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Abstract

Background: The detection of rare single nucleotide variants (SNVs) is important for understanding genetic
heterogeneity using next-generation sequencing (NGS) data. Various computational algorithms have been proposed
to detect variants at the single nucleotide level in mixed samples. Yet, the noise inherent in the biological processes
involved in NGS technology necessitates the development of statistically accurate methods to identify true rare
variants.

Results: We propose a Bayesian statistical model and a variational expectation maximization (EM) algorithm to
estimate non-reference allele frequency (NRAF) and identify SNVs in heterogeneous cell populations. We demonstrate
that our variational EM algorithm has comparable sensitivity and specificity compared with a Markov Chain Monte
Carlo (MCMC) sampling inference algorithm, and is more computationally efficient on tests of relatively low coverage
(27× and 298×) data. Furthermore, we show that our model with a variational EM inference algorithm has higher
specificity than many state-of-the-art algorithms. In an analysis of a directed evolution longitudinal yeast data set, we
are able to identify a time-series trend in non-reference allele frequency and detect novel variants that have not yet
been reported. Our model also detects the emergence of a beneficial variant earlier than was previously shown, and a
pair of concomitant variants.

Conclusions: We developed a variational EM algorithm for a hierarchical Bayesian model to identify rare variants in
heterogeneous next-generation sequencing data. Our algorithm is able to identify variants in a broad range of read
depths and non-reference allele frequencies with high sensitivity and specificity.

Keywords: Single nucleotide variant detection, Next-generation sequencing, Bayesian statistical method, Variational
inference

Background
Massively parallel sequencing data generated by next-
generation sequencing technologies is routinely used to
interrogate single nucleotide variants (SNVs) in research
samples [1]. For example, deep sequencing confirmed the
degree of genetic heterogeneity of HIV and influenza
[2, 3]. Intra-tumor heterogeneity has been revealed by
next-generation sequencing [4]. Whole genome sequenc-
ing has revealed that many beneficial mutations of minor
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allele frequencies are essential to respond to dynamic
environments [5]. However, rare SNV identification in
heterogeneous cell populations is challenging, because of
the intrinsic error rate of next generation sequencing [6].
Thus, there is a need for accurate and scalable statistical
methods to uncover SNVs in heterogeneous samples.
A number of computational methods have been devel-

oped to detect SNVs in large scale genomic data sets.
These methods can be roughly categorized as probabilis-
tic or heuristic or some combination. Among all of the
current probabilistic methods, the Bayesian probabilistic
framework has been increasingly used to estimate unob-
served quantities such as variant allele frequency given
observed genomic sequencing data.
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GATK [7] and SAMTools [8] use a naive Bayesian deci-
sion rule to call variants. EBCall models sequencing errors
based on a Beta-Binomial distribution, where the param-
eters and latent variables are estimated from a set of non-
paired normal sequencing samples [9]. However, the error
rate of normal sequencing samples could be unmatched
with the error rate of the target samples, which may cause
a problem of making false negatives calls [10]. CRISP
compares aligned reads across multiple pools to obtain
sequencing errors, and then distinguishes true rare vari-
ants from the sequencing errors [11]. However, the bottle-
neck of CRISP is its low computational efficiency due to a
calculation of a large number of contingency tables.
JointSNVMix introduces two Bayesian probabilistic

models (JointSNVMix1 and JointSNVMix2) to jointly
analyze a tumour-normal paired allelic count of NGS
data [12]. JointSNVMix derives an expectation maximiza-
tion (EM) algorithm to calculate maximum a-posteriori
(MAP) estimate of latent variables in a particular prob-
abilistic graphical model. Furthermore, they showed that
the joint modeling method, JointSNVMix1, observes 80-
fold reduction of false positives compared with its inde-
pendent analogue (SNVMix1) [12]. SomaticSnipermodels
the joint diploid genotype likelihoods for both tumour and
normal samples [13]. Strelka models the joint probabilis-
tic distribution of allele frequencies for both tumour and
normal samples, which is demonstrated to be more accu-
rate compared with the methods based on the estimated
allele frequency tests between tumour and normal sam-
ples [14]. SNVer focuses on a frequentist method that is
able to calculate P-values, but [15] pointed out that this
approach fails to model sampling bias that will reduce the
power of detecting true rare variants. VarScan compares
tumour and normal samples thresholding on variant allele
frequency and a number of allele counts then uses Fisher’s
exact test to estimate sample allele frequencies [16].
In previous work, we developed a Beta-Binomial model

to estimate a null hypothesis error rate distribution at each
position. Using this rare variant detection (RVD) model,
we call rare variants by comparing the error rate of the
sample sequence data to a null distribution obtained from
sequencing a known reference sample [2]. RVD can iden-
tify mutant positions at a 0.1% fraction in mixed samples
using high read depth data.
An improvement of that work, RVD2, uses hierarchical

priors to tie parameters across positions to detect vari-
ants in low read depth data [17]. We derived a Markov
Chain Monte Carlo (MCMC) sampling algorithm for pos-
terior inference. However, the main limitation of MCMC
is that it is hard to diagnose convergence and may be slow
to converge [18]. An alternative inference method, that
we explore here, is to use variational inference, which is
based on a proposed variational distribution over latent
variables. By optimizing variational parameters, we fit an

approximate distribution that is close to the true poste-
rior distribution in the sense of the Kullback-Liebler (KL)
divergence. Variational inference can now handle noncon-
jugate distributions and tends to be more computationally
efficient than MCMC sampling [19].
Here, we propose a variational EM algorithm for our

Bayesian statistical model to detect rare SNVs in heteroge-
neous NGS data. We show that variational EM algorithm
has comparable accuracy and efficiency compared with
MCMC in a synthetic data set. First, we define the model
structure, and derive our variational EM algorithm to
approximate the posterior distribution over latent vari-
ables. Then, we call a variant by a posterior difference
hypothesis test between the key model parameters of a
pair of samples. As a result, we compare the performance
of the variational EM inference algorithm to the MCMC
sampling method and the state-of-the-art methods using
a synthetic data set. Finally, we show that our variational
EM algorithm is able to detect rare variants and estimate
non-reference allele frequency (NRAF) in a longitudinal
directed evolution experimental data set.

Methods
Model structure
Our Bayesian statistical model is shown as a graphical
model in Fig. 1a. In the model, rji is the number of reads
with a non-reference base at location j in experimental
replicate i; nji is the total number of reads at location j in
experimental replicate i. The model parameters are:

−μ0 a global non-reference read rate that captures the
error rate across all the positions,

− M0 a global precision that captures the variation of the
error rate across positions in a sequence, and

Fig. 1 Graphical model. a Graphical model representation of the
model. b Graphical model representation of the variational
approximation to approximate the posterior distribution. Observed
random variables are shown as shaded nodes and latent random
variables are unshaded. The object of inference for the variational EM
algorithm is the joint distribution p(μ, θ |r, n)
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− Mj a local precision that captures the variation of the
error rate at position j across different replicates.

The latent variables are:
− μj ∼ Beta(μ0,M0) a position-specific non-reference

read rate for position j, and
− θji ∼ Beta(μj,Mj) the non-reference read rate for posi-

tion j in replicate i.

In Fig. 1b, γ is the parameter for the variational distri-
bution for latent variable μ, and δ is the parameter for the
variational distribution for latent variable θ . We describe
q(μ) and q(θ) in detail in the following section.

The model generative process is as follows:
1. For each location j ∈ [1, . . . , J]:

(a) Draw an error rate μj ∼ Beta(μ0,M0)
(b) For each replicate i ∈ [1, . . . ,N]:

(i) Draw θji ∼ Beta(μj,Mj)
(ii) Draw rji|nji ∼ Binomial(θji, nji)

The joint distribution p(r,μ, θ |n;φ) given the parame-
ters can be factorized as

p(r,μ, θ |n;φ) = p(r|θ , n)p(θ |μ;M)p(μ;μ0,M0). (1)

Variational expectation maximization (EM) inference
We developed a non-conjugate variational inference algo-
rithm to approximate the posterior distribution,

p(μ, θ |r, n;φ) = p(r,μ, θ |n;φ)

p(r|n;φ)
, (2)

where the parameters are φ � {μ0,M0,M}.
Factorization
We propose the following factorized variational distribu-
tion to approximate the true posterior over latent variables
μj and θji. Here, q(μj) approximates the variational pos-
terior distribution of μj, which represents the local error
rate distribution at position j across different replicates;
and q(θji) approximates the posterior distribution of θji,
which is the error rate distribution at position j for repli-
cate i.

q(μ, θ) = q(μ)q(θ) =
J∏

j=1
q(μj)

N∏

i=1
q(θji). (3)

Evidence lower bound (ELBO)
Given the variational distribution, q, the log-likelihood of
the data is lower-bounded according to Jensen’s inequality,

log p (r|n;φ) = log
∫
μ

∫
θ
p (r,μ, θ |n;φ) dθdμ

= log
∫
μ

∫
θ
p (r,μ, θ |n;φ)

q(μ,θ)
q(μ,θ)

dθdμ

≥ ∫
μ

∫
θ
q (μ, θ) log p(r,μ,θ |n;φ)

q(μ,θ)
dθdμ

= Eq
[
log p (r,μ, θ |n;φ)

] − Eq
[
log q (μ, θ)

]

� L(q,φ).
(4)

The function L(q,φ) is the evidence of lower bound
(ELBO) of the log-likelihood of the data, which is the sum
of q-expected complete log-likelihood and the entropy of
the variational distribution q. The goal of variational infer-
ence is to maximize the ELBO. Equivalently, q is chosen
by minimizing the KL divergence between the variational
distribution and the true posterior distribution.
Since θ and r are conjugate pairs, the posterior distribu-

tion of θji is a Beta distribution,

p(θji|rji, nji,μj,Mj)∼Beta(rji+Mjμj, nji − rji+Mj(1−μj)).
(5)

Therefore, we propose a Beta distribution with parame-
ter vector δji as variational distribution,

θji ∼ Beta(δji1, δji2).

The posterior distribution of μj is given by its Markov
blanket,

p(μj|θji,Mj,μ0,M0) ∝ p(μj|μ0,M0)p(θji|μj,Mj). (6)

This is not in the form of any known distribution.
But, since the support of μj is [0, 1], we propose a
Beta distribution with parameter vector γj as variational
distribution,

μj ∼ Beta(γj1, γj2).

Each component of ELBO is derived in Additional file 1.

Variational EM algorithm
Variational EM algorithm maximizes the ELBO of the
likelihood by alternating between maximization over q
(E-step) and maximization over φ = {μ0,M0,M} (M-
step).We update the variational parameters and themodel
parameters iteratively by numerically optimizing each
problem using Sequential Least SQuares Programming
(SLSQP) [20] (see Additional file 2 for detail). There is no
analytical representation for Eq

[
log

(
�(Mj)

�(μjMj)�(Mj(1−μj))

)]
,

which is required to update variational distribution for μj
and model parameterM. So, we must resort to numerical
integration,

Eq
[
log

(
�(Mj)

�(μjMj)�((1−μj)Mj)

)]
=

∫ 1
0 q(μj; γj1, γj2) log

(
�(Mj)

�(μjMj)�((1−μj)Mj)

)
dμj,

(7)

Unfortunately, this numerical integration step is com-
putationally expensive. The variational EM algorithm is
summarized using pseudocode in Algorithm 1.

Hypothesis testing
The posterior distribution over μ

�
j | rcase, rcontrol �

μj|rcase − μj|rcontrol is the distribution over the
change in the non-reference read rate at position j
between a case and control sample. Since the vari-
ational approximate posterior distributions in the
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Algorithm 1 Variational EM Inference
1: Initialize q(θ ,μ) and φ̂

2: repeat
3: // E-step
4: repeat
5: for j = 1 to J do
6: for i = 1 to N do
7: Optimize L(q, φ̂) over q(θji; δji) =

Beta(δji)
8: end for
9: end for

10: for j = 1 to J do
11: Optimize L(q, φ̂) over q(μj; γj) = Beta(γj)
12: end for
13: until change in L(q, φ̂) is small
14: // M-step
15: Set φ̂ ← argmax

φ
L(q̂,φ)

16: until change in L(q̂,φ) is small

difference are Beta distributions, the distribution of
the difference is not analytically known. In order
to compute the statistic of interest, we approxi-
mate μj|rcase and μj|rcontrol with univariate Gaussian
distributions by matching the first two moments of the
variational Beta distributions. Then, the difference is
a Gaussian distribution. As we show in the section of
comparison of approximated posterior distribution, the
Gaussian approximation is empirically reasonable.
Under the variational approximation,

Eq[μj|rcase] = γ case
j1

γ case
j1 + γ case

j2
(8)

Varq[μj|rcase] = γ case
j1 γ case

j2

(γ case
j1 + γ case

j2 + 1)(γ case
j1 + γ case

j2 )2

(9)

forμj|rcase and likewise forμj|rcontrol. We approximate the
posterior for the case sample as

μj|rcase ∼ N (Eq[μj|rcase] , Varq[μj|rcase] ) (10)

and likewise for the control. Then,

μ
�
j | rcase, rcontrol ∼
N (Eq[μj|rcase]−Eq[μj|rcontrol] , Varq[μj|rcase]
+Varq[μj|rcontrol] )

(11)

Now, we can approximate the posterior probability of
interest,

Pr(μ�
j ≥ τ | rcase, rcontrol), (12)

that is, the posterior probability that the difference in the
non-reference read rate is greater than a fixed effect size

τ (e.g. zero) for a one sided test. For a two sided test, we
compute the approximate probability

Pr(|μ�
j | ≥ τ | rcase, rcontrol). (13)

A position is called a provisional variant if Pr(|μ�
j | ≥

τ | rcase, rcontrol) ≥ 1 − α/2, where the probability is
approximated as described.
It is possible that a position is called a variant due to

a differential non-reference read count, but no particular
alternative base is more frequently observed than the oth-
ers. In this case, the likely cause is a sequencing error that
indiscriminately incorporates a non-reference base at the
position. To discriminate this non-biological cause from
the interesting true variants we use a χ2 goodness-of-fit
test for non-uniform base distribution [17, 21]. For each
provisional variant, if we reject the null hypothesis that
the distribution is uniform, we promote the position to a
called variant.

Results
Data sets
Synthetic DNA sequence data
The data set we use to assess sensitivity and specificity
is described and made available elsewhere [2]. Briefly, we
performed an in-vitro mixture of two DNA sequences to
test the sensitivity and specificity of our approach. Two
400 bp DNA sequences were chemically synthesized. One
sample has 14 variant loci and is taken as the case and
the other without variants is taken as the control. Case
and control DNA samples were mixed in-vitro to yield
defined NRAF of 0.1%, 0.3%, 1.0%, 10.0%, and 100.0%.
The synthetic DNA dataset was downsampled by 10×,
100×, 1, 000×, and 10, 000× using picard (v 1.96). The
final data set contains read pairs for six replicates for the
control and cases at different NRAF levels.

Longitudinal directed evolution data
The longitudinal yeast data comes from three strains of
haploid S288c which were grown for 448 generations
under limited-glucose (0.08%). The wild-type ancestral
strain GSY1136 was sequenced as a reference. Aliquots
were taken about every 70 generations and sequenced.
The detail of library sequencing is described in [5, 11, 22].
The Illumina sequencing data is available on the NCBI
Sequence Read Archive (SRA054922)[5]. For this study,
we received the original BAM files from one of the
authors. The aligned BAM files have 266 – 1, 046× cover-
age. We used samtools (v 1.1) with -mpileup -C50
flags to convert BAM files to pileup files. Then, we gener-
ated depth chart files, which are tab-delimited text tables
recording in each element of the table the count of a
nucleotide at a genomic position. We ran our variational
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inference algorithm on the depth chart files to identify
SNVs.

Performance on synthetic DNA data
Comparison of sensitivity and specificity
The performance of variational EM algorithm is shown
in receiver-operating characteristic curves (ROCs) for a
broad range of median read depths and NRAFs in Fig. 2.
The results in the ROC curves are generated by vary-
ing parameter α in the posterior distribution test. It
shows that the performance improved with read depth
and true mutant mixtures. Furthermore, we evaluated
the performance by using both the posterior distribution
test with α = 0.05 and the χ2 test to detect variants,
and compared the performance with the MCMC sam-
pling algorithm in terms of sensitivity and specificity
(Table 1).
The variational EM algorithm shows higher sensitivity

and specificity than the MCMC algorithm in the events
when NRAF is 0.1%. The variational EM algorithm has
a higher specificity compared with the MCMC algorithm
for a median read depth of 41, 472× at 0.3% NRAF and
55, 489× at 1.0% NRAF, but the sensitivity is slightly lower
due to false negatives.

Comparison of approximated posterior distribution
Figure 3 shows the approximate posterior distribution of
the variational EM algorithm and samples of the MCMC
algorithm. One variant position, 85, is taken as an example
to show the comparison of the approximated posteriors.
The variational EM and MCMC algorithms both iden-
tify all the variants when NRAF is 10.0% and 100.0%. The
variational EM algorithm calls 90 false positive positions
without a χ2 test when NRAFs are 0.1% and 0.3% for low
median read depth (30× and 400×). This is to be expected
because it is highly unlikely to correctly identify a variant
base with a population frequency of 1 in 1,000 with less
than a 1, 000× read depth.
A false positive, a non-mutated position that is called

by the variational EM algorithm but not called by the
MCMC algorithm, is shown in Fig. 4. The variance of
the MCMC posterior estimate is higher than that of the
variational posterior estimate. We tested 10 random ini-
tial values variational inference algorithm and found the
approximate posterior distributions from the variational
EM algorithm are essentially equivalent for all random ini-
tializations. It is notable that the shape of the proposed
Beta variational distribution is well approximated by a
Gaussian.

Fig. 2 ROC curves with varying median read depths and NRAFs
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Table 1 Sensitivity/Specificity comparison of variational EM
algorithm with MCMC algorithm

True NRAF Median depth Sensitivity Specificity

MCMC Variational MCMC Variational

0.1% 39 0.00 0.00 1.00 1.00

408 0.00 0.07 1.00 1.00

4129 0.14 0.29 1.00 1.00

41449 0.86 1.00 0.97 1.00

0.3% 36 0.00 0.00 1.00 1.00

410 0.00 0.00 1.00 1.00

4156 1.00 1.00 0.99 0.98

41472 1.00 0.93 0.85 0.91

1.0% 53 0.00 0.00 1.00 1.00

535 0.21 0.29 1.00 1.00

5584 1.00 1.00 0.98 0.98

55489 1.00 0.93 0.87 0.95

10.0% 22 0.00 0.57 1.00 1.00

260 1.00 1.00 1.00 1.00

2718 1.00 1.00 1.00 1.00

26959 1.00 1.00 1.00 1.00

100.0% 27 1.00 1.00 1.00 1.00

298 1.00 1.00 1.00 1.00

3089 1.00 1.00 1.00 1.00

30590 1.00 1.00 1.00 1.00

Fig. 3 Approximated posterior distributions by the variational EM and
MCMC algorithms for a true variant position 85 when the median
read depth is 5, 584×

Fig. 4 Approximated posterior distribution by the variational EM and
MCMC algorithms for a non-variant position (160) that was not called
by the MCMC algorithm (true negative), but was called by the
variational EM algorithm (false positive) with a median read depth of
410×

Comparison to the state-of-the-art methods
We compared the performance of our variational
EM algorithm with the state-of-the-art variant detec-
tion methods, SAMtools [8], GATK [7], CRISP [11],
VarScan2 [16], Strelka [14], SNVer [15], MuTect [23],
and RVD2 [17], using synthetic DNA data set (Table 2).
Among all of the methods compared, our variational EM
algorithm has a higher sensitivity and specificity for a
broad range of read depths and NRAFs. Our variational
EM algorithm shows higher specificity than all the other
tested methods at a very low NRAF (0.1%) level. How-
ever, our algorithm has a slightly lower specificity than
the MCMC algorithm when the median read depth is
4, 156× at 0.3% NRAF, and a slightly lower sensitivity
than the MCMC algorithm when the median read depth
is 41, 472× at 0.3% NRAF and a median read depth of
55, 489× at 1.0% NRAF. The performance of other meth-
ods is stated in detail in [17].

Runtime assessment
The computational time for approximating the variational
posterior distribution is increased by expanding the length
of region and the median read depth (Fig. 5). Our varia-
tional EM algorithm is faster than the MCMC algorithm
at the low median read depths of 27× and 298×, and
slower for the high median read depths of 3, 089× and
30, 590×.
Table 3 shows the timing profile for each part of our

variational EM algorithm when median read depth is
3, 089×. Optimizing γ in the E-step and optimizingMj in
the M-step takes more than 95% of the time of one vari-
ational iteration in a test of a single processor, since the
integration (7) is needed.
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Fig. 5 Computational efficiency comparison for our variational EM
algorithm and MCMC sampling algorithm. Sixty processors are used
to estimate the model on the synthetic data set

Variant detection on the longitudinal directed evolution
data
Detected variants
We applied our variational EM algorithm to the MTH1
gene at Chr04:1,014,401-1,015,702 (1,302 bp), which is the
most frequently observed mutated gene by [5]. Our algo-
rithm detected the same variants that were found by [5]
(shown as highlighted in Additional file 2). Additionally,
we detected 81 novel variants in 8 timepoints that the
original publication did not detect. In Additional file 2, G7
is the baseline NRAF as the control sample when compar-
ing with G70, G133, G266, G322, G385, and G448 in the
respective hypotheses testing. The corresponding NRAFs
of called variants at different time points are given by the
estimate of the latent variable, μ̂j = Eq[μj|r].
All of these variants, except the variant at position

Chr04:1,014,740, decrease in NRAF following a maxi-
mum. The allele at position Chr04:1,014,740 is a beneficial

variant that arises in NRAF to 99.6% at generation 448
within a constant glucose-limited environment. More-
over, we identified the first emergence of this beneficial
variant as early as 0.5% in generation 133. We detected
22 variants (NRAF < 1.0%) early (at generation 70) in
the evolutionary time course. Given that the median read
depth is 1, 649×, we have some confidence these are
bona-fide variants.

Concomitant variants detection
We identified a pair of variants, Chr04:1,014,740 in gene
MTH1 and Chr12:200,286 in gene ADE16, that increase
in NRAF together in time (Fig. 6). We hypotheses that the
variants are concomitant in the same clone. In this pair of
genes, gene MTH1 is a negative regulator of the glucose-
sensing signal transduction pathway, and gene ADE16 is
an enzyme of de novo purine biosynthesis. Glucose sens-
ing induces gene expression changes to help yeast receive
necessary nutrients, which could be a reason for this
pair of genes to mutate together [24]. Further experi-
mental validation of this hypothesis would be required to
definitively show that the mutations are concomitant.

Discussion
Sensitivity analysis
The global precision hyper-parameterM0 could influence
the estimate of μj due to its regularization effect. We
show the influence of different M̂0 on variant position
Chr04:1,014,740, q(μ1,014,740|r) in Fig. 7. We see that as
we decrease the prior precision parameter M̂0, μ̂1,014,740
increases as expected. But the effect of changing M̂0 over
several orders of magnitude does not change μ̂j greatly.
Here M̂0 = 1.752 in this dataset.

Conclusions
In this article, we propose a variational EM algorithm to
estimate the non-reference allele frequency in the RVD2

Table 3 Timing profile of variational EM algorithm when median depth is 3, 089×
E-step M-step

Computation Region Optimize Optimize Update Optimize Optimize Optimize Update Total
resource length γ δ ELBO μ0 M0 M ELBO time (s)

Single processor 100 617.7 (63%) 4.232 10.42 0.264 0.159 332.8 (34%) 10.29 976.0

200 1124 (65%) 8.936 18.64 0.418 0.256 570.0 (33%) 18.37 1741

300 1728 (65%) 13.27 27.81 0.445 0.400 851.5 (32%) 27.65 2649

400 2433 (66%) 17.99 38.55 0.737 0.635 1176 (32%) 38.17 3705

60 processors 100 29.93 (41%) 0.2470 11.67 0.3070 0.1890 19.56 (26%) 11.98 73.89

200 44.69 (40%) 0.4170 22.14 0.5230 0.3040 24.04 (21%) 22.24 114.3

300 63.47 (40%) 0.7160 33.31 0.5620 0.5040 29.41 (18%) 33.24 161.2

400 94.66 (43%) 0.7270 42.78 0.8200 0.7060 40.04 (18%) 44.28 219.7

Timing profile of 4 significant figures for one iteration of variational EM algorithm when median read depth is 3, 089×. Single and multiple processors are both tested to
estimate computational efficiency. Time for optimizing γ in the E-step and optimizingM in the M-step is highlighted in percentage
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Fig. 6 The NRAF trend of concomitant variants in gene MTH1 and
ADE16. The 95% Bayesian credible intervals are shown

model to identify rare nucleotide variants in heteroge-
neous pools.
Our results show that the variational EM algorithm (i)

is able to identify rare variants at a 0.1% NRAF level with
comparable sensitivity and specificity to a MCMC sam-
pling algorithm; (ii) has a higher specificity in comparison
with many state-of-the-art algorithms in a broad range of
NRAFs; and (iii) detects SNVs early in the evolutionary
time course, as well as tracks NRAF in a real longitudinal
yeast data set.
We have chosen parametric forms for the variational

distributions. This choice has left us with a complex inte-
gral in our variational optimization problem. In future
work, we plan to explore other approximations of the
variational distributions that render the integral easier
to compute. One could use cubic splines to numeri-
cally approximate the function and then integrate that

Fig. 7 Influence ofM0 on the estimate of μj . Posterior distributions of

the variant at position Chr04:1,014,740, μ̂1,014,740, with different M̂0

are shown

surrogate [25]. Another strategy is to consider a Laplace
approximation for the variational distribution, as we and
others have done previously [26, 27].
Improving the speed of the estimating algorithm enables

us to interrogate whole-genome sequencing data. By
doing this, we hope to reveal the dynamics of arising vari-
ants at the genome-wide scale to show the genetic basis
of clonal interference. Our method could be extended
to study drug resistance by characterizing tumor hetero-
geneity in targeted anti-cancer chemotherapy samples,
or to find the causative variants that lead to drug resis-
tance and understand the causes of resistance at the single
nucleotide level.

Additional files

Additional file 1: Derivation of the variational expectation maximization
(EM) inference algorithm. Derivation of the variational EM algorithm is
described in detail. (PDF 46.4 kb)

Additional file 2: Identified variants and corresponding non-reference
allele frequencies in gene MTH1 on Chromosome 4. A blank cell indicates
that the position of that time point is not called significantly different than
G7. The positions highlighted as blue were also identified by Kvitek, 2013.
The other 81 positions are novel identified variants in 8 timepoints.
(XLSX 18.4 kb)
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