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Abstract

Background: The Receiver Operator Characteristic (ROC) curve is well-known in evaluating classification performance
in biomedical field. Owing to its superiority in dealing with imbalanced and cost-sensitive data, the ROC curve has
been exploited as a popular metric to evaluate and find out disease-related genes (features). The existing ROC-based
feature selection approaches are simple and effective in evaluating individual features. However, these approaches
may fail to find real target feature subset due to their lack of effective means to reduce the redundancy between
features, which is essential in machine learning.

Results: In this paper, we propose to assess feature complementarity by a trick of measuring the distances between
the misclassified instances and their nearest misses on the dimensions of pairwise features. If a misclassified instance
and its nearest miss on one feature dimension are far apart on another feature dimension, the two features are
regarded as complementary to each other. Subsequently, we propose a novel filter feature selection approach on the
basis of the ROC analysis. The new approach employs an efficient heuristic search strategy to select optimal features
with highest complementarities. The experimental results on a broad range of microarray data sets validate that the
classifiers built on the feature subset selected by our approach can get the minimal balanced error rate with a small
amount of significant features.

Conclusions: Compared with other ROC-based feature selection approaches, our new approach can select fewer
features and effectively improve the classification performance.

Keywords: Feature selection, ROC curve, AUC, Feature complementarity

Background
Microarray gene expression data has been analyzed in
a wide variety of problems in bioinformatics fields. An
important application is to develop a classifier to discrim-
inate instances of different classes [1]. Some classification
approaches in machine learning have been applied on the
microarray data sets, such as Support Vector Machine
(SVM), k-Nearest Neighbor (KNN), Naive Bayes, etc. The
published microarray data sets, such as colon tumor [2],
GLI-85/GSE4412 [3], and breast cancer [4], usually have
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high dimensionalities and small sample sizes because of
the significant cost and effort required to collect and geno-
type specimens. For microarray data sets with ten thou-
sands of genes but only tens of observations (instances),
reducing the high-dimensional gene space is an important
issue in terms of classification. Not all the genes make sig-
nificant contributions to recognizing the target diseases,
and only a few of genes with multiple genomic muta-
tions determine biological or clinical properties [5]. Gene
selection can interpret the original characteristics of genes
and improve the performance of classification by remov-
ing the irrelevant and redundant genes [6]. Gene selection
is equivalent to feature selection in pattern recognition
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and machine learning. Many feature selection approaches
have been used to select genes. Traditional gene selec-
tion approaches rank genes based on some classic criteria,
including t-test [7], non-parametric statics [8], P-value [9],
information gain [10], etc. They can find the excellent
genes and select the top ranked ones for discriminating
the target diseases. Recently, many effective approaches
utilizing the filter evaluation framework have been studied
by researchers [11–15].
The ROC curve which is strongly related with non-

parametric hypothesis testing has shown special attrac-
tiveness. As a non-parametric measure, ROC curve
has exhibited favorable evaluation characteristics on the
imbalanced and cost-sensitive data classification prob-
lems [16]. This superiority is obtained mainly because
ROC curve compares classifiers’ performance through the
entire range of class distributions and error costs. The
ROC curve and AUC (area under the ROC curve) have
been widely used to determine the classification accuracy
in supervised learning [17]. Through analyzing a two-
dimensional graph, it is hard to compare two ROC curves
directly. AUC, which is denoted as a quantitativemeasure-
ment, provides a good summary for examining the ROC
curves [18]. As a scalar measure, AUC has been widely
exploited to evaluate the relevance between features and
target class in feature selection approaches, especially for
the microarray data sets [16, 19–21].
Since ROC curve and AUC are effective in selecting

discriminative features that make less recognition errors,
dozens of feature selection approaches are proposed based
on the two metrics. The Feature Assessment by Slid-
ing Thresholds (FAST) approach [16] and the statistical
gene ranking approach [20] use the technique of ROC
analysis to measure the relevance of features with the tar-
get class. They evaluate features by calculating the AUCs
of the single feature classifiers and then sort them in
a descending order according to their AUC values. The
top-ranked features are selected into the feature subset.
However, a significant flaw is that the selected features
may highly correlate with each other, which are some-
times too redundant to be fed into a classifier. The AUC
and Rank Correlation coefficient Optimization (ARCO)
approach [19] and the Feature selection based-on ROC-
curves (FROC) approach [21] are both ROC-based fea-
ture selection approaches, which consider the redun-
dancy analysis that cannot be solved in FAST. In ARCO,
the redundancy between features is measured by the
Spearman’s Rank Correlation Coefficient (RCC). Features
with maximum AUC and minimum RCC are selected
into the feature subset. However, RCC determines all
instances’ ranks on two features without differentiating
whether or not the instances are misclassified by the sin-
gle feature classifiers. This leads to an inevitable problem,
that is, redundant features may also have small RCCs due

to the instances which can be correctly classified by the
single feature classifiers. In FROC, features are ranked
according to the area between the ROC curve and the
diagonal line (ARD) which is equal to AUC−0.5, and then
the redundant features are eliminated using the Markov
blanket analysis. Note that the redundancy between a pair
of features is measured and reduced in terms of the area
between the ROC curves (ABR) by FROC. For each fea-
ture in the candidate subset, FROC computes its ABRwith
other features, and the feature with minimal ABR will be
removed. This approach can find pairwise redundant fea-
tures from the candidate subset, yet which one should be
removed still remains a difficult problem.
The aforementioned approaches mainly focus on alle-

viating the redundant information of features, but ignore
the global classification performance of the combination
of the irredundant features. The ROC curve of one fea-
ture may go above or under the curve of another feature,
which may convey that this one is more or less discrimi-
native than the other one.When the two curves cross, two
features show to be complementary to each other in classi-
fication.When analyzing two features as given one feature
as selected, we are only interested in whether another
one is complementary in classifying the instances that the
selected one cannot classify. In this case, the ABR mea-
sure in FROC turns to be inapplicable. This leads to the
notion of feature complementarity, which is in some sense
closely related to feature redundancy. From the classifi-
cation perspective, complementarity evaluates whether a
combination of features can returnmore joint information
about the target class rather than the information car-
ried by each feature individually [22]. Intuitively, instead
of examining the relevance between features for determin-
ing whether or not one is redundant with another, feature
complementary is more direct and applicable in ascer-
taining the global classification abilities of the selected
features. It is a promising way to improve the recognition
performance of the ROC-based approaches by evaluat-
ing feature complementarity for classification. In view of
the above analysis, we propose a new feature selection
approach based on the ROC analysis for feature comple-
mentarity in this paper.
The proposed approach, named feature selection with

AUC-based Variable Complementarity (AVC), uses the
technique of ROC analysis to assess the relevance of fea-
tures with the target class. Moreover, it exploits the infor-
mation of the instances misclassified by the single feature
classifiers based on the ROC curve to analyze the com-
plementarity of features. Apparently, when taking an indi-
vidual feature as the observation dimension, more or less
instances will be misclassified. Thus, we lay the emphasis
on the common misclassified instances for two features
when evaluating their complementarity for classification.
One nearest neighbor from different class (nearest miss)
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for each common misclassified instance is found out with
respect to each feature. Then, two Manhattan distances
for each common misclassified instance to its two near-
est misses are compared, and the larger one is adopted to
calculate the complementarity of the features. It should be
pointed out that such technology of analyzing the nearest
neighbors is also adopted by some state-of-the-art fea-
ture selection methods, such as ReliefF [23], LLBFS [11],
nnFRFS [24], etc. Intuitively, we average these Manhattan
distances for all the common misclassified instances
and exploit them as two features’ complementarity. The
instances misclassified by both features are focused on
to lay stress on their influences on the accuracies of
the classifiers. And the impacts of the instances that
can be classified correctly by both features are reduced,
because these instances provide little valuable informa-
tion for recognizing the target class. In addition, we use
the greedy sequential forward search approach to find
the optimal feature subset, in which classes are maxi-
mally separated from each other. This issue is critical for
enhancing the global discriminative performance of the
selected feature subset. We compare our approach with
four state-of-the-art feature selection approaches, that
is, three popular approaches based on the ROC curve,
FAST, ARCO and FROC, and one well-known approach
ReliefF. The experimental results on a broad range of
the microarray data sets show that our approach can
effectively select small feature subsets, and the perfor-
mance of the classifiers built on these subsets is obviously
improved.

Methods
A complicated problem in the ROC-based feature selec-
tion methods mentioned above is that the feature sub-
sets selected by the existing methods cannot promise
the global optimal performance for recognizing the tar-
get classes. To overcome this problem, we present a new
feature selection method based on the AUC and vari-
able (feature) complementarity analysis, which is called
as feature selection with AUC-based Variable Comple-
mentarity (AVC). AVC combines the feature relevance
and feature complementarity by making the best use of
the non-parametric property of AUC. In this section, we
describe AVC on the binary-class problem first, and then
extend it to the multi-class problem.
Before pinning down the method, some notions are lists

as follows:

• X: the set of the instances, containing n instances
{xi}ni=1 characterized by m features F = {fj}mj=1, and
xij is the instance xi’s observation value on the feature
fj.

• C: the set of the classes, including q classes
C = {c1 . . . , cq} ∈ IRn×q.

• n0, n1: the number of the positive instances and the
negative instances in the data set. Note that
n = n0 + n1.

ROC curve
ROC curve was first used in signal detection theory to
represent the tradeoff between the hit rates and false
alarm rates. It has been extensively studied and applied
in medical diagnosis and evaluation of machine learning
algorithms [18]. ROC curves are two-dimensional graphs
in which true positive rate (TPR) is plotted on the Y-
axis and false positive rate (FPR) is plotted on the X-axis.
The good performance of a classifier is reflected by an
ROC curve which lies in the upper left triangle of the
square. AUC provides a value description for the perfor-
mance of the ROC curve. AUC is a portion of the area
of the unit square, so its value will always between 0 and
1, and usually larger than 0.5 [25]. Due to its several nice
properties, AUC has been used in feature selection for
microarray analysis. Firstly, AUC is insensitive to the costs
unknown problem, because it focuses on the comparison
of the distributions of two classes. Secondly, AUC can be
used to reflect how well the feature differentiates between
the distributions of two classes. Thirdly, AUC is a non-
parametric measure index, which is obtained by counting
the TPR and FPR of the given samples. So it is appro-
priate to class imbalanced and costs unknown problems
especially in bioinformatics. Besides, the AUC measure
of performance is closely related to the Gini coefficient
[26], which is most commonly defined as twice the area
between the ROC curve and the diagonal (Gini + 1 =
2 × AUC).
Consider a binary classification problem with n

instances and m features. To generate the ROC curve
of a classifier, the classifier gives every instance an esti-
mated probability p̂, that represents the degree to which
an instance is a member of a class. There is a threshold t
and the instances whose p̂ are larger than t are predicted
as positive class and others are predicted as negative class.
For a fixed threshold t, there is a point (FPR, TPR) in ROC
space. If we vary t from 0 to 1, and calculate TPR and
FPR at each t, we can get the ROC curve of the classi-
fier. To computing AUC, a direct method is to measure
the area by applying a rectangle or trapezoid area on each
point. But this is too complex and costly. Hand, et al. [26]
has proposed a simple method to compute the AUC. In
this method, the instances are sorted in increasing order
according to their p̂. And the AUC is calculated according
to the Eq. (1):

AUC =

n0∑

i=1
(ri − i)

n0 × n1
=

n0∑

i=1
ri − n0×(n0+1)

2

n0 × n1
, (1)
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where ri is the rank of the ith positive instance in the
ranked list, and n0 and n1 are the numbers of the positive
and negative instances. This method shows that AUC is
equivalent to the probability that a randomly chosen pos-
itive instance will have a higher estimated probability of
belonging to the positive class than a randomly chosen
negative instance.
In the cases of multi-class classification problems, there

have been many extensions to the multi-class AUC such
as the average weighted AUC [27] and the volume under
the ROC surface [28]. A simple generalisation formula-
tion of AUC for multi-class classification problems was
proposed in [26]. It has been widely used to evaluate the
performance of classifiers [29]. MAUC directly divides a
multi-class problem with q classes into q(q−1)

2 binary-class
sub-problems. AUC of a binary-class sub-problem with
the ith and jth class are represented by AUCij and AUCji.
They are calculated by Eq. (1) with the ith and jth class
seen as positive class respectively. MAUC is calculated
according to the Eq. (2):

MAUC = 1
q(q − 1)

∑

i<j

[
AUCij + AUCji

]
. (2)

In the feature selection problem, when a method uses
AUC as themetric to evaluate the relevance between a fea-
ture and target class, the instances’ values for this feature
are viewed as the output of a classifier which is equivalent
to p̂. If a feature is irrelevant to the target class, its AUC is
close to 0.5, and if a feature is highly relevant to the target
class, its AUC is closer to 1. We use AUC(fi) for binary-
class problem and MAUC(fi) for multi-class problem to
represent the AUC of feature fi in this paper.

Binary-class problem
In feature selection, a single feature’s predictive power
can be ascertained according to this feature’s classifica-
tion performance taken individually as a classifier [30].
The single feature classifier built by feature fj can choose
a proper threshold θ . If xij ≥ θ , xi is classified into the
positive class. And if xij < θ , xi is classified into the nega-
tive class. This critical parameter θ can be determined in
terms of some metrics, such as AUC, classification accu-
racy, etc. In this paper, AUC is used to measure features’
predictive power which is superior in the evaluation of
imbalanced and cost-sensitive data.
Similar with ARCO, we also employ the AUC of a sin-

gle feature as the relevance metric. Instances are ranked
according to their observation values on feature fi. And
then, AUC(fi) is calculated with Eq. (1). Figure 1 shows
an example of the microarray data set Colon [2] for fur-
ther illustrating the characteristic of AUC.We can observe
from Fig. 1 (a) that, when θ = 0.18, a majority of instances

can be correctly divided into two classes on the gene
R87126. In Fig. 1 (b), only about half of instances can be
correctly divided into two classes on the gene U33429.
Even though when θ = 0.3, the maximal classification
accuracy obtained by the gene U33429 as a single feature
classifier is equal to 0.6. Correspondingly, we can calculate
the AUCs of two features by Eq. (1) as AUC(fi) = 0.884
and AUC(fi) =0.5. Considering the existing feature selec-
tionmethods based-on ROC curve, the larger theAUC(fi)
is, the more relevant feature fi is with the target class.
Thus, we can assume that gene R87126 is more relevant
than gene U33429.
Using AUC as the criterion to measure the relevance

of features and target class can find the most significant
features to discriminate the given classes, but these fea-
tures are sometimes too redundant to be inputted to a
classifier. Different from the existing ROC-based feature
selection methods which reduce feature redundancy, our
approach AVC analyzes features’ complementarity, which
denotes the joint classification information provided by
features. It is more or less than the sum of the infor-
mation taken by features individually. Our aim is to find
out the most complementary features that jointly provide
maximal classification information [22].
In order to show the importance of feature complemen-

tarity, we take Fig. 2 as an example. In Fig. 2, a group of
artificial data sets containing 200 random instances char-
acterized by different pairwise features are constructed.
Figure 2 (a) to (d) show the class distributions in differ-
ent two-dimensional feature space. The histograms of the
instances projected on the subspace constructed by the
corresponding two features are demonstrated in Fig. 2 (e)
to (h), respectively. Note that both classes have the same
number of instances and submit to the Gaussian distribu-
tions with equal covariance. It can be observed that when
projecting the instances to different pairwise features, the
class distributions are rather different. In Fig. 2 (a), the dis-
tributions of the two classes overlap between each other.
It means that a majority of the instances belonging to the
two classes cannot be correctly recognized in the sub-
space constructed by feature f1 and f2. In Fig. 2 (b), the
class conditional distributions have a high covariance in
the direction of the line of the two class centers. We can
see that classes also cannot be separated in the subspace
of feature f3 and f4. Compared with Fig. 2 (a) and (b), (c)
shows a special case, that is, one feature has completely
overlapping class distributions. It means that neither fea-
ture f5 nor feature f6 can scatter two classes individually.
Yet all the instances can be correctly classified in the sub-
space collaboratively constructed by f5 and f6. Another
special case is given in Fig. 2 (d), in which two classes over-
lap perfectly no matter projected on feature f7 or feature
f8. Similar with the case in Fig. 2 (c), they can be sepa-
rated perfectly in the subspace of the two features. Thus,
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(a)

(b)
Fig. 1 One-dimensional instances distribution. Different distribution of instances on two features. The vertical lines represent the threshold θ of two
single feature classifiers of two features. (a) shows the distribution of instances on gene R87126 and (b) shows the distribution of instances on gene
U33429

we can draw the conclusion from the subfigures (c) and
(d) that, two individually inferior features can be supe-
rior when combined together. The histograms in Fig. 2
(e) to (h) also exhibit this property as in Fig. 2 (a) to (d).
Therefore, even if some individual features may have bad
separability capabilities, their combinational feature sub-
set may probably provide good class separability perfor-
mance. Just on the basis of this important characteristics

of the features, our new approach AVC pays emphasis on
the complementarity between features in pair, which is
expected to effectively improve the classification perfor-
mance of the selected feature subset.
It is critical to analyze the data distributions on pairwise

features to evaluate the complementarity between them.
As aforementioned, a feature’s AUC indicates the distribu-
tion of the positive class and negative class on this feature

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Fig. 2 Illustration of feature complementarity. 2-dimensional instances’ distributions on different combination of features: (a) to (d) describe the
class distributions when the instances are projected to different pairwise features, and (e) to (h) are the corresponding histograms
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dimension. If all the positive class instances rank higher
than the negative class instances, AUC will be equal to 1,
which means that all the instances can be correctly classi-
fied into two classes. If a feature’s AUC is smaller than 1, it
implies that more or less instances will be misclassified by
this single feature classifier. For a data set with n instances,
there exist n0 × n1 instance pairs, in which a posi-
tive instance and a negative instance are simultaneously
included. The special pairs in which the positive instances
are ranked higher than the negative ones are drawn atten-
tions from AUC. AUC actually denotes the ratio of these
special pairs out of all the instance pairs. In the pair of
instances that positive class instance ranked lower than
the negative class instance, there must be a misclassified
instance. We focus on the distribution of these misclas-
sified cases under the different combination of features
to find out the features which have the maximal comple-
mentarity of classification capability such as the features
in Fig. 2 (c) and (d). The basic idea is, if the instances
from different classes that are close to each other on one
feature dimension are far apart on another feature dimen-
sion, the two features are regarded as complementary to
each other. In order to find out such features, we introduce
a new metric to evaluate the complementarity between
two features. This metric is based on the similarity of
instances inspired by the state-of-the-art feature selection
method ReliefF [23], which adopts the nearest neighbor
rule to evaluate features. We use the nearest neighbor
rule on the set of the misclassified instances according
to the single feature classifiers to analyze the comple-
mentarity between two features. Specifically, the average
Manhattan distance between the misclassified instances
and their nearest neighbors from the other class (near-
est miss) are exploited to represent the complementarity
between two features.
We use the matrix H to represent the complementarity

of the feature classification capability as follows:

H �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 h12 h13 . . . h1m
0 0 h23 . . . h2m
...

...
...

. . .
...

0 0 0 . . . h(m−1)m
0 0 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3)

where hij is the complementarity between feature fi and fj,
defined as:

hij =

|S|∑

k=1
dk · MD

(
xk , Iik , Ijk

)

|S| ,

dk =
{
0, Iik = Ijk
1, Iik �= Ijk

,

MD
(
xk , Iik , Ijk

) = max
(
dis(xk , Iik), dis(xk , Ijk)

)
,

(4)

where S is the intersection of instances misclassified by
both feature fi and fj, and xk is an instance in S. Iik and
Ijk are xk ’s nearest misses respectively obtained from the
angle of features fi and fj, and dis(·, ·) is the Manhattan
distance between the two involved variables.
To get the intersection S, we focus on the set of misclas-

sified instances of each feature. All instances are ranked
according to their values of feature fi and get the rank
of instances {xr1 , xr2 , . . . , xrn}. Then we consider the per-
centage of instances from each class in the sequence
{xr|n/2| , . . . , xrn} and define the class with larger percent-
age as the positive class. Clearly, we can simply classify
the instances {xr1 , xr2 , . . . , xrn1 } into the negative class and
other instances into positive class. Then, we can easily
distinguish the misclassified instances whose predictive
information is inconsistent with the original one. For each
instance xk in S, we find the nearest miss Iik from dimen-
sion fi and Ijk from dimension fj. In the two-dimensional
feature space, as shown in Fig. 3, we calculate the
Manhattan distance between two pairs of points (xk , Iik)
and (xk , Ijk), and use the larger one to compute the com-
plementarity. If Iik and Ijk are different instances as shown
in Fig. 3 (a), dis(xk , Iik) is taken as the complementarity,
which is denoted as the red solid line in the figure. If Iik
and Ijk are the same instance as shown in Fig. 3 (b), the
distance is not involved in complementarity. This implies
that the two features provide little complementarity to
each other in classifying instance xk .
In Eq. (4), the numerator of hij is the sum of distances

over the instances in the intersection S, whose nearest
misses are different according to the two features. The
denominator of hij is the size of S. For any pair of strongly
complementary features, the number of nonzero items
in the numerator is equal or a little less than the size
of S. But for the pair of features with weak complemen-
tarity, this number may much less than the size of S.
Evidently, it is reasonable that hij can be used to measure
the complementarity between two features.
We illustrate the computation process of the com-

plementarity by using a simple example data set in
Fig. 4 (a). The data set contains 16 instances, in which
8 instances belong to class “+1” and 8 instances to class
“-1”. Figure 4 (b) and (c) show the ranking results of these
instances. In Fig. 4 (b), the class “+1” is deemed as the
positive class. Correspondingly, the class “-1” is deemed
as the negative class. We classify the top-8 instances to
class “+1”, and classify the other 8 instances to class “-1”.
Then, we get the misclassified instances subset of fi as
{x1, x2, x3, x14, x15, x16}. In Fig. 4 (c), the class “-1” is taken
as the positive one. So, the misclassified instances sub-
set is obtained as {x2, x6, x12, x13}. The intersection S
includes the only one instance x2, as shown in Fig. 4d.
x2 is an instance of class “+1”. In Fig. 4 (b), according to
feature fi we can find the nearest neighbor of x2 from
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(a) (b)
Fig. 3 Illustration of the Manhattan distance measurement used in AVC. Given that xk is a misclassified instance in the intersection S. Then we can
easily find out its nearest neighbors on both features Iik and Ijk . (a) shows that Iik and Ijk are two separate instances. The red solid line represents the
Manhattan distance between two pair of points (xk , Iik) and (xk , Ijk). (b) shows that Iik and Ijk are the same instance, so we discard xk in the next
calculation

class “-1” is instance x12. In Fig. 4 (c), according to fea-
ture fj, the nearest neighbor of x2 from the class “-1” is
instance x9. The Manhattan distance between pairwise
instances (x2, x12) is “0.8”, and the distance of (x2, x9) is
“0.12”. It is obvious that the Manhattan distance between
x2 and x12 is larger than that between x2 and x9. So we
use the distance dis(x2, x12) to compute hij for feature
fi and fj.
The procedure of AVC is illustrated in Algorithm 1.

Directly, we employ an efficient heuristic search strategy
to select optimal features with highest complementarities.
We select the most significant feature with the maxi-
mal AUC at the initial state. Then we iteratively select
the features which have the maximal complementarities
with the features selected in the prior state. In line 16 in
Algorithm 1, when searching the optimal feature in the
current state, we use the sum value of two features’ AUC
as their complementarity weight. The purpose is that, for
a certain feature, if there are more than one feature have
the same complementarity with it, we prefer to the one
with the maximal AUC value.
For the input data set containing n instances, the time

complexity of calculating m features’ AUCs of line 2 in
Algorithm 1 is O(mnlogn). For lines 3 to 6, selecting the
top-t∗ features costs O(t∗logm) time. Then, for lines 7 to
10, calculating hij for the t∗ features costs O((t∗)2) time.
To get the optimal feature set, it takesO(tt∗logt∗) for lines
14 to 20 . Usually, the number of the candidate features t∗
and the number of the selected features t is much smaller
than m and n. Therefore, the complexity of the method is
approximately equal to O(mnlogn + t∗logm).

Multi-class problem
Our approach AVC can deal with not only the binary-
class problem but also the multi-class problem. In this

section, we use new strategies on the relevance analysis
and complementarity analysis for the multi-class problem,
which are different from those adopted in the binary-class
problem.

Algorithm 1 AVC algorithm
Require: F,C t∗;//number of the candidate features

t;//number of the selected features
Ensure: F∗ = {f∗1, f∗2, ..., f∗t∗ };
1: begin
2: calculate AUC(fi) for each feature fi (i=1,...,m) with

Eq. (1);
3: for k = 1 to t∗ do,
4: find f′k with maximal AUC(f′k);
5: F′ = F′ ⋃{f′k},F = F/{f′k};
6: end for;
7: for i = 1 to t∗ do,
8: for j = 1 to t∗ do,
9: calculate hij for each pair of features f′i and f′j in

F′ with Eq. (4);
10: end for
11: end for;
12: find f∗1 in F′ with maximal AUC(f∗1);
13: F∗ = F∗ ⋃{f∗1},F′ = F′/{f∗1};
14: for i = 2 to t do,
15: for j = 1 to t∗ do,
16: calculate E(i−1)j = h(i−1)j × (AUC(f∗i−1) +

AUC(f′j));
17: end for
18: find f∗i with maximal E(i−1)j;
19: F∗ = F∗ ⋃{f∗i },F′ = F′/{f∗i };
20: end for;
21: return F∗;
22: end;
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(a)

(d)

(b) (c)

Fig. 4 An example of artificial data set. (a) Shows the instances’ values
in the data set. In (b), instances are sorted according to the value of
feature fi . And in (c), instances are sorted according to the value of
feature fj . (d) Shows the misclassified instances subset of sample data
in (a), and S is the intersection of two subsets

As to the relevance analysis, we use MAUC to measure
the relevance between features and target class. As a met-
ric to measure the performance of classifiers, MAUC in
Eq. (2) is the average AUC over all sub-problems that con-
sist of pairwise classes. So in AVC, a multi-class problem
is also divided into a batch of binary-class sub-problems in
one-versus-one manner, in which each sub-problem con-
sists of a pair of classes. A multi-class problem with q
classes can be divided into q(q−1)

2 binary sub-problems.
We use the same way as the binary-class problem to
calculate the MAUC of features with Eq. (2).
In the complementarity analysis, we should get the

misclassified instances by each feature. For each feature,
it corresponds to a misclassified instance set for each
binary-class sub-problem. We use BSab(fi) to represent
the misclassified instance set of feature fi in a binary-
class sub-problem with respect to the ath class and the
bth class. And we define the union of a feature’s misclassi-
fied instances sets in all binary-class sub-problems as the
global misclassified instances set, which is represent by
Eq. (5):

MS(fi) = BS12(fi)
⋃

BS13(fi) · · ·
⋃

BS(q−1)q(fi) (5)

For each pair of features fi and fj, the intersection S is
defined as S = MS(fi)

⋂
MS(fj). Same as the binary-class

problem, for each instance xk in S, we find the near-
est miss Iik from feature fi and Ijk from feature fj. Note
that we only use the nearest one no matter which class
it belongs to. If we use the nearest neighbors from every
other classes, such as the ReliefF method, it may bring
some useless information to the complementarity anal-
ysis. Suppose that some nearest misses of xk have large
distances fi, theymaymake little contributions to the anal-
ysis of the complementarity. In order to find the features
with the optimal complementarity, we only pay attention
to the nearest neighbor from the closest different class.
For the input multi-class data set with n instances

characterized by m features and classified to q classes,
the time complexity of calculating m features’ MAUC is
O(q2mnlogn), corresponding to line 2 in Algorithm 1.
Since the other steps have the same computational com-
plexity as the binary-class problem, the complexity of our
method for multi-class problem isO(q2mnlogn+ t∗logm).

Results and discussion
Benchmark data sets
We use 13 publicly available microarray data sets to eval-
uate the performance of the selected features, as shown in
Table 1. These data sets are widely used in the studies of
gene selection problems [31–33].
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Table 1 Benchmark data sets

Data set � Features � Instances � Classes

Colon (COL) 2000 62 2

Lymphoma (LYM) 4026 96 9

ALL-AML-4 (ALL) 7129 72 4

CNS 7129 60 2

Leukemia (LEK) 7192 72 2

Carcinom (CAR) 9182 174 11

Breast-5 (BR5) 9217 84 5

CLL-SUB-111 (CLL) 11340 111 3

MLL 12582 72 3

Lung Cancer (LUN) 12600 203 5

Ovarian (OVA) 15154 253 2

GLI-85 (GLI) 22283 85 2

Breast Cancer (BRC) 22481 97 2

Comparisons with the state-of-the-art methods
FAST
FAST [16] is a feature selection method for small samples
and imbalanced data classification problems. It directly
calculates the AUC of each feature by plotting the ROC
curve and summing up the area under it. For small
samples data, in order to avoid the redundant thresh-
olds, FAST divides instances into K bins according to
instances’ values and fixes the number of instances to
fall in each bin. Then, the mean of instances in each
bin is used as the threshold to get the point (FPR, TPR)
on the ROC curve. After ranking the features accord-
ing to their AUCs in descending order, the top-k fea-
tures are selected. Although FAST can perform well for
some microarray data sets on SVM and 1-NN classi-
fiers, the computation process of AUC is complex and
imprecise. Besides, FAST does not take into account
the redundancy in the feature set. FAST can find the
most significant features to discriminate given two classes,
however, the selected features are sometimes too redun-
dant. And previous studies have emphasized that con-
sidering both relevance and redundancy in the feature
selection procedure leads to better feature subset in most
cases [19].

ARCO
For overcoming the problems in the FAST feature selec-
tion method, Wang et al. [19] proposed ARCO feature
selection method. ARCO uses Eq. (1) to calculate the
AUC for each feature. In this way, ARCO not only
guarantees the precision of the AUC, but also sim-
plifies the computational process. Moreover, ARCO
removes the redundant features using the Spearman’s
Rank Correlation Coefficient (RCC). Given two features

f1 and f2, ARCO sorts the instances on each fea-
ture based on their values. RCC can be calculated by
Eq. (6):

RCC(f1, f2) = 1 −
6

n∑

i=1
d2i

n × (n2 − 1)
, (6)

where di is the difference between an instance xi’s ranks
on two features, and n is the number of instances.
To select k features from the whole feature set whose

size is m, ARCO starts from the feature with the largest
AUC. It iteratively evaluates every previously unselected
feature fi with Eq. (7), and selects the feature with the
largest value of E(fi):

E(fi) = AUC(fi) −

∣
∣
∣
∣
∣

∑

fj∈S
RCC(fi, fj)

∣
∣
∣
∣
∣

|S| , (7)

where AUC(fi) is the AUC when taking the single feature
fi as a classifier, S is the current selected feature subset,
and |S| is its cardinality.
In every iteration, AROC selects the feature with the

smallest redundancy to the features in the subset. The
redundancy is represented by the RCC, which mainly
shows the different positions of instances on the two
features’ ranking sequences. For two features, the large
the difference is, the small the redundancy is. Consider
an extreme situation, two features can both classify all
instances from two classes. On one feature, the values
of instances from one class are all larger than instances
from the other class, but on the other feature these values
are smaller than the others. We can see that ranks of the
instances are totally different on the two features, so the
RCC of them indicates that they are not redundant. But to
build a classifier, any one of them is enough to separate all
instances. So sometimes ARCO cannot exactly recognize
the redundant features. And it is necessary to differentiate
the correctly classified and misclassified instances by each
feature.

FROC
Another feature selection method based on ROC analysis
is FROC [21], which is developed to overcome the redun-
dancy problem in small samplesmicroarray data sets. This
method also has two steps. The first step is a one-gene-at-
a-time filtering which uses the ROC curve as a criterion to
evaluate the relevance of features to the target class. Dif-
ferent from ARCO, FROC chooses to calculate the area
between the ROC curve and the diagonal line (ARD),
which is equal to AUC − 0.5. Instances are also sorted in
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Fig. 5 ABR of two features. The gray area is the ABR area, and two
curves are the ROC curves respectively obtained by two features

increasing order according to the values for feature fi and
ARD(fi) is calculated by Eq. (8):

ARD(fi)=
∣
∣
∑n1

i=1(qi−2i)
∣
∣

n0×n1
=

∣
∣
(∑n1

i=1 qi
)−n1×(n1+1)

∣
∣

n0×n1
(8)

where n0 and n1 are the numbers of positive and negative
instances respectively, and qi is the rank of the ith neg-
ative instance. All features are sorted by the ARD(fi) of
feature fi in descending order and the top of the sorted
features are chosen as a candidate feature set. The second
step in FROC is a ROC-curve-based Markov blanket fil-
tering. This step removes the redundant features using the
definition ofMarkov blanket that ifMi is aMarkov blanket
of fi, the probabilistic distribution P of classes is invariant
under no matter what value fi takes:

P (F−Mi−{fi},C|fi,Mi)=P (F−Mi−{fi},C|Mi) .

FROC uses the area between the ROC curves (ABR)
to measure the redundancy of two features. For example,
ABR of two features is the gray area in Fig. 5. The smaller
the ABR is, the more redundant the two features are.
FROC iteratively removes the redundant features from the
candidate feature set selected in the first step.
In [21], the author argued that it is not able to find

an exact Markov blanket of a given feature. The alter-
native method is to find an approximation to Markov
blanket of the feature. This may cause a problem that after
finding out the redundant features, removing different
features may bring different influence to the combina-
tion of features in subset when building the classifier. To
overcome this problem, the analysis on the complemen-
tarity of feature classification capability maybe a feasible
choice.

Experimental settings
The efficacy of our new method AVC was empirically
evaluated by comparing it to four state-of-the-art fea-
ture selectionmethods. Threemethods, FAST, ARCO and
FROC, are all based on the ROC curve and AUC. These
three methods are all particularly designed for the binary-
class classification problems. So in our experiments, we
extend them to solve the multi-class classification prob-
lems with the same strategy as our method. That is, for the
multi-class problem, the MAUC of features will be com-
puted by Eq. (2). The fourth method is ReliefF, which has
been widely used as the compared algorithm that uses the
criterion of preserving sample similarity [34].We compare
the performance on four widely used classifiers to test the
robustness of the five methods. The classifiers are Naive
Bayes, Support Vector Machine (SVM), 1-Nearest Neigh-
bor (1-NN) and C4.5 Decision Tree. Due to the small
number of instances in these microarray data sets, we
use 10-fold cross-validation to evaluate the classification
performance of the classifiers.

Fig. 6 Averaged BER on binary-class data sets. Averaged BER value of the four classifiers on the six binary-class data sets using four classifiers. We
choose 17 feature subsets with increasing number of features
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Fig. 7 Averaged AUC on binary-class data sets. Averaged AUC value of the four classifiers on six binary-class data sets using four classifiers. We
choose 17 feature subsets with increasing number of features

We perform our comparisons in two sub-experiments.
In the first sub-experiment, we compare four feature
weighting methods, i.e., AVC, FAST, ARCO and ReliefF.
These methods select features according to their weights,
so we evaluate their classification performance in the con-
dition of increasing the number of features. In the second
sub-experiment, we evaluate their classification perfor-
mance in the condition of fixing the number of features
determined by FROC. FROC is a method which selects a
feature subset rather than evaluating features individually,
so we fix the number of features to the size of the feature
subset selected by FROC.
To avoid the influence of the imbalanced class issue on

the classification accuracy, we choose the balance error
rate (BER) metric [16] to evaluate the performance of the
classifiers on both classes for the binary-class problem,
which is defined as follows:

BER = 1
2

(
FP

FP + TP
+ FN

FN + TN

)

, (9)

where FP, TP, FN, and TN are respectively the false
positive, the true positive, the false negative, and the true
negative. If the classes are balanced, BER is equal to the
global error rate. For the multi-class problem, BER can be
computed as follows:

BER′ = 1
q

q∑

l=1

nfl
nl

, (10)

where nl is the number of the instances in the class cl,
and nfl is the number of the misclassified instances in cl.
Another evaluation statistic commonly used on microar-
ray data sets is the area under the ROC (AUC). This
statistic is similar in nature to the BER in that it weights
errors differently on the classes. Then, we explore the
Wilcoxon signed-rank test to compare AVCwith the other
three methods, and the significance level is set to 0.05.
We used the well-known WEKA software package [35]

as our experiments’ platform. Ourmethod and other com-
pared methods are all implemented at this platform. For
FAST and ReliefF, we select the top-100 features as the
final feature subset. For ARCO and our method, we select
the top-200 features as the candidate feature subset, and
select the top-100 features as the final feature subset. For
FROC, we also select the top-200 features as the candi-
date feature subset and the final feature subset is selected
from these features. In ReliefF, every instance is used to
update the weights of features and for every instance we
find ten nearest neighbors from both the same class and
the different classes.

Experimental analysis
The classification performance is illustrated in Figs. 6, 7,
8 and 9. For the binary-class classification problems, we
test across the six binary-class data sets shown in Table 1,
which are COL, CNS, LEK, OVA, GLI and BRC. We
examine 17 groups of features with different size in each

Fig. 8 Averaged BER on multi-class data sets. Averaged BER value of the four classifiers on seven multi-class data sets using four classifiers. We
choose 20 feature subsets with increasing number of features
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Fig. 9 Averaged MAUC on multi-class data sets. Averaged BER value of the four classifiers on seven multi-class data sets using four classifiers. We
choose 20 feature subsets with increasing number of features

test. When the size is smaller than 10, we add a feature
every time. After the size is larger than 10, we add five
features every time until the size is equal to 50. Then the
averaged performance of each classifier with each data
set is calculated. Figures 6 shows the BER scores for the
six binary-class data sets with respect to the four classi-
fiers. We also use AUC to evaluate the classifiers on test
data. Figure 7 shows the AUC scores averaged over the
six binary-class data sets with four chosen classifiers. For
the multi-class classification problems, we experiment on
the seven multi-class data sets in Table 1, i.e., LYM, ALL,
CAR, BR5, CLL, MLL and LUN. We examine 20 groups
of features with different size in each test, and every time
we add 5 features. Same as the binary-class classification
problems, we also use the BER and AUC to measure the
performance of classifiers. Figure 8 shows the BER scores
for the seven multi-class data sets with four classifiers and

Fig. 9 shows the MAUC scores averaged over these seven
multi-class data sets.
The average results in Figs. 6 and 7 for binary class

classification problem demonstrate that AVC significantly
outperforms the other compared methods. The features
selected by AVC reach the best performance with less
than 15 features, which are much smaller than the num-
ber of the features selected by other three feature selection
methods. And with more than 15 features, although AVC
features do not improve the BER metric or AUC metric
of the classifiers, its performance is still better than the
three compared feature selection methods. Our method is
based on the analysis of the ROC and AUC, so it is reason-
able to believe that a learning method using AVC-selected
features would also maximize the AUC.
The average results in Figs. 8 and 9 for multi-class clas-

sification problems show that AVC features also performe

Table 2 Minimal BER of the four classifiers in the top-100 features on the benchmark data sets

Classifier Algorithm
Data sets

COL LYM ALL CNS LEK CAR BR5 CLL MLL LIM OVA GLI BRC

NB AVC 0.125 0.121 0.097 0.2 0 0.207 0.073 0.186 0.012 0.07 0.009 0.046 0.135

FAST 0.172 0.395 0.332 0.194 0 0.331 0.144 0.188 0.069 0.161 0.036 0.142 0.187

ARCO 0.135 0.24 0.159 0.13 0 0.199 0.014 0.189 0.036 0.079 0.031 0.168 0.193

ReliefF 0.135 0.247 0.159 0.2 0.141 0.212 0.16 0.245 0.012 0.125 0.009 0.089 0.165

SVM AVC 0.085 0 0.03 0.101 0 0.051 0.006 0.134 0.012 0.085 0 0.054 0.116

FAST 0.106 0.186 0.132 0.125 0 0.173 0.052 0.079 0.029 .056 0.003 0.104 0.078

ARCO 0.111 0 0.115 0.044 0.01 0.055 0 0.12 0.042 0.054 0 0.046 x0.196

ReliefF 0.111 0.086 0.069 0.169 0.057 0.08 0.143 0.194 0.012 0.082 0 0.065 0.132

1-NN AVC 0.135 0.005 0.036 0.148 0.019 0.089 0.019 0.153 0.031 0.113 0.003 0.046 0.135

FAST 0.141 0.198 0.201 0.289 0 0.247 0.081 0.139 0.052 0.121 0.003 0.089 0.214

ARCO 0.107 0.018 0.127 0.149 0 0.098 0.019 0.181 0.056 0.063 0.003 0.073 0.173

ReliefF 0.124 0.086 0.046 0.142 0.221 0.085 0.074 0.18 0.029 0.075 0.003 0.045 0.145

C4.5 AVC 0.073 0.362 0.167 0.236 0.104 0.289 0.136 0.193 0.107 0.259 0.019 0.065 0.193

FAST 0.162 0.455 0.332 0.22 0.052 0.395 0.259 0.227 0.069 0.369 0.021 0.142 0.016

ARCO 0.156 0.44 0.138 0.236 0.092 0.326 0.121 0.21 0.107 0.247 0.014 0.134 0.227

ReliefF 0.12 0.395 0.268 0.333 0.152 0.265 0.308 0.237 0.06 0.153 0.016 0.13 0.227

Bold data in the table reflect the minimal BER of four classifiers in the top-100 features selected by four compared feature selection methods on the benchmark data sets
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Table 3 Size of the selected feature subsets when BER is minimal with top-100 features

Classifier Algorithm
Data sets

COL LYM ALL CNS LEK CAR BR5 CLL MLL LIM OVA GLI BRC

NB AVC 10 40 12 34 39 21 72 12 9 18 17 22 3

FAST 12 25 6 6 4 33 63 58 28 32 78 12 7

ARCO 78 39 25 42 3 84 68 4 47 98 4 69 83

ReliefF 6 32 8 8 37 41 82 86 22 76 66 18 7

SVM AVC 7 39 93 5 4 78 72 34 99 62 42 10 3

FAST 52 83 89 84 4 99 79 96 91 98 98 39 79

ARCO 35 100 30 42 5 92 52 86 76 74 56 72 19

ReliefF 23 87 33 34 97 81 57 91 55 66 23 13 19

1-NN AVC 64 85 29 14 4 80 72 8 27 52 11 18 16

FAST 26 82 100 28 4 99 62 98 36 99 98 50 6

ARCO 28 79 77 66 5 83 55 40 48 63 92 98 99

ReliefF 95 80 15 41 70 99 97 64 60 77 26 72 31

C4.5 AVC 27 46 7 53 3 57 65 44 1 13 14 24 3

FAST 9 20 26 47 3 69 23 26 4 18 89 28 4

ARCO 15 34 72 18 3 76 93 23 1 75 17 55 17

ReliefF 21 66 40 3 19 45 30 40 29 81 34 31 3

Fig. 10Wilcoxon signed-rank tests on binary-class data sets. The results of the Wilcoxon signed-rank tests on six binary-class data sets with 17
groups of selected features
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Fig. 11Wilcoxon signed-rank tests on multi-class data sets. The results of the Wilcoxon signed-rank tests on seven binary-class data sets with 20
groups of selected features

well when the size of feature subset is small. When using
the Naive Bayes classifier, SVM classifier and 1-Nearest
Neighbor classifiers, with less than 35 features AVC per-
forms better than the other three feature selection meth-
ods. With more than 35 features, the differences between
AVC and the other compared algorithms are not signifi-
cant.When using the C4.5 Decision Tree classifier, feature
subsets selected by different methods perform much dif-
ferent. The feature subsets selected by AVC get the best
performance when their size is about 50, which is better

than other three methods for all 20 different sizes of
feature subsets.
Table 2 shows the minimal BER of the four classifiers

with top-100 features on the benchmark data sets. In
Table 2, we can see that AVC can get the minimal BER
in a majority of the situations. Table 3 shows the size of
feature subsets selected by four methods when four clas-
sifiers get the minimal BER with top-100 features. We can
see that, AVC is capable of choosing a smaller size of fea-
ture subset than other three feature selection methods for

(a) (b) (c) (d)

Fig. 12 Instances distribution of Colon cancer data with the two best features selected from four feature selection methods, (a) shows the instances’
distribution on the best two features selected by AVC, (b) shows the instances’ distribution on the best two features selected by FAST, (c) shows the
instances’ distribution on the best two features selected by ARCO, and (d) shows the instances’ distribution on the best two features selected by
ReliefF
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(a) (b) (c) (d)

Fig. 13 Instances distribution of ALL-AML-4 data with the two best features selected from four feature selection methods, (a) shows the instances’
distribution on the best two features selected by AVC, (b) shows the instances’ distribution on the best two features selected by FAST, (c) shows the
instances’ distribution on the best two features selected by ARCO, and (d) shows the instances’ distribution on the best two features selected by
ReliefF

the binary-class problem. But for the multi-class problem,
it is hard to say AVC can always choose the minimal size
of the features. These may mainly because of the influ-
ence of the well-known “siren pitfall” in scoring methods
for multi-class problem, which is common to feature-
scoring methods which focus on selecting the top scoring
features [36].
Figure 10 presents the results of the Wilcoxon signed-

rank tests on 17 groups of the binary-class data sets, and
Fig. 11 presents that for 20 groups of the multi-class data
sets. In the figures, “win” indicates the number of the
cases in which AVC is significantly better than the com-
pared algorithms, “draw” indicates that AVC performs
identically, and “lose” indicates that AVC performs worse.
From the figures, we can observe that in a majority of the
cases, AVC performs superior or comparable to the other
methods.
Figures 12 and 13 show the class distributions of the

Colon cancer data and ALL-AML-4 data with the two
best features selected by four methods, respectively. The
classes in Figs. 12 (a) and 13 (a) are scattered and
have little overlapping, which makes it easy to find the
optimal boundaries between them. But in Figs. 12 (b)
to (d) and 13 (b) to (d), instances from different classes
are overlapping so that it is difficult to classify them
by some certain boundaries. This may explain why our
method can perform well with a small size of feature
subsets.
Table 4 shows the averaged BER and AUC of the four

classifiers for the five feature selection methods. Note
that the number of the selected features is determined by
FROC, which can determine the number of the selected
features. For example, FROC selected a feature subset
from the Colon data set which includes 69 features. To
compare the performance with other four methods, we fix
the size of feature subset to 69. From Table 4 we can see
that AVC is comparable or superior to the other compared
methods.

Evaluation with LDA andMclust
Some classifiers can account for the high correlations
among features appropriately, such as LDA (Linear Dis-
criminant Analysis) and Mclust (Model-based Clustering
method). In this sub-experiment, we further evaluate the
performance of AVC on this kind of classifiers.
We experiment across the thirteen data sets shown in

Table 1. We examine 20 groups of features with different
sizes and increase the number of features from 5 to 100 in
interval of 5. Figure 14 shows the averaged accuracy of the
thirteen data sets. The blue line named as Top-k reflects
the performance of the top-k features with maximal AUC.
Features are sorted according to their AUC scores and the
top-k features are selected without any redundancy reduc-
tion process. The red line reflects the performance of
AVC. We can observe that AVC leads to higher accuracy
in all the cases.
Besides, FAST is a feature selection approach which

simply selects the top-k features with maximal AUCs.
Generally speaking, as shown from Figs. 6, 7, 8, and 9, it
is clear that FAST performs inferior to the other feature

Table 4 Averaged BER and AUC of the four classifiers on the
benchmark data sets

AVC FAST ARCO Relief FROC

BER NB 0.184 0.242 0.194 0.209 0.269

SVM 0.148 0.166 0.147 0.174 0.201

1-NN 0.163 0.213 0.162 0.178 0.254

C4.5 0.28 0.352 0.287 0.296 0.299

AUC NB 0.924 0.894 0.911 0.894 0.881

SVM 0.896 0.908 0.913 0.886 0.898

1-NN 0.873 0.855 0.874 0.861 0.822

C4.5 0.798 0.766 0.791 0.788 0.793

Bold data in the table reflect the minimal averaged BER and AUC of four classifiers in
the feature subset selected by five compared feature selection methods on the
benchmark data sets
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Fig. 14 Averaged accuracy of the LDA and Mclust classifiers. Averaged accuracy value of the LDA and Mclust classifiers on thirteen data sets. We
choose 20 feature subsets with increasing number of features

selection methods, which involve feature redundancy or
complementarity analysis in their selection processes.
Thus, we can draw the conclusion that reducing fea-
ture redundancy or improving feature complementarity
conduces to better recognition performance. The feature
selection methods exploiting these tricks outperform the
top-k methods without any further evaluation strategies.
This property still holds on the situations that the feature-
correlation-based classifiers are employed for measuring
the discriminative performance of the selected features.

Conclusion
We propose a new feature selection method specific to
the recognition problems in the microarray data sets. This
method ranks the features according their relevance to the
class label and the complementarity between each other.
The ROC curve and the area under the ROC curve (AUC)
are exploited to evaluate the relevance between a feature
and the class label. Then the distribution of data on a pair
of features is analyzed to measure the complementarity of
the pair of features. Moreover, the greedy searching strat-
egy is also implemented for finding out the predominant
features.
The experiment results show that when the number

of selected features is small, the features selected by our
method can achieve a better classification performance
compared with the state-of-the-art methods. Moreover, it
is illustrated from the experiments that the reduced sub-
space constructed by our new method is suitable for the
recognition task, in which the classes are mostly sepa-
rated from each other and a significant boundary between
classes can be easily found.
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