variables. In
particular, we show how to represent these models as
genomic relationship matrices. Finally, we compare the
predictive abilities of different epistasis models on sim-
ulated and publicly available data sets and demonstrate
a way of using the coding-dependent performance of
EGBLUP to incorporate prior information.

Methods

Data sets used for assessing predictive ability

Simulated data

A population with 10 000 bi-allelic markers spread across
five chromosomes was simulated, using the QMSim soft-
ware [20]. The size of the first chromosome was 140
centimorgan (cM) with 3 500 markers. Chromosomes 2
to 5 had a size of 110 ¢cM (2 750 markers), 80 cM (2 000
markers), 50 cM (1 250 markers) and 20 ¢cM (500 mark-
ers), receptively. In order to allow mutations and linkage
disequilibrium establishment, a historical population was
simulated with 5 000 individuals (2 500 males and 2 500
females) with random mating for 1000 generations with
constant population size and with a replacement rate of
0.2 for males and females. Then the population size was
reduced to 1 000 individuals for 20 additional generations
(generation 1001 to 1020). The simulated mutation rate
was 2.5 - 107°.

We used this simulated genotypes as basis and modeled
three different types of genetic architecture (purely addi-
tive, purely dominant and purely epistatic), each with a
varying number of quantitative trait loci (QTL) on top. We
chose these types of genetic architecture, without addi-
tive effects in the dominance and epistasis scenarios, to
make the three scenarios as different as possible. To model
the phenotype, out of the 10 000 markers, 200 were drawn
randomly from each of the five chromosomes to define in
total 1 000 QTL for additive or dominance effects. For the
purely additive scenario, the 1000 additive effects were
drawn independently from a A(0, 1) distribution. For the
first additive trait A1, 10 out of the 1000 QTL were drawn
and the genetic values of all individuals were calculated
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according to the effects of these 10 loci. To define a broad
sense heritability of 0.8, the genetic values were standard-
ized to mean 0 and variance 1 and individual errors were
drawn from a NV(0,0.25) distribution. Having added these
individual errors to the genetic values, these phenotypes
were again standardized to mean 0 and variance 1. For
the second trait A2, additional 90 QTL were drawn from
the initial 1000 to give in total 100 QTL for this trait
including the QTL of trait A1 with their corresponding
effects. Analogously, for A3, all initially drawn 1000 QTL
were used. The standardization procedure was identical to
the one previously described for Al. For the comparison
of genomic prediction with different relationship mod-
els, these 1000 markers were removed. The relationship
matrices were based on the remaining 9 000 markers.

For the dominance scenario D1 (10 QTL), D2 (100
QTL) and D3 (1000 QTL), we used the same QTL posi-
tions as for Al, A2, and A3, respectively, but simulated
N (0, 1)-distributed dominance effects. The standardiza-
tion procedure to a broad sense heritability of 0.8 was
carried out as described before.

For the epistasis traits E1, E2 and E3, 1000, 10000 or
100000 pairs of markers were drawn randomly and for
each draw, one of the nine possible configurations of the
pair was randomly chosen to have an A (0, 1)-distributed
effect. For instance, having drawn the marker pair j, k, only
the configuration (M, M; ;) = (0, 2) was chosen to have
an effect, which again was drawn randomly. This was done
independently for each trait, which means trait E2 does
not necessarily share causal combinations of markers with
trait E1. The phenotypes were standardized as described
above. Note, that the markers involved in causal combina-
tions were not removed here, since in expectation, every
marker is somehow involved in the phenotype of trait E2
and E3.

We repeated this whole procedure, including the sim-
ulation of the genotypes, 20 times and compared the
different models by their average predictive ability across
the 20 repetitions. The simulated data can be found in
Additional file 1 of this publication.

Wheat data

The wheat data which we used to compare different meth-
ods was published by Crossa et al. [21]. The 1279 DArT
markers of 599 CIMMYT inbred wheat lines indicate
whether a certain allele is present (1) or not (0). The phe-
notypic data describes standardized records of grain yield
under four environmental conditions.

Mouse data

The mouse data set we used was published and described
by Solberg et al. [22] and Valdar et al. [23], and was down-
loaded from the corresponding website of the Wellcome
Trust Centre for Human Genetics. The physical map of
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single nucleotide polymorphisms (SNPs) was updated to
the latest version of the mouse genome (Mus musculus,
assembly GRCm38.p4) with the biomaRt R package [24,
25]. Only SNPs mapped to the GRCm38.p4 were used
for further analysis. For the remaining markers, the ratio
of missing marker values was rather low (0.33%) and we
performed a random imputation. The nucleotide coded
genotypes were translated to a {0,1,2} coding, where 0
and 2 denote the two homozygous and 1 the heterozy-
gous genotype. SNPs with minor allele frequency (MAF)
smaller than 0.01 were excluded from the dataset. Impu-
tation, recoding, and quality control of genotypes were
carried out with the synbreed R package simultane-
ously [26]. A number of 9265 SNPs remained in the
dataset for further analysis. We only used individuals with
available records for all considered traits for further anal-
ysis, which reduced the number of individuals to 1298.
We focused on the provided pre-corrected residuals of
13 traits from which fixed effects of trait-specific rele-
vant covariates such as sex, season, month, have already
been subtracted. A detailed description of the traits can be
found on the corresponding sites of the UCL. Moreover,
the data resulting from quality control and filtering as well
as the corrected phenotypes of the traits we used can be
found in Additional file 1.

Genomic relationship based prediction and assessment of
predictive ability

We used an approach based on relationship matrices
for genomic prediction. The underlying concept of this
approach is the equivalence of marker effect-based and
genomic relationship-based prediction ([5, 10, 11]). Given
the respective relationship matrix, the prediction is per-
formed by Eq. (3) (for a derivation of this equation see the
supporting information of [11]):

gtmirz -1 ]sxs 0
~ = | Tyain —
(gtest ) [ train — S < 0 0)
—1
+U€2 iG—l Yirain \ Ls¥train
o—g 0 0

3)

The matrix G is the central object denoting the genomic
relationship matrix of the respective model. The variables
g; are the predicted genetic values (expected phenotype
minus the fixed effect (i) of the respective set (training or
test set). Moreover, s is the number of genotypes in the
training set, 1; is the vector of length s with each entry
equal to 1, J«; is the analogous s x s matrix with each entry
equal to 1 and Yz, is the empirical mean of the training
set. Here, Ty, denotes the diagonal matrix of dimension
n with 0 on the diagonal at the positions of the test set
genotypes, and 1 for the training set individuals.
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To assess the predictive ability of different models, we
chose a test set consisting of ~10% of the total num-
ber of individuals (100, 60, or 130 for the simulated, the
wheat and the mouse data, respectively). We then used
the remaining individuals as a training set and predicted
the genetic values for all individuals using Eq. (3). The
variance components 62 and o2 were estimated from the
training set using version 3.1 of the R package EMMREML
[27]. The relationship matrix relating the genotypes of the
training set was used to estimate the variance compo-
nents based on the phenotypes of the training set only.
The variance components were then used with the com-
plete relationship matrix for the prediction of the genetic
values of all individuals in Eq. (3). This procedure was
repeated 200 times, with independently drawn test sets.
The average correlation 7 between observed and predicted
mean phenotypes of the test set was used as a measure
of predictive ability. A description of how the different
effect models can be translated into relationship matrices
is given in the results. For the Gaussian kernel, we used
the bandwidth parameter b = 2¢g,, ;, with go 5 the median
of all squared Euclidean distances between the individu-
als of the respective data. For the simulated data which
consisted of 20 independent data sets, we present the aver-
age predictive ability and the average standard error of the
mean. For the wheat and the mouse data, we used Tukey’s
‘Honest Significant Difference’ test to contrast the perfor-
mance of the different prediction methods (TukeyHSD ()
and 1m () of R [28]).

Incorporation of prior information by marker coding

As described above, the data we used offers records
of different traits or traitxenvironment combinations of
the same individuals. We will illustrate that the coding-
dependent performance of EGBLUP can also be used to
incorporate a priori information into the model by choos-
ing the coding for each interaction with already provided
data and by using the corresponding relationship matrix
for prediction under altered environmental conditions or
for a correlated trait. We used for the wheat data the
following procedure:

1) We predicted all the interactions }Alk,; for a given trait
in a given environment, under the use of the {0, 1}
coding originally provided by Crossa et al. [21] (as
described by Martini et al. [11]).

2) We changed the “orientation” of all markers at once
by substituting O by 1, and 1 by 0 and predicted all
interactions ilk,l under the use of the altered coding.

3) If the ratio of s
Kl

assumed that the original orientation provided by the
data set describes the respective interaction better
than the alternative coding.

was greater than or equal to 1, we
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4) We then calculated a relationship matrix for each
interaction individually by

Gii = (MoxM, ) o (Mo1M;))

with M, x denoting the # x 1 vector of marker data
of locus k for all individuals in the respective coding
which seems to fit the interaction better according to
3) (see [11, 29]). Here, o denotes the Hadamard
product.

5) The overall relationship matrix was then defined by

P p
G=> > Gk
k=11>k

We used the data of each environment to calculate an
optimally coded relationship matrix for this environment,
which was used afterwards for predicting phenotypes in
the other environments. The underlying heuristic of step
3) is that a small effect means that the interaction is less
important in the respective coding. If the underlying effect
model defined by the coding does not capture the data
structure, the estimated effect should be close to zero.
However, if the effect of a combination is important to
describe the phenotype distribution, a larger effect should
be assigned (see also Example 1, where the estimated
effect is 0, if the underlying parameterization cannot
describe the present effect distribution).

For the mouse data, we used the 13 considered traits
to construct a relationship matrix for each of them. Each
relationship matrix was afterwards used for prediction
within the data of the twelve other traits. The two differ-
ent codings which were compared here, were the {0, 1,2}
coding based on the imputed originally provided data and
its inverted version with 0 and 2 permuted.

Results

In the following, we will highlight aspects of the behav-
ior of the additive effect model of Eq. (1) when the marker
coding is altered. These properties of the additive model
will afterwards be compared to those of the epistasis
model of Eq. (2).

All relationship matrices will be assumed to be pos-
itive definite and thus invertible. Mathematical deriva-
tions of the illustrated properties can be found in
Additional file 2.

Properties of GBLUP

We start with the effect of translations of the coding,
that is the addition of a number p; to the initially chosen
marker coding of marker j.

Property 1 (Translation-invariance of GBLUP) Let P
denote a vector whose entries give the arbitrary transla-
tions pj of the coding of the locus j. Moreover, let the ratio
of 0% and a}g be known and unchanged if the marker
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coding is translated. Let ﬁ and [i denote the predicted /
estimated quantities if the initial coding M is used in the
Mixed Model Equation approach of Eq. (1) and let ﬁ and
[ denote the corresponding quantities if the translation
M := M — 1P’ is used instead of M. Then the following
statements hold:

Il
™

a) i=0+PB

b) B

c) The prediction of the expected phenotype of each
genotype is independent of whether M or M is used.

The statement of Property 1 has already been dis-
cussed in literature [5, 7-9], and we will present a
mathematical derivation based on the Mixed Model
Equations in Additional file 2. The proof will be a
blueprint for the derivation of other properties based
on the Mixed Model Equations which can also be found in
Additional file 2. Descriptively, we can see the presented
invariance with respect to translations the following way:
If we change the coding to M := M — 1P/, then M, i :=
a+P’ /? and ,E = /§ will fit the phenotypes the same way as
M, {1 and /§ do. Thus, the prediction of the marker effects
and consequently the prediction of the expected pheno-
types of individuals will not be affected by the change of
coding as long as the method of evaluating the “goodness
of fit’, that is the penalizing weight in a Ridge Regres-
sion approach remains unchanged. For this reason, it is
important to note here that we made the precondition that
the ratio of the variance components, which defines the
penalty for effect size, will not be changed. This guaran-
tees that the method of how to quantify the “goodness of
fit” remains the same. In practice this may not exactly be
the case if the vector P has non-identical entries, that is if
the translation of the coding is not equal for all loci, since
the variance components are usually estimated from the
same data and the translation may have an effect on this
estimation. However, this effect has been assessed as being
negligible in practice [9]. To assess this problem from a
theoretical point of view, without preconditions on the
changes of aiz, the method for determining the variance
components has to be taken into account to see whether
a change in the marker coding has an influence on the
ratio of the determined variance components. The next
property considers the effect of rescaling the given marker
coding.

Property 2 (Scaling invariance of GBLUP) Let B, i, ,é
and i denote the quantities as defined in Property 1 with
M := cM for a ¢ # 0. Moreover, let 6* and Gé for M be
known and let the variance components used for the Ridge

~ 52 2
Regression approach based on M fulfill % = CZ%. Then
B B

the following statements hold:
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) =i

b) B=c"'B

¢) The prediction of the expected phenotype of each
genotype is independent of whether M or M is used.

An important aspect of Property 2 is the precondi-
tion that the ratio of the variance components is adapted.
In practice, when 0/% is estimated, we can assume that
this circumstance will approximately be given, however,
we have to highlight again that this also depends on the

method of how the variance components are determined.

Epistasis models of shape of Eq. (2)

The full EGBLUP model of Eq. (2) adds interaction terms
of shape 7 M; ;M to the additive model of Eq. (1). We
will focus on the properties of these additional terms in
the following. Evidently, the product structure of the addi-
tional covariates generates a dependence of the underlying
effect model on the marker coding. In particular, the geno-
type coded as zero has a special role. If M;; equals zero,
the whole term /; i M; ;M; ;. will be equal to zero, indepen-
dently of the values of /;; and M; k. Thus, the model has
the implicit assumption that a certain set of combinations
do not interact. The marker coding decides which interac-
tions are different from zero a priori and which combina-
tions are clustered. For instance, for the coding {—1,0, 1}
for the genotypes {aa,aA,AA} of a diploid organism,
any interaction with a heterozygous locus will be zero,
whereas the interactions with the homozygous locus aa
will be zero if the coding {0, 1,2} is used. Table 1 illus-
trates the differences of the two different standard codings
({—1,0,1} vs. {0, 1, 2}). Here we see that the marker coding
{0, 1,2} implies that the effect is monotonously increasing
(or decreasing if /; is negative) with the distance from
the origin, whereas the coding {—1,0, 1} gives a different
topology by only giving weight to the double homozygous.
It is not obvious which coding is to be preferred and which
reasonable assumptions on the effect of pairs can be made.
In the following, we will discuss theoretical properties of
the model induced by the marker coding.

As a first important observation, we note that the cod-
ings {—1,0,1} and {0, 1,2} are translations of each other.
Their very different interaction effect topologies illustrate
that the epistasis model is not invariant with respect to

Table 1 Comparison of the interaction effects which are given
implicitly by the marker coding {—1,0, 1} (left) and {0, 1, 2} (right)
in the interaction terms of EGBLUP. Each entry has to be
multiplied with the interaction effect hjx

aa aA AA aa aA AA
bb 1 0 -1 bb 0 0 0
bB 0 0 0 bB 0 1 2
BB -1 0 1 BB 0 2 4
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translations. This fact that translations modify the model
also makes obvious that by subtracting the matrix 1P’
with P containing the allele frequencies of the respective
marker, which is the standard normalization in the addi-
tive model [6], we will change the coding for the markers
according to their frequencies and thus implicitly use dif-
ferent effect models for each pair of loci. We do not see a
theoretical basis for this discrimination in an infinitesimal
model without additional prior knowledge and therefore
will consider mainly models which treat markers equally.
Moreover, as gene frequencies are sometimes poorly esti-
mated and very influential, avoiding their use seems to be
appealing.

As illustrated, the epistasis model is not invariant with
respect to translations, but we show now that the pre-
viously described invariance with respect to rescaling
persists also for the epistatis model.

Property 3 (Scaling invariance of EGBLUP) Let ﬂA i, f}
and [i denote the quantities as deﬁned in Property 1 with
M := c¢M for a ¢ # 0. Moreover, let I and h denote the
corresponding predictions for the interaction effects. Let o2,

g, 0’3 for M be known and let the variance components

used for the Ridge Regresszon approach based on M fulfill

% and % = c*=5. Then the following statements
%

o %
hold
) =i
b f=c
c) h=c2h

d) The prediction of the expected phenotype of each
genotype is independent of whether M or M is used.

A formal derivation of this property based on the Mixed
Model Equations can be found in the Additional file 2,
but the statements are also plausible if we follow the
descriptive argumentation for the invariance of the addi-
tive model: If &, ﬁ and  fit the phenotypic data best when
marker matrix M is used, ¢! /§ and ¢—2h will fit the phe-
notypic data the same way if M is substituted by M in
Eq. (2) (for any constant ¢ # 0). The important precon-
dition is that the penalizing weight, which defines which
fit is “best’, is adapted. A question that might come up
in the context of Properties 2 and 3 is whether we could
also multiply each coding for locus j with its own constant
¢j # 0, similar to what we had for Property 1 and vec-
tor P. A problem that will appear here is that the variance
of the marker effects will not be changed uniformly and
thus, we cannot simply adapt the variance components to
cancel the impact of rescaling. An individual rescaling and
thus weighting of each marker [30], as well as a completely
individual coding of each genotype of each locus, with-
out the side conditions that the differences in the coding
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of the heterozygous and the two homozygous genotypes
are identical across all loci or at least symmetric for each
locus [12, 13], indeed has an impact on the predictive abil-
ity of the models, in particular also on that of GBLUP.
However, the variance components (rl.z can be globally
adapted to cancel the impact of a non-uniform rescaling
of the marker coding, in case that some columns of M
are multiplied with ¢ and the others with —c (due to the
assumption of all effects being symmetrically distributed
around mean zero). An adapted sign of the effects also
allows the predicted effect model to remain unchanged.

Permuting the role of the alleles at locus j. Let locus
j have the possible allele configurations aa, aA and AA.
The prediction performance of GBLUP is unaffected by
the choice of whether the allele variant a or A is counted,
since we can express a permutation of the initial coding
{0, 1,2} by a translation by —2 and a multiplication of the
coding by —1.

Obviously, this argumentation cannot be used for the
epistasis model, since we do not have the possibility to
translate the marker coding. This fact raises the question
under which circumstances the epistasis EGBLUP model
is unaffected by a permutation of the role of the allele
variants.

Property 4 (Symmetric role of the alleles in EGBLUP)
Let us consider locus j with alleles a and A and locus k
with alleles b and B (of a diploid organism). Let us use the
same coding for both loci and let the three variants of aa,
aA and AA be coded by three different numbers M,, <
Masg < Mya (or Myy > Maa > Maga). The only coding
for the epistasis terms, whose corresponding effect model on
the tuples

{(.k)|j € {aa,aA, AA}, k € {bb, bB, BB}}

is invariant with respect to a permutation of the role of
allele a and A satisfies —My, = Mayg and Myy = O.
Analogously, for markers with only two possible values, the
coding has to satisfy —M, = Ma.

Property 4 is of central theoretical importance since it
implies that the only coding for {0, 1} marker in EGBLUP,
which is invariant with respect to a permutation of the
meaning of 0 and 1 is the coding {—c, c} (¢ # 0). More-
over, if EGBLUP shall possess this reasonable property for
markers with three possible values, we have to use the
coding {—c, 0, c}. We will give an example to illustrate why
this property is important for determining marker effects
and thus why it may also be important for the overall
predictive ability of the model.

Example 1 (Marker effects and quadratic loss) Let us
consider markers with two possible variants and let us
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assume that for each pair of markers, the correct under-
lying weights of the combinations is given by a coding as
{0,1}. We use a {0,1} coding, but we do not know which
variants of the two loci have to be coded as 1 to capture the
real effect distribution. We assume that we decide which
allele is coded as zero, by drawing independently from a
Bernoulli-distribution with p = 0.5 for each marker. To
see how good the real underlying weight distribution is
captured, we measure the quadratic loss between the best
possible fit and the real underlying weights. Let the coding

alA
b|0]0 (4)
Bl0O|1

be the correct underlying effect distribution, with the cor-
responding underlying interaction effect equal to 1 (the
problem remains the same if the underlying interaction
effect is multiplied with any number ¢ # 0). With a prob-
ability of 0.25, we will code both markers j and k correctly
and minimize the distance to zero by predicting }Atj,k =1
However, with a probability of 0.75, we will make a mis-
take and choose an incorrect orientation, which means an
incorrect underlying parametric model, such as

a |A
b|1- hjx|0 (5)
Bl 0 |0

In this situation, we can determine the optimally fit-
ting interaction }Az,»,k, which describes the distribution of
Egq. (4) best, when model Eq. (5) is used, by minimizing the
quadratic Euclidean distance between both effect distribu-
tions. In more detail, using a minimal quadratic loss means
we have to find an }Azj,k which minimizes the quadratic
distance between the matrices of Eq. (4) and Eq. (5):

(Lhjx — 0)* + (0 — 0)* + (0 — 0)* + (0 — 1)? (6)
which is equal to
B+ 1.

Thus, the optimal }Azj,k minimizing Eq. (6) is 0 and
the expected quadratic loss when the right coding with
unknown orientation is used, is 0.25 -0+ 0.75 - 1 = 0.75.

Analogously, if we use the coding {—1,1} instead of
Eq. (5), we will obtain the quadratic distance

3(ix—0)+ (g —1>  or  3r—0>+(x+1)°

each with probability 0.5, depending on whether —1 or +1
coincides with the 1 of the real underlying effects. Con-
sequently, the minimum quadratic distance is 0.75 with
probability 1, for I:z,;k = 30.25. Thus, in this example, even
though the coding {—1, 1} specifies a model which is surely
wrong, the average quadratic loss is equal to the situation
in which we know the exact shape of the effect distribution
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but not its orientation. If the real underlying effect distribu-
tion deviates from the {0, 1} coding of Eq. (4), the possibility
to adapt the orientation might be even more important.

Example 1 illustrated that the expected quadratic loss
of the estimated marker-pair weights is equal for the cod-
ings {—1, 1} and {0, 1} even in the case that the underlying
effects are a version of the latter one but with unknown
orientation. Moreover, we can observe the following: Let
us assume that the real underlying interactions (j, k), (j, /)
and (k, /) of the three loci j, k, [ are described by certain
{0, 1}-codings, meaning that one certain configuration has
an interaction effect but the others do not. Given the
underlying effects, we can adapt the coding of j, k and /
by considering the effects of the pairs (j, k), (j, /). How-
ever, then the effect distribution within the model is also
determined for the pair (k,[), because the marker cod-
ing has already been fixed. This configuration does not
necessarily describe the interaction of (k, /) well. This fact
illustrates that due to the way of how interactions are
incorporated into the model in EGBLUP, the model with
an asymmetric coding lacks a full flexibility to adapt to any
situation. This problem does not appear with the symmet-
ric coding, since the model is independent of the decision
which allele is coded as £1. However, there are also good
reasons for choosing other types of coding. Firstly, it is
not clear whether the effect that we have illustrated on the
level of marker effects and quadratic loss, also translates
to the level of prediction of genetic values. In the lat-
ter approach, all effects are predicted simultaneously and
thus errors of individual effects can cancel out in the sum.
Secondly, from a biological point of view, the symmetric
coding seems inadequate: Let us consider markers with
two variants and let the two loci j and k have the possible
variants @, A and b, B, respectively. The symmetric cod-
ing {—1, 1} assigns the weight 1/ to the combinations
(a,b) and (4, B), meaning that the most distant genotypes,
which do not share any allele, are treated as being equal in
the model. Thus, overall, it is not clear which coding will
be most appropriate in general. Especially in situations in
which additional information on the nature of the marker
or the biology of the trait is available, this information may
be used to specify the effect model. In the next paragraph,
we illustrate how much freedom the marker coding gives
to specify the model.

Finding the marker coding for an a priori specified
model. Let us consider a model with identical marker
coding Mg,, Mza and My for each locus. Then the
weights in the model are given by

611,1 = M2

aa

al = MyaMaa a1,3 = MaaMaa (7)
2 2
azy = M, as3 = MaaMua azz = My,.
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If we want to predefine the weights a,s and calculate
a corresponding coding, we see that not all choices of
weights can be translated into a coding for the epistasis
model of Eq. (2) since contradictions can arise. However,
the following statement holds:

Property 5 Let three weights a,s of Eq. (7) which include
the three variables Myq, Maa, Maa in at least one weight
ars be given by arbitrary nonzero numbers. Then the
marker codings as well as the other weights are determined
up to their signs.

Categorical effect models

In the following, we discuss categorical effect models
in which we do not treat the marker data as numeri-
cal dosage, but as categorical variables. The goal is to
build an epistasis model without the undesired proper-
ties of EGBLUP which have been described previously.
We model the effects of allele combinations as being inde-
pendently drawn from a Gaussian distribution with mean
zero. For instance, for an additive marker effect model,
the effects of aa, aA and AA are independently originat-
ing from the same distribution. For the analogous epistasis
model, the effect of each combination of the alleles of
two loci is drawn independently from the same distribu-
tion. We will introduce dummy {0, 1} variables to indicate
which allele configuration is present and thus inflate the
number of variables in our model. The important fact to
notice in this context is that we can use a relationship
matrix approach for genomic prediction (see “Methods”)
and thus do not need to handle the high number of
variables. This procedure also reduces computation time
compared to the effect based approach. All considered

effects §; of the variables are assumed to come from the

i.id.
same distribution: B; &N, af%).

A categorical marker effect model (CM) The underly-
ing concept of this model is to code the configurations
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aa, aA, AA oflocus as three different variables. The effect
of each genotype is estimated on its own. The assump-
tion of a constant allele substitution effect, that is that the
effect of AA equals twice the effect of A, which is made
in the additive numerical GBLUP model, is not made here
(see Fig. 1). We translate the genotypes (aa, aA, AA) which
can be found at locus j to ((0,0, 1), (0,1,0), (1,0,0)). The
latter triples indicate which of the three states is present. A
genotype of three loci described by (2,0, 1) in the numer-
ical GBLUP coding, will here be coded by the nine-tuple
(1,0,0,0,0,1,0,1,0) (a triple for each locus, describing its
state). We then simply use model Eq. (1) with the new
coding. Advantages of this model are that it is also invari-
ant to an exchange of the role of 2 and A (as GBLUP of
Eq. (1) is as well), since we will only permute the mean-
ing of the positions in the triple but change their entries
accordingly. Moreover, we can account for dominance by
estimating each effect on its own. A disadvantage is the
increased number of variables but this can be overcome
easily by the use of relationship matrices for genomic pre-
diction. Property 6 describes the relation between the CM
model and GBLUP for markers with only two possible
values:

Property 6 (GBLUP and CM for markers with two pos-
sible states) For markers with only two possible states, let
M denote the n x p marker matrix in the {—1, 1} coding.
The relationship matrix of GBLUP is given by (a rescaled
version of) MM'. Moreover, let C be the relationship matrix
of the CM model. Then

C = 0.5(MM’ + J,1xnp) (8)

where p is the number of markers and J;,x,, the n x n matrix
with each entry equal to 1.

The linear relationship of the covariance matrices
demonstrated in Property 6 implies that the prediction
performances of GBLUP and CM are identical for markers
with only two possible values.

GBLUP CM
[ ]
E 2 ]
g g
2 ®l e *
= s
o o
c c
[ [
O] O
[ ]
T T T T T
aa Aa AA aa Aa AA
Genotype Genotype
Fig. 1 Comparison of the parametrization of the genotypic values in GBLUP and the categorical marker effect model CM: Black dots: genotypic
values of the corresponding genotype of a certain locus. GBLUP parameterizes the genotypic values by a fixed effect (red dot) and a random effect
determining the slope (blue line), whereas CM parameterizes by the fixed effect (red line) and independent random effects (blue lines) for each
genotype
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Property 7 (Equivalence of GBLUP and CM for markers
with two possible states) Let us assume that the ratio of
the variance components is fixed such that Property 1 holds
for the CM model. Then GBLUP and the CM model are
identical for markers with only two possible values.

A categorical epistasis model (CE) Analogously to the
CM model, we translate the genotype of pairs of loci,
e.g. (aA, bb) into {0, 1}-tuples. Here, a nine-tuple indicates
which combination of alleles of two loci is present. To
translate the genotype (2,0,1) of the numerical {0, 1,2}
coding into the CE coding, we have to translate each
marker pair. Each pair is coded by a nine-tuple with only
one entry equal to 1 which indicates the configuration:

e, o, o, 06, 06, 06, 06, 0, 0
S S e S e S S -~
22 21 20 (12 (1,1 (1,00 (02 (©0,1) (0,0

)

The assignment of the configuration of the respective
marker pair to the position of the nine-tuple can be chosen
arbitrarily but has of course to be used consistently for all
individuals. Let us assume that we have three subsequent
loci with genotypes (2,0, 1) in the ordinary numerical cod-
ing. Then, there are three possible interactions: the first
two loci have the combination (2, 0) which will be coded
as (0,0,1,0,0,0,0,0,0). Additionally, the second pair is
(2, 1) which will be coded as (0, 1,0, 0,0, 0,0, 0, 0), whereas
the last pair (0,1) is translated to (0,0,0,0,0,0,0,1,0).
As already mentioned, an obvious disadvantage of the
model is the high number of variables, but we do not
have to solve the system for these variables to perform
genomic prediction, since we can use equivalent genomic
relationship matrices. Moreover, this model eliminates
several disadvantages of EGBLUP: i) The model is invari-
ant with respect to the decision which allele is used as
reference (“orientation”), since it is based on categori-
cal variables indicating which genotype is present, ii) the
effects the model can assign to different pairs of loci are
not connected between pairs by their respective codings
(as described for the asymmetrically coded EGBLUP after
Example 1), and iii) compared to the symmetric {—1,0, 1}
coding of EGBLUP, CE does not generally assign the same
effects to the most different allele combinations.

Relationship matrices for the respective marker models
Let M be the marker matrix of the respective numerical
coding (0,1,2 or —1, 0, 1). In the following, we will present
the corresponding relationship matrices for each model.

GBLUP. The relationship matrix for the GBLUP model is
given by MM’ (the n x p genotype matrix multiplied with
its transposed version).
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Epistasis models based on Eq. (2). The relationship
matrix corresponding to the interactions of Eq. (2) where
j = kis given by

H=05(MM o MM') 4+ 0.5(Mo M) (MoM)'. (10)

(for a derivation of this statement see [11]). Note here
again that the GBLUP model is not affected by a transla-
tion of the coding in M, but the performance of EGBLUP
is affected.

The categorical marker (CM) effect model The i, [-th
entry of the corresponding relationship matrix C is given
by the inner product of the vectors of the genotypes of
individuals i and / in the coding of the CM model. This
means that we count the number of loci which have the
same configuration. For markers with two possible vari-
ants and the marker data in dosage 0,1 coding, we can
express the i, [-th entry of C the following way:

14
Cu=p— Y |Mij— Ml (11)
j=1
Analogously, for markers with three different variants, we
have to count the number of zeros in the marker vectors
M. — M, (For the relation of Egs. (11) and (8), see the

derivation of Eq. (8) in Additional file 2).

The categorical epistasis (CE) model The i, [-th entry
of the corresponding relationship matrix Cg is given by
the inner product of the genotypes i, [ in the coding of the
categorical epistasis model. Thus, the matrix counts the
number of pairs which are in identical configuration and
we can express the entry Cg;; in terms of C;; since we can
calculate the number of identical pairs from the number
of identical loci:
&7]
CEi,l = Z k = O.SCZ',[ (Ci,[ + 1)
k=1

(12)

Here, we also count the “pair” of a locus with itself by
allowing k € {1,. .., C;;}. Excluding these effects from the
matrix would mean, the maximum of k equals C;; — 1. In
matrix notation Eq. (12) can be written as

Cr =05CoC+05C (13)

Note here, that the relation between GBLUP and the epis-
tasis terms of EGBLUP is identical to the relation of CM
and CE in terms of relationship matrices: For G = MM’
and M a matrix with entries only 0 or 1, Eq. (10) gives
Eq. (13) with C = G and Cg = H.

Remark 1 (The Gaussian kernel) Additionally to the
previously discussed EGBLUP model, a common approach
to incorporate “non-linearities” is based on Reproduc-
ing Kernel Hilbert Space regression [21, 31] by modeling
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the covariance matrix as a function of a certain dis-
tance between the genotypes. The most prominent variant
for genomic prediction is the Gaussian kernel. Here, the
covariance Cov;; of two individuals is described by

Coviy = exp(=b - dyy),

with d; | being the squared Euclidean distance of the geno-
type vectors of individuals i and |, and b a bandwidth
parameter that has to be chosen. This approach is indepen-
dent of translations of the coding, since the Euclidean dis-
tance remains unchanged if both genotypes are translated.
Moreover, this approach is also invariant with respect to
a scaling factor, if the bandwidth parameter is adapted
accordingly (in this context see also [32]). Thus, EGBLUP
and the Gaussian kernel RKHS approach capture both
“non-linearities” but they behave differently if the coding is
translated.

Comparison of the performance of the models on different
data sets

Results on the simulated data For 20 independently
simulated populations of 1000 individuals, we modeled
three scenarios of qualitatively different genetic architec-
ture (purely additive A, purely dominant D and purely
epistatic E) with increasing number of involved QTL (see
“Methods”) and compared the performances of the con-
sidered models on these data. In more detail, we compared
GBLUP, a model defined by the epistasis terms of EGBLUP
with different codings, the categorical models and the
Gaussian kernel with each other. All predictions were
based on one relationship matrix only, that is in the case
of EGBLUP on the interaction effects only. The use of
two relationship matrices did not lead to qualitatively dif-
ferent results (data not shown), but can cause numerical
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problems for the variance component estimation if both
matrices are too similar. For each of the 20 independent
simulations of population and phenotypes, test sets of
100 individuals were drawn 200 times independently, and
Pearson’s correlation of phenotype and prediction was cal-
culated for each test set and model. The average predictive
abilities of the different models across the 20 simulations
are summarized in Table 2 in terms of empirical mean of
Pearson’s correlation and its average standard error. Com-
paring GBLUP to EGBLUP with different marker codings,
we see that the predictive ability of EGBLUP is very simi-
lar to that of GBLUP, if a coding which treats each marker
equally is used. Only the EGBLUP version, standardized
by subtracting twice the allele frequency as it is done in the
commonly used standardization for GBLUP [6], shows a
drastically reduced predictive ability for all scenarios (see
Table 2, EGBLUP VR). Moreover, considering the cate-
gorical models, we see that CE is slightly better than CM
and that both categorical models perform better than the
other models in the dominance and epistasis scenarios.

Results on the wheat data For EGBLUP, we used here
the coding {0, 1} which was originally used in the data of
the publication, a translation by —1 which leads to {—1, 0}
representing a coding in which the meaning of 0 and 1 is
permuted, and a centered version {—1,1}. Moreover, we
used the standardization by allele frequencies [6] to cal-
culate EGBLUP. Additionally, we evaluated CM, CE and
reevaluated the Gaussian kernel RKHS approach, previ-
ously used by Crossa et al. [21] (we used the matrix K
obtained from the supplementary of the corresponding
publication). The results are summarized in Table 3. CM
showed exactly identical results to those of GBLUP (which
has already been stated theoretically by Property 7) and

Table 2 Predictive abilities of the models on the simulated data. Comparison of the predictive abilities in terms of correlations
between the measured phenotypes and the predictions for the individuals of the test sets (“Pearson’s correlation”; 100 test set

genotypes were drawn randomly from all 1000 genotypes; 200 repeats for each simulated population; 20 independent simulations of
population and phenotypes). Traits of different genetic architecture (additive A, dominant D, Epistasis E) and increasing number of QTL.

Model abbreviations as introduced in the text. For EGBLUP, only the matrix based on the interactions was considered here

GBLUP EGBLUP0,1,2 EGBLUP-2-1,0 EGBLUP -1,0,1 EGBLUP VR @Y% CE K
Al 0.5514+£0005 0.552+0.005 0.552+0.005 055040005 0372+£0006 0489+ 0.005 0.494 £ 0.005 0.530 4 0.005
A2 054940005 0.550£0.005 0.550+0.005 0548£0005 035140006 04864 0.005 0.490 £ 0.005 0.527 4+ 0.005
A3 056940005 0.570£0.005 0.570+0.005 05680005 037240006 0.500 = 0.005 0.504 % 0.005 0.545 4 0.005
D1 0.1594+0006  0.160 £ 0.006 0.159 4 0.006 0.161£0.007 01110007 0.174+0.006 0.175£0.006 0.162 £ 0.006
D2 0.172+0006  0.172 £ 0.006 0.172 £ 0.006 0.171£0006  0.103+£0006 0.186+0.006 0.186+0.006 0.170+0.006
D3 015640006  0.156 %+ 0.006 0.156 4= 0.006 0.158+£0.006 01160006  0.177 £0.006 0.179 £0.006 0.160 £ 0.006
E1 0.2444+£0.006  0.244 £ 0.006 0.244 £ 0.006 0.2444+£0006  0.159£0006 0.258 £0.006 0.258 =0.006 0.243 £ 0.006
E2 02754+ 0006  0.276 £ 0.006 0.276 £ 0.006 0.277+£0.006  0.188+£0.006 0301 £ 0.006 0.302£0.006 0277 +£0.006
E3  02794+0006  0.278 £ 0.006 0.279 £ 0.006 0.278+ 0006 0176 £0006 0.304 +0.006 0.304+0.006 0276+ 0.006

EGBLUP VR denotes the interaction model based on the by allele frequencies standardized matrix. The given values represent the empirical mean and the corresponding
mean standard error across the 20 independently simulated data sets. The highest predictive ability is bold
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Table 3 Predictive abilities of the models on the wheat data. Comparison of the predictive abilities as Pearson’s correlation of the
measured phenotypes and the predictions for the individuals of the test sets (60 test set genotypes, trait: grain yield)

GBLUP EGBLUP 0,1 EGBLUP-1,0 EGBLUP-1,1 EGBLUP VR CE Gaussian kernel
Environment 1 05119 0.5545¢ 0.561b<d 0581 0.541° 0.5580<d 05847
Environment 2 04997 0.502¢ 0.504° 04957 04220 05047 0.5009
Environment 3 03719 0.390% 0.396% 0.409° 0.3657 0.3937% 0422°
Environment 4 04637 0.498° 0.504%¢ 0.530° 0.500° 0502° 0531°

Letters indicate groups that were not distinguishable at a 5% significance level in a Tukey's ‘Honest Significant Difference’ test

is therefore not listed separately. Considering the pre-
dictive ability of EGBLUP with different codings, a first
thing to note is that the variability among the EGBLUP
variants is higher than that found on the simulated data.
Moreover, with the data sets of environments 1,3 and
4, EGBLUP tends to outperform GBLUP. Among them,
the model with symmetric {—1, 1} coding performs best
and the VanRaden standardized version of EGBLUP has a
significantly reduced predictive ability for the data of envi-
ronments 1, 2 and 3, which is analogous to what we have
already seen on the simulated data. Moreover, the predic-
tive ability of EGBLUP with symmetric coding seems to
be closest to that of the Gaussian kernel. For the data of
environment 2, no big differences in the performance of
the models (except for the allele frequency standardized
EGBLUP) can be observed. Overall, the Gaussian kernel
RKHS method performs best on this data set and the
predictive ability of the CE model is on the level of the
asymmetrically coded versions of EGBLUP.

Results on the mouse data We compared the models
on 13 traits related to obesity, weight and immunology.

Instead of the raw phenotypes, we used pre-corrected
residuals which are publicly available (see “Methods”).
Again, we compared GBLUP, EGBLUP with 0,1,2 coding
as well as with inverted, symmetric and by allele frequen-
cies standardized coding, the categorical models and the
Gaussian kernel RKHS approach with each other. The
results are summarized in Table 4. The general patterns
observed on the previously considered data remain the
same: Any EGBLUP version treating the markers equally
has at least the same predictive ability as GBLUP for all
traits. Among them, the symmetric coding seems to per-
form best. The allele frequency standardized version of
EGBLUP has in three of the 13 traits a higher predic-
tive ability than its other versions (W6W, GrowthSlope,
CD8lIntensity), but a smaller one in ten cases. Consider-
ing only significant differences between CM and GBLUP,
CM outperforms GBLUP on the traits %CD4/CD3 and
%CD8/CD3 and shows a lower predictive ability only for
BMI and BodyLength. Moreover, CE outperforms CM
slightly. Overall, two traits are predicted best by EGBLUP
VR, three traits by CE, and five by the symmetric version
of EGBLUP and the Gaussian kernel, respectively.

Table 4 Predictive abilities of the models on the mouse data. Comparison of the predictive abilities as Pearson’s correlation of the
measured phenotypes and the predictions for the individuals of the test set (130 test set genotypes). Here, the already for fixed effects
pre-corrected residuals of the phenotypes, which are also provided by the publicly available data, were used

GBLUP EGBLUP0,1,2 EGBLUP -2-1,0 EGBLUP-1,0,1 EGBLUP VR ™ CE Gaussian kernel

WeW 0.493% 0.540¢ 0.505%¢ 0.545¢ 0.553¢ 0486° 05144 0.565°
W10W 04667 0491b¢ 047470 0.495b¢ 04617 04667 04799 0503
GrowthSlope 0.3479 0.363% 0.3507 0.3649° 0.375° 0.355% 0.363% 0.371°
BMI 0.195% 0.204% 0.200° 0210° 0.194¢ 0.153% 0.166° 02107
BodylLength 02719 0.282° 0.276° 0.285° 0.275¢ 0.226° 0.2400 0.2847
%B220 0.549% 0.573¢de 0.55670¢ 0.576% 0.5407 0.547% 0.5616< 0579¢
%CD3 05220 05357 0527¢ 05367 0485b 05219 05287 0.535¢
%CD4 04959 0.506% 04997 0508° 0458° 04959 05027 05067
%CD8 0.6947 0.703% 0.6997 0.706% 0.656° 0.706% 0711° 0.7027°
9%CD4/CD3 06439 0.6559¢ 0.647% 0.6567¢ 06187 0.660% 0.664° 0.6539¢
9%CD8/CD3 0.683° 0.6897% 0.687¢ 0.690% 0.638° 0.701® 0.702° 0.686°
CD4Intensity 0.5819 06010 0.58790 0.603° 0.561¢ 0.578%¢ 0.586%° 0603’
CD8Intensity 0.3887 04420 04017 0.450° 0481°¢ 04067 04340 0475¢

Letters indicate groups that were not distinguishable at a 5% significance level in a Tukey's 'Honest Significant Difference’ test
For a description of the traits see the corresponding UCL website which is at the moment http://mtweb.cs.ucl.ac.uk/mus/www/mouse/HS/index.shtml
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Incorporating prior experimental information by marker
coding

The coding-dependent performance of EGBLUP also
offers possibilities to incorporate additional information.
He et al. [12, 13] have already illustrated the idea of
data-driven coding and we have recently shown that infor-
mation on the performance of genotypes grown under
different environmental conditions can be used to select
variables within EGBLUP which then can be used for
genome assisted prediction within another environment
[11]. Here, we will demonstrate that differential coding is
also appropriate to incorporate prior experimental infor-
mation into EGBLUP. For this, we used the different trait
(x environment) combinations and adapted the marker
coding of each pair of loci to the data, following the proce-
dure described in the “Methods” section. Important here
is that we decided for each pair of markers individually,
which orientation the corresponding coding of the partic-
ular pair shall have. The “orientation” of the underlying
effect model is chosen for each pair. Thus, we cut the
connection between the coding of different pairs. The
determined relationship matrices are then used to predict
within the data of other traits. The results are summa-
rized in Tables 5 and 6 for the wheat and mouse data sets,
respectively. We can see here that adapting the coding to
data of previous experiments can be beneficial for the pre-
dictive ability. In the case of the wheat data set, Table 5
shows that using the data of grain yield of the genotypes
grown in environments 3 and 4 to infer the marker coding
for each pair of marker, improves the prediction accu-
racy in environment 2 to a level higher than that of all
methods which do not use the data of other experiments
(from 0.504 £ 0.007 to 0.544 =+ 0.006). The situation is
analogue for the predictive ability in environment 3, if the
data of environment 2 is used to infer the relationship
matrix. However, the gain in predictive ability resulting
from this procedure is relatively small compared to the
gain by means of variable selection [11]. Adapting the cod-
ing to given data also helped to increase predictive ability
on the mouse data (see Tables 4 and 6). For instance,
improvements from 0.285 £ 0.006 to 0.313 £ 0.005, from
0.536 + 0.004 to 0.569 =+ 0.004, and from 0.664 + 0.004
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to 0.685 £ 0.003 were reached for the traits BodyLength,
%CD3 and %CD4/CD3, respectively.

Discussion

The effect of the choice of marker coding on EGBLUP

We recalled that GBLUP is not sensitive to certain changes
of the marker coding if the variance components are
adapted accordingly. Analogously, we also proved that
the interaction terms of EGBLUP are invariant to factors
rescaling the marker coding, but showed that a transla-
tion indeed changes the underlying marker effect model
drastically. In particular, we demonstrated that the effect
model of EGBLUP with the asymmetric 0,1,2 coding is
affected by the decision which allele to count. Thus, an
important observation concerning EGBLUP is that the
only coding allowing a permutation of the roles of the
alleles without changing the underlying interaction effect
model for the respective marker pair is symmetric around
zero. This coding solves the problem of “which allele
to count’, but we also argued that the symmetric cod-
ing appears to be biologically implausible since it assigns
the same interaction effect to the most distant geno-
types. Concerning the allele frequency adjusted version
EGBLUP VR, we illustrated that the different markers
are not treated equally and thus that the interaction
effect models here depend on the allele frequencies of the
involved alleles. On the level of predictive ability, the sym-
metric coding tends to outperform the asymmetric ver-
sions slightly, which can most clearly be seen from the data
of environment 1 and 4 of the wheat data set (Table 3).
Also with the mouse data set, the symmetric coding had
a higher predictive ability than the other codings treating
all loci equally for all traits, but the improvements were
most often very small. Concerning the allele-frequencies
standardized version EGBLUP VR, we observed a dras-
tic reduction in the predictive ability compared to other
EGBLUP versions in most of the examples. Illustratively,
one reason for the comparatively poor performance can
be seen in the following: the relationship matrix corre-
sponding to the interaction effects of EGBLUP in a certain
coding is basically the GBLUP relationship matrix, but
with each of its entries squared (if all pairwise interactions

Table 5 Predictive abilities on the wheat data when prior information is incorporated in the marker coding of EGBLUP. Predictive
abilities when the coding for each interaction is determined based on records under different environmental conditions

G-Env 1 G-Env 2 G-Env3 G-Env 4
Environment 1 0.555 £ 0.007 0.559 + 0.007 0.552 £ 0.007
Environment 2 0.503 £ 0.007 — 0.544 + 0.006 0.514 £ 0.007
Environment 3 0.394 £ 0.008 0.430 + 0.008 — 0.402 + 0.008
Environment 4 0.500 % 0.007 0.511 £ 0.006 0.513 £ 0.006 —

G-Env 1 means that the relationship matrix was constructed under the use of the data of Environment 1 (analogously for other environments; for a description of the
construction of the matrices see section “Methods"). Bold numbers indicate predictive abilities higher than that of all previously used methods for this trait
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Table 6 Predictive abilities on the mouse data when prior information is incorporated in the marker coding of EGBLUP. Predictive
abilities when the coding for each interaction is determined based on the records of other traits

G-WeW G-W10W G-GrowthSlope G-BMI G-BodyLength G-%B220
WeWw 0.548 £ 0.004 0511 £ 0.004 0.507 £ 0.004 0.511 £ 0.004 0.507 £ 0.004
W10W 0.519 £ 0.005 — 0480 £ 0.005 0475 £ 0.005 0475 £ 0.005 0474 £ 0.005
GrowthSlope 0.356 £ 0.005 0.355 £ 0.005 — 0.351 £ 0.005 0.355 £ 0.005 0.351 £ 0.005
BMI 0.202 £ 0.006 0.202 £ 0.006 0.200 £ 0.006 —_ 0.243 + 0.006 0.200 £ 0.006
BodyLength 0.283 £ 0.006 0.278 £ 0.006 0.281 £ 0.006 0.313 +0.005 —_ 0.276 £ 0.006
%8220 0.557 £ 0.004 0.557 £ 0.004 0.557 £ 0.004 0.556 £ 0.004 0.556 £ 0.004 —_
%CD3 0.527 4+ 0.004 0.527 £ 0.004 0.527 £+ 0.004 0.527 £ 0.004 0.527 £ 0.004 0.562 + 0.004
%CD4 0.500 £ 0.004 0.500 £ 0.004 0499 £ 0.004 0.499 £ 0.004 0.500 £ 0.004 0.530 + 0.004
%CD8 0.701 £ 0.003 0.701 £ 0.003 0.700 £ 0.003 0.700 £ 0.003 0.699 £ 0.003 0.708 £ 0.003
%CD4/CD3 0.649 £ 0.004 0.649 £ 0.004 0.648 £ 0.004 0.648 £ 0.004 0.647 £ 0.004 0.648 £ 0.004
%CD8/CD3 0.688 £ 0.003 0.688 £ 0.003 0.687 £ 0.003 0.687 £ 0.003 0.686 £ 0.003 0.687 £ 0.003
CD4Intensity 0.589 £ 0.004 0.588 £ 0.004 0.588 £ 0.004 0.588 £ 0.004 0.588 £ 0.004 0.588 £ 0.004
CD8Intensity 0.406 £ 0.005 0.405 £ 0.005 0.404 £ 0.005 0.405 £ 0.005 0.405 £ 0.005 0.404 £ 0.005

G-%CD3 G-%CD4 G-%CD8 G-%CD4/CD3 G-%CD8/CD3 G-CD4Intensity ~ G-CD8Intensity

WeW 0.507 £ 0.005 0.507 £ 0.005 0.507 £ 0.005 0.507 £ 0.005 0.507 £ 0.004 0.507 £ 0.005 0.508 £ 0.005
W10W 0475 £ 0.005 0475 £ 0.005 0475 £ 0.005 0.475 £ 0.005 0475 £ 0.005 0475 £ 0.005 0476 £ 0.005
GrowthSlope 0.351 4+ 0.005 0.351 4+ 0.005 0.351 4 0.005 0.351 4 0.005 0.351 £ 0.005 0.351 £ 0.005 0.351 £ 0.005
BMI 0.200 £ 0.006 0.200 £ 0.006 0.201 £ 0.006 0.201 £ 0.006 0.201 £ 0.006 0.200 £ 0.006 0.202 £ 0.006
BodyLength 0.276 £ 0.006 0.276 £ 0.006 0.276 £ 0.006 0.276 £ 0.006 0.276 £ 0.006 0.276 £ 0.006 0.277 £ 0.006
%B220 0.588 + 0.004 0.582 + 0.004 0.570 £ 0.004 0.557 £ 0.004 0.557 £ 0.004 0.556 £ 0.004 0.558 £ 0.004
%CD3 —_— 0.569 +0.004  0.550 + 0.004 0.527 £ 0.004 0.527 £ 0.004 0.527 £ 0.004 0.527 £ 0.004
%CD4 0.545 + 0.004 —_ 0.504 £ 0.004 0.511+0.004 0.510 £ 0.004 0.500 £ 0.004 0.499 £ 0.004
%CD8 0.714 + 0.003 0.702 £ 0.003 —_ 0.722+0.003  0.726 + 0.003 0.700 £ 0.003 0.7 +£0.003
%CD4/CD3 0.649 + 0.004 0.656 + 0.004 0.672 + 0.004 —_ 0.685 + 0.003 0.649 £ 0.004 0.649 £ 0.004
%CD8/CD3 0.688 £ 0.003 0.694 £ 0.003 0.714 £ 0.003 0.721 £ 0.003 —_— 0.687 £ 0.003 0.687 £ 0.003
CD4lIntensity 0.588 £ 0.004 0.589 £ 0.004 0.589 £ 0.004 0.589 £ 0.004 0.588 £ 0.004 e 0.595 £ 0.004
CD8Intensity 0403 £ 0.005 0403 £ 0.005 0403 £ 0.005 0.405 £ 0.005 0.404 £ 0.005 0414 £ 0.005 —_—

G-W6W means that the relationship matrix was constructed under the use of the pre-corrected residuals of the trait W6W. Bold numbers indicate predictive abilities higher

than that of all previously used methods for this trait

and interactions of a marker with itself are modeled, see
[10, 11] and compare to Eq. (10)). The standardization
by twice the allele frequencies (and division by a cer-
tain factor representing a variance [6]) produces a GBLUP
matrix which can possess entries larger than 1 and smaller
than 0. In particular, if the GBLUP matrix has negative
entries, squaring them changes the order of the relation-
ship between the individuals. For instance, if A has a
relation of —0.1 with individual B and —0.3 with individ-
ual C, which means that A is more closely related to B
than to C, the corresponding EGBLUP matrix states that
the relation between A and C is closer than that of A and
B. This argumentation is equally true for the symmetric
coding, but the portion of negative entries in the corre-
sponding additive relationship matrix was close to zero

for the wheat and the mouse data set when the symmetric
coding was used in our examples. Overall, in spite of a cer-
tain popularity of EGBLUP in recent literature [10, 11, 17]
our results suggest that the use of products of marker
values as predictor variables is not the best way to incor-
porate interactions into the GBLUP model. Moreover,
contrary to the theoretical findings on the “congruency”
of EGBLUP and the Gaussian kernel in a RKHS approach
[10], our results show that both methods respond in a
different way to a change of marker coding: a translation
of the coding has an impact on the predictive ability of
EGBLUP, but not on that of the Gaussian kernel. Since the
Euclidean distance between two vectors will not change
under a translation of both vectors, the corresponding
relationship matrix remains identical. A reconsideration
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of the limit behavior of EGBLUP when the degree of inter-
action increases to n-factor interaction (and # — oco) may
therefore be interesting from a theoretical point of view.

Categorical effect models

To develop an alternative to EGBLUP which does not pos-
sess the illustrated undesired theoretical properties, but
which —unlike the RKHS approaches— allows to interpret
the predicted quantities as “effects”, we considered the cat-
egorical effect models (The effects of the categorical mod-
els can be explicitly calculated from phenotypes or genetic
values under the use of the well-known Mixed Model
formulas for effects with the respective design matrices).
As a first step, we constructed the categorical marker
effect model CM, which does not use the assumption of
a constant allele substitution effect (Fig. 1) and thus gives
the possibility to model (over)dominance by modeling an
independent effect of each genotype at a locus. The fact
that this property can also lead to an increase in predictive
ability was illustrated by the simulated dominance sce-
nario. An important result is that this categorical model
can be rewritten as a relationship matrix model and thus
provides an equivalent to the Ridge Regression/GBLUP
duality, but based on a categorical effect model instead of
a numerical dosage model. Whether this model increases
predictive ability will always depend on the population
structure and the influence of dominance effects on a
particular trait. For instance, if a population originating
from lines from different heterotic pools is considered,
the prevalent heterosis effect might be a good reason to
use CM instead of GBLUP, since heterosis creates a devia-
tion from the linear dosage model. Moreover, the number
of heterozygous and homozygous loci in the data set is
important. If most loci are mainly present in only two
of the three possible SNP genotypes, CM cannot out-
perform GBLUP substantially. Interestingly, comparing
GBLUP and CM, CM was only significantly outperformed
on the traits BMI and BodyLength. Thus, abandoning
the assumption of a dosage effect of an allele, which is
implemented by counting its occurrence and multiplying
it with an additive effect, might not in general be a prob-
lem for prediction. Note also that there are other ways of
defining marker based dominance matrices as for instance
described by Su et al. [33]. Moreover, dominance can
implicitly be modeled by an epistatic interaction term of a
locus with itsself in Eq. (2) ifj = k (see [11]).

Analogously to the relation of GBLUP and EGBLUP, we
extended the categorical marker effect model CM to the
categorical epistasis model CE. The disadvantage of inflat-
ing the model with a huge number of variables is solved for
genomic prediction by using an equivalent relationship-
matrix-based approach. Interestingly, the analogy of the
relation between GBLUP and EGBLUP also translates to
the level of relationship matrices, which we illustrated
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by the theoretical result of Eq. (13). The relationship
matrix of CE has the same connection to the relation-
ship matrix of CM as the matrix defined by the interac-
tion terms of EGBLUP has to the genomic relationship
matrix of GBLUP. Moreover, CE eliminates undesired the-
oretical properties of EGBLUP: the question which allele
to use as reference is not raised, its structure does not
lead to a dependence of the effect models of different
pairs of loci, and it does not assign the same effects to
the most different allele combinations as the symmetri-
cally coded EGBLUP model does. With the wheat data
which consist of markers with only two possible values
and for which GBLUP coincides with CM, CE outper-
formed GBLUP in all environments (Table 3). Moreover,
CE slightly improved the predictive ability of CM for all
considered traits of the mouse data set. Overall, the CE
model is a valuable alternative for modeling epistasis since
it eliminates undesired properties of EGBLUP and shows
convincing results in practice. However, other more real-
istic parametric structures of effects in between EGBLUP
and CE may be of interest for future research. Important
steps into this direction have already been made with the
“hybrid” coding according to He et al. [12, 13], in which
the marker coding is estimated from the data under the
side condition of generating a monotone effect model.
Moreover, an interesting approach for future investigation
may be the adaption of categorical models to other types
of variables, for instance defined by haplotypes.

Incorporating prior experimental information into the
coding of EGBLUP

Finally, we demonstrated that marker coding can be used
to incorporate prior information. An important property
of the procedure we used is that we “decoupled” the effect
models for different pairs by allowing to choose the ori-
entation of the parametric model for each pair separately
(see “Methods”). In particular, this means that marker j
might be coded as 0,1,2 in combination with marker &, but
as —2,—1,0 in combination with marker /. The criterion
to decide which coding to use, was simple here by com-
paring the size of the absolute interaction effect of a pair
when different “orientations” were used. Note here that
the improvement of prediction accuracy was smaller than
by means of variable selection on the wheat data set [11].
The relatively small improvement might be a result of only
giving the two possibilities of both markers being in the
initial coding or both markers with inverted coding, but
not choosing from all possible four orientations. We used
this simplified procedure, since for other combinations of
one marker with original coding and the other marker
with inverted coding, the assigned effect will also depend
on the orientation of other pairs and thus it is difficult to
determine which orientation to choose if we will addition-
ally change the orientation of other pairs. In this regard,
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the presented method can be considered as a straightfor-
ward ad hoc approach to incorporate prior knowledge into
the coding, capturing some part of the covariance struc-
ture of the given data and thus improving the predicitve
ability on data sets with similar covariance structure.

Conclusion

We illustrated that the EGBLUP model possesses sev-
eral undesired properties caused by the interactions being
modeled by products of marker values. We showed that
the symmetrically coded EGBLUP tends to perform best,
that the allele frequency standardized version tends to
have the lowest predicitve ability and that the CE model
can be an attractive alternative to EGBLUP. Prior infor-
mation from other experiments can be incorporated into
the marker coding of EGBLUP, which gives the potential
to enhance predictive ability for correlated traits.

Endnote

n literature, the expression GBLUP is used for the
reformulated equivalent of Eq. (1) with genetic value g :=
Mg and thus g ~ N (0, agMM’).

Additional files

Additional file 1: Rdata-file with two lists. The list “"Mouse_Data” contains
a genotype matrix of 1298 individuals and 9265 markers as well as a matrix
with records of 13 traits of the individuals. The list “Simulated_Data" offers
the genotypes and phenotypes of the 20 simulations. Each entry of this list
is a list of two elements representing genotypes and phenotypes of the
respective simulation. Genotypes are given by a matrix of 1000 individuals
with 9000 markers. Phenotypes are provided as a data.frame of the 1000
individuals and the 9 different phenotypes described in the

Methods section. (RDATA 64512 kb)

Additional file 2: The file presents mathematical arguments for the
statements on the properties of the models, which have been made in the
main text. (PDF 149 kb)
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