The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):80

DOI 10.1186/512859-017-1469-3 BMC BiOinfO rmatiCS

@ CrossMark

AfterQC: automatic filtering, trimming,
error removing and quality control for
fastq data

Shifu Chen'%3, Tanxiao Huang?, Yanging Zhou?, Yue Han?, Mingyan Xu? and Jia Gu'"

From The Fifteenth Asia Pacific Bioinformatics Conference
Shenzhen, China. 16-18 January 2017

Abstract

Background: Some applications, especially those clinical applications requiring high accuracy of sequencing data,
usually have to face the troubles caused by unavoidable sequencing errors. Several tools have been proposed to
profile the sequencing quality, but few of them can quantify or correct the sequencing errors. This unmet requirement
motivated us to develop AfterQC, a tool with functions to profile sequencing errors and correct most of them, plus
highly automated quality control and data filtering features. Different from most tools, AfterQC analyses the
overlapping of paired sequences for pair-end sequencing data. Based on overlapping analysis, AfterQC can detect and
cut adapters, and furthermore it gives a novel function to correct wrong bases in the overlapping regions. Another
new feature is to detect and visualise sequencing bubbles, which can be commonly found on the flowcell lanes and
may raise sequencing errors. Besides normal per cycle quality and base content plotting, AfterQC also provides features
like polyX (a long sub-sequence of a same base X) filtering, automatic trimming and K-MER based strand bias profiling.

Results: For each single or pair of FastQ files, AfterQC filters out bad reads, detects and eliminates sequencer’s bubble
effects, trims reads at front and tail, detects the sequencing errors and corrects part of them, and finally outputs clean
data and generates HTML reports with interactive figures. AfterQC can run in batch mode with multiprocess support,
it can run with a single FastQ file, a single pair of FastQ files (for pair-end sequencing), or a folder for all included FastQ
files to be processed automatically. Based on overlapping analysis, AfterQC can estimate the sequencing error rate
and profile the error transform distribution. The results of our error profiling tests show that the error distribution is
highly platform dependent.

Conclusion: Much more than just another new quality control (QC) tool, AfterQC is able to perform quality control,
data filtering, error profiling and base correction automatically. Experimental results show that AfterQC can help to
eliminate the sequencing errors for pair-end sequencing data to provide much cleaner outputs, and consequently
help to reduce the false-positive variants, especially for the low-frequency somatic mutations. While providing rich
configurable options, AfterQC can detect and set all the options automatically and require no argument in most cases.
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Background

As next generation sequencing (NGS) technology being
used more broadly in clinical applications, sequencing
data quality control is becoming more important. In some
NGS applications like ctDNA(circulating tumour DNA)
sequencing [1], we need to detect ultra low frequency
somatic mutations to help diagnosing cancers. How-
ever, the experiments (such like DNA amplification) and
sequencing process always introduce errors and biases [2].
Typically the somatic mutation rate in ctDNA is near 1%
for advanced tumour patients, and can be as low as 1%
for early stage tumour patients [3], which is very close to
the error rate of mainstream NGS platforms. The pres-
ence of these errors degrades the performance of variant
calling tools in detection of true low frequency mutations
while keeping false-positive mutations away. This prob-
lem drives us to not only apply better preprocessing with
better quality control strategies and stricter filtering cri-
terions, but also develop sequencing error profiling and
correction algorithms to recognise and reduce errors as
much as possible.

For sequencing data, some good tools can already per-
form quality control, such like FastQC [4] with per-base
and per-sequence quality profiling functions and PRIN-
SEQ [5] with FASTA/FASTQ statistics capability, while
some other tools being able to read trimming, such like
Trimmomatic [6] and SolexaQA [7]. Since the way to
do data filtering depends on the QC result and the fil-
tered data also need a post filtering QC, a tool with both
rich QC and filtering functions is still wanted. Another
improvement that can be made to these tools is over-
lapping analysis for pair-end sequencing, for which each
DNA template is sequenced twice in forward and reverse
directions. When the DNA template length is less than
twice of the sequencing length, the pair of reads will be
overlapped. Note that each base in the overlapping region
is actually sequenced twice, so the inconsistency of these
pairs may reflect the sequencing errors.

Another function needed for data preprocessing is
cutting adapters. When the sequenced DNA template
is shorter than sequencing length, part of sequencing
adapters may be contained in the output reads. In this
case, the adapters should be error-tolerantly detected and
removed. Some tools like Trimmomatic [6] and Cutadapt
[8] can handle such tasks, but they usually require users
to input the sequence of the adapters, which are usually
not well known for the people doing data analysis. By
searching the best overlapping of each pair, AfterQC auto-
matically detects and cuts adapters for pair-end data, with
no need of adapter sequence input.

We will present AfterQC in this paper, a tool developed
to address major practical sequencing data quality con-
trol and filtering problems. In addition to regular quality
control functions like per-cycle base content and quality
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statistics, AfterQC also provides new functions like auto-
matic trimming and overlapping analysis. For example,
we found that some sequencers (like Illumina NextSeq
series) may output a lot of polyX reads with high qual-
ity score. AfterQC can remove them using its polyX
filter, while normal quality filters cannot. Another exam-
ple is that we found if the amplification or sequencing
process has serious strand bias, the sequence reads will
show K-MER count bias (i.e. the counts of ATCGATCG
and its reverse complement CGATCGAT are significantly
different). Based on this finding, AfterQC provides K-
MER counting based strand bias profiling. Another major
contribution of this tool is overlapping analysis for pair-
end sequencing data, which can be used to profile the
sequencing error rate and apply error base correction or
removing. For each input of a single or pair of FastQ files,
AfterQC outputs a HTML report, which contains a quality
control and data filtering summary, and a list of interactive
figures.

Methods

AfterQC is designed to process FastQ files in batches. It
goes through a folder with all FastQ files (can be single-
end or pair-end output), which are typically data of a
sequencing run for different samples, and passes each
FastQ file or pair into the QC and filtering pipeline. As
described in Fig. 1, firstly, AfterQC will run a bubble
detection to find the bubbles raised during the sequencing
process. Secondly, a pre-filtering QC will be conducted to
profile the data with per-cycle base content and quality
curves. Thirdly, AfterQC will do automatic read trimming
based on data quality profiling. Fourthly, each read will be
filtered by bubble filter, polyX filter, quality filter and over-
lapping analysis filters, the ones failed to pass these filters
will be discarded as bad reads. Fifthly, an error correction
based on overlapping analysis will be applied for pair-
end sequencing data. Finally, AfterQC will store the good
reads, perform post-filtering QC profiling and generate
HTML reports.

Bubble detection and visualisation

For Illumina sequencers, especially for those using two-
channel SBS sequencing technology [9], we observed a
phenomenon that more polyX reads could be found in
the bubble areas than the background. Based on this phe-
nomenon, we developed a method deBubble to visualise
and detect bubbles. Firstly, we detect all polyX reads, sep-
arate them by tiles, and filter them by their local density
since bubble areas tend to have higher polyX density. Sec-
ondly, we cluster the polyX reads into small sets, filter the
clusters by features like size, shape and number of polyX
reads. Thirdly, for each polyX cluster, we fit a circle to
include all its polyX reads, and we also perform circle fil-
tering to remove false positive bubbles. Finally, we plot
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Fig. 1 Pipeline diagram of AfterQC. For each single or pair of FastQ file(s), AfterQC will perform pre-filtering QC, automatic trimming, data filtering,
error correction and post-filtering QC. Reads will be categorized as good or bad reads and stored separately, figures will be included in the final
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the polyX and circle figures, and use these circles to filter
out all the reads located in them. Figure 2 shows how we
implement deBubble algorithm.

Bubble detection is optional in AfterQC and is not
enabled by default. According to our study, Illumina
NextSeq sequencers are more likely to raise bubbles, so we
suggest enabling this option for NextSeq sequencer out-
puts and disabling it for HiSeq sequencer outputs. Figure 3
shows a part of debubble’s output, from which we can also

find that NextSeq sequencers produce much more polyX
reads.

Automatic trimming

In the whole sequencing process, the first several cycles
can have more biases or errors since the signal coordi-
nation hasn’t been established yet, and the last several
cycles can also have errors due to error accumulation and
lack of following correction. In some cases, the beginning
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Fig. 2 Algorithm diagram of deBubble. The major steps of this algorithm are polyX detection, polyX clustering and filtering, circle fitting and filtering
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or ending of the reads may have significant statistical
biases. For example, library preparation bias or sequenc-
ing bias can cause GC percentage higher than 70% at
some beginning or ending cycles, and these cycles should
be considered as abnormal cycles, and surely should be
removed by some methods.

There are two strategies for trimming, namely local
strategy and global strategy. Some tools, like Trimmo-
matic [6], apply local strategy, which perform trimming
read by read. However local trimming has two drawbacks.
The first drawback is that local trimming only uses the
quality information for trimming, but cannot utilise the
global statistical information to discover the abnormal
cycles. The second drawback is local trimming results in
unaligned trimming, which means duplicated reads may
be trimmed differently, and consequently lead to failure
of de-duplication tools like Picard [10]. Most of these de-
duplication tools detect duplications only by clustering
reads with same mapping positions.

In contrast, AfterQC implements global trimming strat-
egy, which means trimming all the reads identically. An
algorithm is used to determine how many cycles to trim
in the front and tail. The algorithm is based on such find-
ing: the mean per-cycle base ratio curve is usually flat
in the intermediate cycles, but may be fluctuant in the
first and last several cycles. Also the intermediate cycles

usually have higher mean quality score than the first and
last cycles. Before trimming happens, AfterQC will do
pre-filtering quality control to calculate the base content
and quality curves. Our algorithm initialises the central
cycle as a good cycle, and then expands the good region
by scanning the base content and quality curves cycle by
cycle, until it meets the front or end, or meet a cycle con-
sidered as abnormal. Then the cycles in the good region
will be kept, and the rest cycles in the front and tail will
be trimmed. Currently a cycle will be marked as abnormal
if it meets at least one of following criteria: 1), too high
or too low of mean base content percentages (i.e higher
than 40%, or lower than 15%); 2), too significant change
of mean base content percentages (i.e, £10% change com-
paring to neighbour cycle); 3), too high or too low of
mean GC percentages (i.e higher than 70%, or lower than
30%); 4), too low of mean quality (i.e. less then Q20).
Figure 4 gives an example how automatic trimming works.

According to our experiments, AfterQC only trims very
few cycles for data with good sequencing quality (i.e. 1
base in front, and 1 base in tail), so normally it will not
significantly affect the data utilisation rate. However, for
some extreme cases, the sequencing quality is quite low,
and the mean base content percentage or quality curves
can be totally chaotic. To not trim too many data for such
cases, AfterQC limits the trimming cycles both in front
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Fig. 4 An example of how automatic trimming works. Data is obtained from a cell-free DNA quality control sample, and sequenced by Illumina
NextSeq 500 sequencer. a is the base content percentage curve before trimming and filtering, from which we can find base contents change
dramatically in front and tail; b is the curve after trimming and filtering, from which we can find that the bad cycles in the tail are all trimmed, while
only part of the front is trimmed. This results from the fact that we use different thresholds for the front and tail, since unflatness in front is more
probably caused by different fragmentation methods, while unflatness in tail is usually caused by lab preparation or sequencing artefacts
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and tail. The default setting is no more than 10% in front
and no more than 5% in tail.

Filtering

After trimming is done, AfterQC will apply a series of
filters on the reads. AfterQC implements quality filters
and polyX filters. Quality filters are trivial, which just
count the number of low quality bases or N, calculate the

mean quality of each read, and then determine whether to
keep or discard this read. AfterQC implements an error-
tolerantly method to detect polyX (X is one of A/T/C/G).
Two arguments (P and L) are used to configure the polyX
detection algorithm, P (default is 35) means how long the
polyX sequence should have, while L (default is 2) refers
to how many non-X bases can be tolerated in each polyX
sub-sequence. According to our experiments, NextSeq
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sequencers are more likely to produce polyX reads, and
most of them are polyG.

The order of applying different filters is not important.
If one read is filtered out, a new sequence name containing
the filter name will be assigned, and then this read will be
streamed into the bad output.

Overlapping analysis and error correction

Let T denote the length of a sequenced DNA template,
and S denote the length of pair-end sequencing length,
then the pair of reads will totally overlap if 7 < §, will
overlap with a length of 25 — T, if S < T < 2§, and
will not overlap if 25 < T. Based on edit distance [11]
optimisation, we developed a method to check how each
pair of reads overlap, for data from pair-end sequenc-
ing. For a pair of reads R1 and R2, let O be the offset
we place R2 under R1, then we’ll have vertically aligned
subsequences R1, and R2,, and we can calculate their
edit distance ed(R1,, R2,). Our method optimises offset O
to obtain the minimal edit distance, ed(R1,_1,R2,-1) <
ed(R1,,R2,) < ed(R1y+1,R20+1). We consider R1 and R2
overlapped at this offset O if this edit distance ed(R1,, R2,)
and overlapped length L, meet the thresholds.

If a pair is overlapped, AfterQC will do overlapping anal-
ysis and error correction for it. If ed(R1,,R2,) is O, it
indicates no mismatch and no obvious sequencing error
in the overlapped bases. Otherwise we should correct the
overlapped mismatch or discard the reads if they can-
not be corrected. For each pair with mismatch bases in
overlapping region, we calculate the hamming distance
hd(R1,, R2,) and check if it is identical to ed(R1,, R2,). If
yes, it means there is only substitution difference between
R1, and R2,. For this case, we check the mismatch pairs
to see if one base is of very high quality and the other is of
very low quality. If it’s true, AfterQC will correct the low
quality base according to its high quality mate. Accord-
ing to our results, most mismatch pairs have unbalanced
quality scores. Figure 5 shows an example of overlapping
analysis.

Sequencing error profiling

As described above, AfterQC can detect the mismatches
in the overlapping regions. For those reads with very
long overlap (i.e. overlap_len > 50), the edit distance of
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overlapped subsequences is mainly caused by sequenc-
ing errors, because an error-free overlapping is usually
completely identical (edit distance should be 0). Based
on this assumption, we can count the total bases and
the mismatched bases in all overlapping regions. And
we can consider the ratio of (mismatch/total) reflecting
the sequencing error rate, which can be called estimated
sequencing error rate. Furthermore, a mismatched pair
usually consists of one high quality base (i.e. Q30+) and
one low quality base (i.e. < Q15). In this case, we can con-
sider that the low quality base in this pair is a sequencing
error, and furtherly profile the sequencing error trans-
form distribution (i.e. how many T bases are sequenced
as C).

For each pair of pair-end sequenced FastQ files,
AfterQC estimates such sequencing error rate and profiles
the sequencing error transform distribution. By looking
into the error distribution results from lots of sequenc-
ing data, we found an interesting phenomenon: error
distribution is clearly sequencing platform dependent, dif-
ferent sequencing platforms have different error patterns,
while the same sequencing platform’s different sequenc-
ing runs share similar patterns. Figure 6 shows an example
of Illumina NextSeq sequencer patterns comparing with
INlumina HiSeq sequencer patterns. An interesting phe-
nomenon is that NextSeq sequencers produce very few
A/G and C/T errors (the orange bars). We guess it is due
to the two-colour system [9] adopted by NextSeq systems.
In a [lumina two-colour system, base A, which requires
both red and green light signals, is not easy to be mis-
recognised as base G, which requires no light signals.
Also base C, which requires only red light signal, can be
clearly distinguished from base T, which requires green
light signals.

Automatic adapter cutting

When the DNA template length is less than the sequenc-
ing cycles, a part of 3’ adapter will be sequenced in the tail.
From Fig. 7, we can see that when the inserted DNA tem-
plate length T is less than sequencing length S, the offset
O for the best overlapping will be negative. On the other
hand, if we find that the optimal offset O for aligning the
pair of reads is negative, we consider that the length of
inserted DNA is smaller than sequencing length. Based on

high quality A and very low quality T, then T can be corrected

M TTTAGGCCTGTCACTGTGAACGCTATCAGCAAGCCTTTGCATGATTTTTC
TCACTGTGAACGCTATCIIGCAAGCCTTTGCATGATTTTTCTCTTTCCCAC [SY
B Rz M R2(reverse complement) [l overlapped [ mismatch with a low quality base

Fig. 5 An example of overlapping analysis: the original DNA template is 60 bp long and sequencing length is 2 x 50, R1 and R2 have 40 bp overlap
at offset 10, and the edit distance of the overlapped sub-sequences is 1. Brighter colour represents higher quality. A mismatch pair is found with
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this rule, AfterQC implements automatic adapter cutting
for pair-end sequencing data.

In the overlapping analysis process, we get the optimal
offset O for the best local alignment of each pair. The
overlap length of this pair can be directly calculated using
the offset O. If O is found negative, the bases outside
overlapping region will be considered as part of adapter
sequences, and then be trimmed automatically.

Quality profiling

Besides normal per-cycle base content and quality pro-
filing, AfterQC implements two novel methods to give
more information about sequencing quality: strand bias
profiling to reflect amplification bias, and per-cycle dis-
continuity profiling to reflect sequencing quality instabil-
ity. The first one is based on a hypothesis: if the DNA
amplification process and sequencing process have only

READ] SEQUENCE
READ2 SEQUENCE (COMPLEMENT)

CTGGCTTAGTTCCATCT...ATCAACCTAGCTAGT ADAPTER JK}
K ADAPTERCTGGCTTAGTTCCATCT...ATCAACCTAGCTAGT

INSERTED DNA

OFFSET<O0

Fig. 7 An example of automatic adapter detection and cutting. The offset makes the best alignment for this pair of reads is negative, which
indicates that the length of inserted DNA is less than the sequencing length. When the offset is detected, it is trivial to calculate the overlapping
region, and cut the adapter bases (outside overlapping region) from 3’ of both read1 and read2
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little non-uniformity, the repeat count of a short K-MER
should be close to the repeat count of its reverse com-
plement. So we plot each K-MER and its reverse comple-
ment’s counts, and check whether most points are near
the line y = «. Figure 8 gives an example of K-MER
based strand bias evaluation. The second method is based
on another hypothesis: the mean discontinuity should be
more or less stable for all sequencing cycles. For a short
window of sequencing cycles, we use the average dis-
continued base number in this window to calculate the
discontinuity. For example, ATCGA has a discontinued
base number of 4 because all of the neighbour bases are
different, while AAAAA has a discontinued base num-
ber of 0. If discontinuity drops down significantly cycle
by cycle, it usually reflects a sequencing issue, which may
be caused by the per-cycle washing process not working
well.

Software implementation

AfterQC can be viewed as a mix of quality control tools
(i.e. FastQC) and data filtering/trimming tools (i.e. Trim-
momatic, cutadapt). Table 1 gives a simple feature com-
parison of AfterQC with some existing tools. AfterQC
differs from other tools by those features like overlap-
ping analysis, bubble detection and automatic trimming.
And for figure plotting, AfterQC switched from using
matplotlib [12] to plotly.js [13] for creating interactive
figures.

Since AfterQC provides some functions that other high
throughput sequencing QC or filtering tools do not pos-
sess, it usually runs slower than those other tools. In our
evaluation, for pair-end sequencing data, AfterQC can
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process 2*240K pair-end reads per minute, while FastQC
can process 2*1.5M reads per minute, which is 6X faster
as AfterQC. However, the most time consuming parts
of AfterQC are overlapping analysis and error correc-
tion processes, which are very useful for pair-end data.
Actually, for single-end data, AfterQC can run as fast as
FastQC, since no overlapping analysis is involved.

This tool is written in Python, with an edit distance
module written in C. PyPy is supported for performance
consideration. Currently, the fastest way to run AfterQC
is using PyPy, but we are also re-implementing AfterQC
using C/C++ only. The performance will be improved
after the slow python code is replaced.

Results and discussion

AfterQC has been used to process all of our 100+
runs’ sequencing data, most of which are cell-free DNA
sequencing. According to previous studies, the mean
length of cell-free DNA is around 167 bp [14]. This rel-
atively short length of cell-free DNA makes AfterQC’s
overlapping analysis very useful since most pairs of reads
will be overlapped. The AfterQC results of our 100
runs’ data also confirm the reported length distribution.
According to our results, sequencing quality can vary
greatly with different runs, machines and samples. This
suggests us to pay more attention to QC and data filtering,
especially for clinical applications.

For pair-end sequencing, AfterQC provides an option
to store only the overlapped sub-sequences, which means
all pairs with no overlap, and outside overlapping areas
will be discarded. Because the overlapped parts of each
pair will be completely reverse complemented after
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Fig. 8 Two examples of strand bias profiling. X-axis is about the counts of relative forward strand K-MERs, while the Y-axis is about relative reverse
ones. a shows a case of very little strand bias because most points are close to the line y = x, and (b) shows a case of serious strand bias because
lots of points are close to X-axis and Y-axis, and repeat counts of some K-MERs are very high so the figure seems very sparse. Both files are
downloaded from NCBI Sequence Read Archive (SRA), with accession numbers SRR1654347 and SRR2496735 [18]




The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):80

Page 99 of 175

Table 1 A feature comparison of AfterQC with existing tools. From the table we can find that AfterQC is versatile on common quality
control and data filtering tasks, and offers novel features not implemented by other tools before

FastQC Trimmomatic

Cutadapt AfterQC

Quality Control Rich functions Few function

Few function Rich functions

Auto Trimming None Read by read Read by read Global Trimming

Cutting adapter None Single-end/pair-end Single-end/pair-end Pair-end only

PolyX filtering None None None Supported

Figure plotting Static Static Static Interactive

Overlap analysis None Cutting adapter only None Supported with error correction
Sequence error profiling None None None Supported

Bubble detection None None None Supported

Programming Language Java Java Python Python, C

Speed Fast Fast Fast Fast only for single-end

overlapping analysis and error correction, this feature
actually converts the pair-end sequencing data into high
quality clean single-end sequencing data. Since most bases
are double confirmed by pair-end sequencing, this over-
lapped data will have very high quality, and due to overlap-
ping analysis based error correction, the sequence errors
will be significantly eliminated.

To evaluate how downstream analysis can benefit from
AfterQC’s quality control, data filtering and error remov-
ing effort, we tested somatic variant calling pipelines with
BWA [15] + Samtools [16] + VarScan2 [17] on both the

raw data and AfterQC preprocessed data from several
samples. From the experiment results, we found that large
percentages of low-frequency somatic mutations called
from raw data cannot be reproduced from the filtered
clean data, especially for those mutations with frequency
under 5%. This result indicates that a large percent-
age of low-frequency mutations may be false positives
caused by errors, and AfterQC can help to remove them.
Figure 9 gives an example showing that a large amount
of low-frequency mutations are filtered out by AfterQC
preprocessing.

20 25 30

10
\

number of filtered out variants
15

--- SRR2496699
-+- SRR2496709
SRR2496731
--- SRR2496739
-<- SRR2496749
SRR2496716

T T T T T
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frequency (%)

Fig. 9 Six sample data were examined in this evaluation experiment, all of them were downloaded from NCBI Sequence Read Archive (accession
numbers: SRR2496699 SRR2496709, SRR2496731, SRR2496739, SRR2496749, SRR2496716) [18]. AfterQC preprocessed every sample data and
produced clean data files. BWA + Samtools + VarScan?2 pipeline was applied on both raw data (not preprocessed) and clean data (AfterQC
preprocessed). The variants called from raw data, but not called from clean data were counted. In this figure, values in X-axis denote the mutation
frequency and the values in Y-axis denote the number of raw data only mutations, with frequency in each of the windows. Mutations with
frequency lower than 2% are categorized to the first window. From this figure, we can learn that AfterQC helps filtering out lots of low frequency
mutations, while seeing no difference for relatively high frequency (10%-+) mutations
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Conclusion

In summary, we developed a tool called AfterQC with
rich quality control, data filtering, error profiling and cor-
rection functions for next generation sequencing data.
AfterQC s fully tested with a large amount of data and has
been accepted by some community users. The overlap-
ping analysis and other techniques used in this tool make
it possible to generate high quality clean reads, and make it
very useful for low frequency somatic mutation detection
in deep sequencing applications.
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