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Abstract

Background: Information extraction in clinical texts enables medical workers to find out problems of patients faster
as well as makes intelligent diagnosis possible in the future. There has been a lot of work about disorder mention
recognition in clinical narratives. But recognition of some more complicated disorder mentions like overlapping ones
is still an open issue. This paper proposes a multi-label structured Support Vector Machine (SVYM) based method for
disorder mention recognition. We present a multi-label scheme which could be used in complicated entity
recognition tasks.

Results: We performed three sets of experiments to evaluate our model. Our best F1-Score on the 2013 Conference
and Labs of the Evaluation Forum data set is 0.7343. There are six types of labels in our multi-label scheme, all of which
are represented by 24-bit binary numbers. The binary digits of each label contain information about different disorder

mentions. Our multi-label method can recognize not only disorder mentions in the form of contiguous or
discontiguous words but also mentions whose spans overlap with each other. The experiments indicate that our
multi-label structured SVYM model outperforms the condition random field (CRF) model for this disorder mention
recognition task. The experiments show that our multi-label scheme surpasses the baseline. Especially for overlapping
disorder mentions, the Fy-Score of our multi-label scheme is 0.1428 higher than the baseline BIOHD1234 scheme.

Conclusions: This multi-label structured SVM based approach is demonstrated to work well with this disorder
recognition task. The novel multi-label scheme we presented is superior to the baseline and it can be used in other
models to solve various types of complicated entity recognition tasks as well.

Keywords: Multi-label, Structured support vector machine, Information extraction, Clinical text

Background

With the development of electronic records, analysis of
clinical narratives becomes increasingly important since
such narratives often contain vast quantity of useful infor-
mation about patients and health [1].

In recent years, there has been a lot of work in informa-
tion extraction from clinical texts. Earlier studies mainly
focused on rule- or dictionary-based methods. As exam-
ples, MedLEE [2] used a vocabulary to recognize and
classify words into semantic categories and then matched
the sequences of semantic categories to structures defined
in the grammar. MetaMap [3], which adopted a knowl-
edge intensive approach, mapped biomedical texts to the
UMLS [4, 5] Metathesaurus. Mork et al. [6] expanded
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a large number of term lists of drug phrases based on
UMLS and used the lists to validate drug and indication
relationships.

On the other hand, there have been various machine
learning methods proposed recently for clinical text infor-
mation extraction. Roberts et al. [7] treated a clinical
relation extraction task which aims to extract relations
between clinical entities such as a drug entity and a condi-
tion entity as a classification problem and applied Support
Vector Machine (SVM) model to accomplish it. Lu et al.
[8] considered chemical compound and drug recogni-
tion as a sequence labeling problem and developed a
high-performance named entity recognition system by
integrating Condition Random Field (CRF) with word
clustering. He et al. [9] combined dictionary look-up and
CRF method to recognize drug names. Zhu et al. [10] used
SVM to separate biological terms frombiological non-
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biological terms, before they used CRF to determine the
types of terms, which made full use of the power of SVM
as a binary-class classifier and the data-labeling capacity
of CRE.

In this paper, we present an approach to recognize dis-
order mentions from clinical narratives, which can be very
complicated in some circumstances. In Fig. 1, sentence
1)—4) give some disorder mention examples.

In sentence 1), there is a disorder mention dyspnea
on exertion, which is a contiguous disorder. In sen-
tence 2), there is a disorder mention spleen enlarged,
which is a discontiguous one. In sentence 3), there
are two disorder mentions: Abdomen nontender and
Abdomen nondistended. The two disorder mentions
share the left boundary word Abdomen. In sentence
4), there are also two disorder mentions hip abra-
sion and erythematous. The span of the first disorder
mention hip abrasion covers the second one erythema-
tous. The disorder mentions in sentence 3) and 4) are
overlapping ones.

Traditional structured SVM (SSVM) model [11] can
recognize contiguous and discontiguous disorder men-
tions, but it has trouble recognizing overlapping disorder
mentions. To accomplish this disorder mention recogni-
tion task, we describe a multi-label scheme, which can
record the information of different disorder mentions in
the overlapping cases at the same time. Combined with
the multi-label scheme, our SSVM model performs well in
the experiment.

Related work

Multi-label classification

There are two main strategies for multi-label classifica-
tion: a) problem transformation methods and b) algorithm
adaptation methods [12]. On the one hand, problem
transformation methods transform multi-label problems
into one or more single-label problems. Boutell et al.
[13] solved the problem of semantic scene classification,
where a natural scene may contain multiple objects such
that the scene can be described by multiple class labels.
They considered a multiple class label as a new single
label. On the other hand, some classification algo-
rithms can handle multi-label data directly, such as

1) He has severe dyspnea on exertion

2) The spleen is enlarged with a measurement of 15.5 cm.

3) Abdomen: soft, nontender, nondl\stended.

/
4) Left hip with 5 cm erythematous abrasion

Fig. 1 Examples of disorder mentions
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AdaBoost.MH and AdaBoost.MR [14], C4.5 algorithm
[15] and ML-KNN [16].

Complicated entity recognition

It is difficult to model entities that consist of discontigu-
ous words or entities that share the same words. Based
on BIO encoding scheme [17], Tang et al. [18] proposed
the BIOHD multi-label method. In this method, “H”
denotes head entities which are consecutive sequences of
tokens shared by multiple disjoint concepts in a sentence
while “D” denotes non-head entities which are consecu-
tive sequences of tokens in a disjoint concept not shared
by other disjoint concepts in a sentence. Later, Tang et al.
[19] came up with a variant scheme BIOHD1234, where
“17, %27 “3” and “4” indicate that a non-head entity is com-
bined with the nearest head entity at left, the nearest
non-head entity at left, the nearest head entity at right and
the nearest non-head entity at right respectively. To rec-
ognize nested biomedical named entities, Lee et al. [20]
came up with a two-phase method based on SVMs, which
consists of a named entity boundary identification phase
and a semantic classification phase.

Overview of conference and labs of the evaluation forum
2013

The data set used in our work is from the task 1 of
Conference and Labs of the Evaluation Forum (CLEF)
2013 (https://sites.google.com/site/shareclefehealth/). To
the best of our knowledge, the best F1-Score for this data
set is 0.783 so far, achieved by Tang et al. [19] in 2015.

Methods

Overall approach

We take the disorder mention recognition task as a
sequence labeling problem. SSVM model performs well in
classification tasks with complex outputs, such as trees,
sequences, or sets [11], and we adopt the SSVM model to
fulfill this task along with our multi-label scheme.

The detailed algorithm flow is represented in Fig. 2. In
the multi-label scheme, for every disorder mention that a
token belongs to, there is a sub-label to record the disorder
mention. All the sub-labels of each token would be inte-
grated into just one bitwise multi-label, which is called a
final label. Then we convert the final labels into decimal
labels and feed the training data with decimal labels to our
SSVM model. In the prediction phrase, what the SSVM
model predicts are decimal labels as well, which will be
converted into final labels. Finally, all the sub-labels will be
extracted from final labels and the corresponding disoder
mentions are obtained.

Since labeled data are always scarce while unlabeled data
are abundant, we generate clustering-based word repre-
sentations as features to reduce the dependence on the
labeled data and further improve the model [21].
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Design of the multi-labels

As shown in Table 1, there are six types of multi-labels,
B, L, O, U and C, all of which are in the form of 24-bit
binary numbers. Labels in classes B, I, L, O and U stand for
the Beginning, Inside, Last and Outside tokens of multi-
token disorder mentions as well as Unit-length disorder
mentions (those mentions made up of only one word),
respectively, like the BILOU encoding scheme [22]. Labels
in class C denote tokens that play different roles in several
disorder mentions simultaneously. For example, a token,
which is the beginning of a disorder and the last of another
disorder at the same time, is represented by labels in
class C.

In Table 1, a;,b;,¢; and d; (i = 1, 2, ..., 6) represent
binary 1 or 0; There are 6 variable bits (referred to as vari-
able region) and 18 constant bits in labels in class U, B,
L and I. The variable region lies in the rightmost 6 bits
in labels in class U, the 7th to 12th bits from the right
in labels in class B, the 13th to 18th bits from the right
in labels in class L and the leftmost 6 bits in labels in
class I. Meanwhile, the rest 18 constant bits of the above
4 types of multi-labels are filled with binary 0. Unlike the
above 4 types of labels, labels in class C consist of 24
variable bits and labels in class O are made up of 24 bits
of 0. Labels in class C can be divided into four variable
regions, each of which has the same position with the vari-
able region in labels in class U, B, L and I, respectively.
Furthermore, some constraints need to be fulfilled in this
multi-label scheme. There must be at least one bit 1 in
labels in class U, B, L and I. And in labels in class C, there
must be two or more variable regions where there is at
least one bit 1. As for the sub-labels, except that there are

Table 1 Design of the multi-labels

Type Forms of the multi-labels

Class U 000000, 000000, 000000, agasasaza»a;

Class B 000000, 000000, bsbsba b3z b, by,000000

Class L 000000, cgcscac3crcy, 000000,000000

Class/ dedsdadzdrdr, 000000, 000000, 000000

Class C dedsdadzdydy, CeC5C4C3CHCr, bebsbabsbrby, agasasazaray
Class O 000000, 000000, 000000, 000000

to make the 24-bit label easier to understand, extra commas are used to split the
label

no sub-labels in class C, the types of the sub-labels are the
same as the multi-labels introduced above. Additionally,
the sub-labels are made up of 1 bit binary 1 and 23 bits
binary 0.

The reasons why we choose binary numbers as the
multi-labels are as follows: 1) each bit stands for infor-
mation of a disorder mention, so that a binary number,
namely a multi-label, can record information of many
disorder mentions. 2) bitwise operations make it conve-
nient to integrate sub-labels into a final label and extract
sub-labels from a final label.

Application of the multi-labels

Although our multi-label scheme is based on BILOU
scheme, the way we use it is different from traditional
ways. In sentence 5), there is a disorder mention tricuspid
leaflets thickened. In the traditional BILOU scheme, this
sentence would be labeled as The/O tricuspid/B valve/O
leaflets/B are/O mildly/O thickened/B ./O. This method
would run into trouble when there are multiple disorder
mentions in a sentence. While in our method, this
sentence would be labeled as The/O tricuspid/B valve/O
leaflets/I are/O mildly/O thickened/L ./O. There is
therefore no confusion between multiple mentions and a
single discontiguous mention using our method (when
there may be more than six disorder mentions, we can
expand the scope of the binary numbers).

5) The tricuspid valve leaflets are mildly thickened.
6) Abdomen is soft, nontender, nondistended,
negative bruits.

The first step of this multi-label method is to assign each
token sub-labels. Take sentence 6) as an example. There
are three disorder mentions: Abdomen bruits, Abdomen
nontender, and nondistended. When we implement our
model, the disorder mentions are also encoded in this
order, but actually the order of disorder mentions does
not matter. The sub-labels of the three disorder mentions
are shown in Fig. 3. In the beginning, we obtain the sub-
labels of tokens through assigning 1 to the bits a1, b1, ¢1, d1
(referred to the bits of class U, B, L and I in Table 1) and
0 to other bits according to the token’s ordering in that
disorder, just like sub-labels of the first disorder mention
Abdomen bruits. We assign Abdomen a sub-label in class
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Abdomen  000000,000000,000001,000000
bruits 000000,000001,000000,000000
Abdomen  000000,000000,000010,000000
nontender  000000,000010,000000,000000
nondistended  000000,000000,000000,000100

Fig. 3 Examples of the sub-labels

B with its bit by set to 1 and assign bruits a sub-label in
class L with its bit ¢; set to 1 since Abdomen is the begin-
ning of the first disorder mention and bruits is the last.
Then, if the next disorder mention overlaps with the for-
mer one, the sub-labels of the next disorder mention are
acquired through assigning 1 to the bits ay, by, ¢2, dy and 0
to other bits, just like the sub-labels of the second disorder
mention Abdomen nontender shown in Fig. 3. In the same
way, when there are more disorder mentions overlapping
with former ones, we obtain the sub-labels by assigning
1 to aj;, b;, ¢;, d;, in which the subscript i increases one by
one. Thus when the third disorder mention nondistended
which overlaps with the former two comes, a sub-label
in class U with its bit a3 set to 1 is assigned to the third
mention nondistended since it is a unit-length disorder
mention, as shown in Fig. 3. When there comes a disorder
mention which does not overlap with any former disor-
der mentions within the sentence, the bits to be assigned
1 come back to aq, b1, c1 and d;. After that, we continue
acquiring all the sub-labels by repeating the above process.

In view of the limited bits of our multi-labels, there
can be up to six disorder mentions overlapping with
each other. If needed, we can raise the limit by expand-
ing the scope of the binary numbers that represent our
multi-labels.

After all the sub-labels of every token are obtained, we
need to integrate them into a final label by doing bit-
wise OR operation, as the Algorithm 1 shows. Take the
token Abdomen in sentence 6) as an example, as shown
in Fig. 4, its sub-label “000000,000000,000001,000000”
and “000000, 000000, 000010, 000000” are integrated into
a final label “000000,000000,000011,000000” Every
binary 1 in the final label indicates the information
of a disorder mention. For example, the final label

000000,000000,000001,000000
OR 000000,000000,000010,000000

000000,000000,000011,000000

Fig. 4 Example of Algorithm 1
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“000000, 000000, 000101, 000000” means its correspond-
ing token is the beginning of two different dis-
order mentions; another example of the final label
“000010, 000001, 000000, 000000” means this token is not
only an inside token of a disorder mention but also the
last token of another mention. The final labels of tokens of
sentence 6) are listed in Table 2.

Algorithm 1 Sub-label Integration

Input: sub-labels

Output: final label
1: final label < 0
2: for all sub-label such that sub-label € sub-labels do
3. final label < final label OR sub-label

4: return final label

When prediction is finished and the predicted deci-
mal labels have been converted into bitwise final labels,
the next step is to extract sub-labels from final labels
using Algorithm 2. The AND operator denotes the bit-
wise AND operation. Algorithm 2 scans all the 24
bits in a final label and it will output a sub-label
for each bit 1 in the final label. Take the token
Abdomen in sentence 6) as an example again, as shown
in Fig. 5, there are two bits 1 in its final label
“000000, 000000, 000011, 000000, which lie in the 7th and
8th bits from the right. Correspondingly, Algorithm 2 will
output two sub-labels “000000,000000,000010,00000”
and “000000, 000000, 000001, 00000’; whose 7th and 8th
bit from the right are assigned bit 1 respectively. After all
the sub-labels are extracted, we need to gather sub-labels
which have the same ranking position of binary 1 in their
variable region and then extract the disorder mentions as
BILOU encoding scheme does. For instance, the sub-label
sequence (sub-label in class B with its bit by set to 1, sub-

Table 2 Examples of the final labels

Token Final label

Abdomen 000000, 000000,000011,000000

is 000000, 000000, 000000, 000000

soft 000000, 000000, 000000, 000000
000000, 000000, 000000, 000000

nontender 000000, 000010, 000000, 000000

000000, 000000, 000000, 000000
000000, 000000, 000000, 000100
000000, 000000, 000000, 000000
000000, 000000, 000000, 000000
000000, 000001, 000000, 000000

nondistended

negative

bruits
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000000,000000,000011,000000

multi-label

A4
sub-label 1 000000,000000,000001,000000
sub-label 2 000000,000000,000010,000000

Fig. 5 Example of Algorithm 2

label in class I with its bit dy set to 1, sub-label in class L
with its bit ¢y set to 1) can be regarded as a label sequence
(B, I, L) in the BILOU scheme.

Algorithm 2 Sub-label Extration
Input: final label
Output: sub-labels
1: sub-labels <
2: fori < 1to24do
3: if final label AND 2:~! = 1 then
4
5

sub-labels < sub-labels U {a sub-label 2°~1}
. return sub-labels

Combining the SSVM model with this multi-label
scheme, we can not only deal with the contiguous and dis-
contiguous disorder mentions, but also the overlapping
ones.

Feature generation
We exploit several types of features:

(1) General linguistic features. These include the classic
features for named entity recognition tasks, such as Bag
of Words (BOW) and Part of Speeches (POS). Tokeniza-
tion and POS tagging are conducted by Stanford CoreNLP
toolkit [23].

(2) Capitalization features. The reason why we use cap-
italization features is that various spelling habits of differ-
ent people lead to different spellings of the same word. For
instance, some doctors tend to write three times a day as
“t.i.d” while others may write “T..D”” instead. Moreover,
the grammar rule that the first word of a sentence should
begin with a capital letter while the same word in other
position should not is also a reason for that.

(3) Case pattern features. Case pattern features are help-
ful since mentions of the same semantic type often have
similar capitalization patterns, such as C-polyp (Cervical
Polyps) and E-polyp (Endometrial Polyps).

(4) Word representation features. Previous studies
showed that the unsupervised word representation fea-
tures are beneficial to clinical named entity recognition
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tasks [21]. A common approach to induce word repre-
sentation is to use clustering [24]. The unlabeled texts
used for word clustering are the discharge records and
various medical examination reports of 31,507 patients
derived from MIMIC (Multiparameter Intelligent Moni-
toring in Intensive Care) II Databases (http://physionet.
org/mimic2/). Word clustering is conducted by word2vec
[25, 26], which provides an efficient implementation of the
continuous bag-of-words and architectures for computing
vector representations of word.

(5) Contextual features. For each token, we combine
above features of the contextual tokens together as the
contextual features.

The detailed feature descriptions are presented in
Table 3.

Experiments

Data set

The data set we used comes from task 1 of CLEF 2013.
There are 199 clinical reports in the training set and
99 clinical reports in the test set. The clinical reports
include discharge records, electrocardiogram, echocar-
diogram and radiology reports. Table 4 gives the statistics
for the three types of disorder mentions: contiguous and
non-overlapping (referred to as contiguous), discontigu-
ous and non-overlapping (referred to as discontiguous),
and overlapping. When multiple discontiguous disorder
mentions overlap with each other, these mentions are
categorized as overlapping.

Table 5 shows the statistics for different types of dis-
contiguous disorder mentions(including 524 overlapping
disorder mentions which are in the discontiguous form).
A breakpoint refers to consecutive tokens that separate a
disorder mention. For instance, in sentence 5), there are
2 breakpoints in the disorder mention tricuspid leaflets
thickened. The disorder mentions in the data set have two
breakpoints at most.

Table 3 Feature set description

Feature
Bag of Words

Part of Speeches

Description

Bag of Words in a 5-word window.
Part of Speeches in a 7-word window.

Capitalization Convert all alphabetic characters of the words

to uppercase [31]. The window size is 5.

Case pattern The patterns are generated by the following
steps. Similar to [32], any uppercase alphabetic
character is replaced by “A” and any lowercase
one is replaced by “a”. In the same way, any

number is replaced by “0". The window size is 3.

Word
representation

We use word2vec to acquire 700 clusters from
the unlabeled clinical narratives and give each
cluster a different serial number. Then we take
the serial number of the clusters as a feature.
The window size is 3.
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Table 4 Statistics for three types of disorder mentions Table 6 Statistics for overlapping disorder mentions
Disorder type Amount Percentage Disorder type Amount  Percentage
Contiguous 9867 88.45% 2 disorder mentions overlap with each other 482 66.57%
Discontiguous 565 5.06% 3 disorder mentions overlap with each other 198 27.35%
Overlapping 724 6.49% 4 disorder mentions overlap with each other 28 3.87%
Total 11156 100.00% 5 disorder mentions overlap with each other 10 1.38%

6 disorder mentions overlap with each other 6 0.83%

7 or more disorder mentions overlap with each 0 0.00%

Table 6 presents the statistics for overlapping disorder  ther

mentions. In the first column, the number means how Total 724 100.00%

many disorder mentions overlap with each other at the
same time. As an example, there are 3 disorder mentions:
Abdomen bruits, Abdomen nontender and nondistended,
which overlap with each other in sentence 6). According
to the statistics, there can be up to 6 disorder mentions
overlapping with each other at the same time.

Table 7 gives the statistics of disorder mentions with dif-
ferent span lengths. The span length means the distance
between the first and last token of a disorder mention. For
example, in sentence 5), the span length of the disorder
mention tricuspid leaflets thickened is 6 since the distance
between tricuspid and thickened is 6. Specially, the span
length of a unit-length disorder is 1.

Among all the disorder mentions in the testing data set,
the percentage of new disorder mentions, namely men-
tions that do not appear in the training data set, is about
40.72%.

Evaluation metrics
We use the precision, recall and F;-Score in (1)-(3) to
evaluate the performance [27].

. TP
Precision = ———— (1)
TP + FP
P
Recall = ——— (2)
TP + FN

2 x Precision x Recall
F;-Score = — (3)
Precision + Recall

Two evaluation modes are adopted. The strict mode
requires that the predicted spans should be exactly the
same as the answer. Relaxed mode includes left match
and right match mode. Left match means the prediction
is judged as correct as long as the left boundary matches

correctly and right match is judged by the right boundary

Table 5 Statistics for discontiguous disorder mentions

Disorder type Amount Percentage
1 breakpoint 1027 94.31%

2 breakpoints 62 5.69%

3 or more breakpoints 0 0.00%
Total 1089 100.00%

[28]. All the results presented below are evaluated in strict
mode, unless explicitly specified.

Experimental setup

We designed the following experiments to evaluate our
model. First, in order to show the effect of the features we
described above separately, a series of controlled exper-
iments were set up. In these experiments, we added the
features to the feature set one by one. Second, CRF model
is widely used in sequence labeling tasks, therefore we
take CRF model as a baseline to compare with our SSVM
model. The features and the multi-labels employed in the
CRF model are exactly the same as those in our SSVM
model. Last, in order to show the performance of our
multi-label scheme, SSVM model with the BIOHD and
BIOHD1234 scheme, with which Tang et al. [19] achieved
the best Fi-Score so far, are adopted as a baseline. The
features employed are exactly the same as those in our
SSVM model. We trained SSVM models with SVM-HMM
[29] and CRF model with CRF++ [30]. The parameters of
our SSVM model and baseline models were optimized by
10-fold cross-validation on the training data set.

Results and discussion

Overall performance

Table 8 gives the results for the multi-label SSVM model
with different feature sets. From the results we can see
that the features, e.g., capitalization and word representa-
tion features, mainly improve the recall. In particular, an

Table 7 Disorder mentions with different span lengths

Span length Disorder amount Percentage
1 5172 46.36%

2 3158 2831%

3 1580 14.16%

4 474 4.25%

5 340 3.05%

6 or more 432 3.87%
Total 11156 100.00%
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Table 8 Results for multi-label SSYM model with different feature sets

Feature set Precision Recall F1-Score
SSVM + BOW 0.7626 03329 0.4635
SSVM + BOW + POS 0.7953 0.3857 0.5195
SSVM + BOW + POS + capitalization 0.8417 0.5702 0.6799
SSVM + BOW + POS + capitalization + case pattern 0.8398 0.5839 0.6889
SSVM + BOW + POS + capitalization + case pattern + word representation 0.8244 0.6620 0.7343

SSVM model with word representation features can rec-
ognize about 19.34% more correct new disorder mentions
than SSVM model without word representation features.
Sentence 7) and sentence 8) are two examples.

7) Past Medical History: Hypertension. Addison’s
disease. Hypothyroidism. Melanoma. BPH.

8) Upon arrival to [** Hospitall 2 **] in preparation for
cath, patient noted to be thrombocytopenic to 140.

In sentence 7), there are five disorder mentions, Hyper-
tension, Addison’s disease, Hypothyroidism, Melanoma
and BPH. Our model could not recognize Melanoma and
BPH until we added the word representation features.
Likewise, word representation features enable our model
to recognize the disorder thrombocytopenic in sentence 8).

Results in different evaluation modes

Table 9 shows the results for the model in different evalua-
tion modes. It indicates that the performance for the right
match outperforms that for left match. To explore the rea-
sons for the difference, we consider the following cases in
detail.

There are many mistakes in recognizing left boundary
of contiguous disorder mentions. In some cases, adjec-
tives and nouns before disorder mentions are misjudged
as the beginning of the mention. For example, there is a
disorder mention fluid collects in sentence 9), while the
prediction of the model is abdominal wall fluid collects. In
some other cases, adjectives and nouns located at the left
boundary of contiguous disorder mentions are often omit-
ted. In sentence 10), there is a disorder mention Multiple
renal cysts, while the prediction is renal cysts.

9) Reason: please drain abdominal wall fluid collects
(x 2) with ultras.
10) Multiple renal cysts.

Table 9 Results for different evaluation modes

Mode Precision Recall Fq-Score
Strict 0.8244 0.6620 0.7343
Relaxed (left match) 0.8229 0.6826 0.7462
Relaxed (right match) 0.8441 0.6995 0.7650

As we can see from Table 4, contiguous disorder men-
tions account for 88.45% of all the mentions. Further-
more, 23.59% of contiguous disorder mentions appear
after adjectives or nouns and the first tokens of 92.86% of
contiguous disorder mentions are adjectives or nouns so
that this type of mistake makes a great difference.

Performance for different types of disorder mentions
Table 10 shows the performance for contiguous, discon-
tiguous and overlapping disorder mentions respectively.

(1) Contiguous disorder mentions

Our model obtains the highest performance in recog-
nizing contiguous disorder mentions among these three
types of mentions. It is clear from the data that contigu-
ous mentions are easier to recognize than the other two
types of mentions. Additionally, about 57.33% of contigu-
ous disorder mentions in our testing data are unit-length
mentions, which are in the simplest form of disorder
mentions.

(2) Discontiguous disorder mentions

The results show that the recall of discontiguous disorder
mentions is not good enough. The reason for that are: a)
The samples of discontiguous disorder mentionss are too
few, which only account for 5.06% of all the disorder men-
tions. b) As Table 7 shows, in some cases, the span lengths
of many discontiguous disorder mentions are too large so
that our model cannot capture their features.

Table 10 Results for different types of disorder mentions

Type [tem Value
Contiguous Precision 0.8262
Recall 0.7036
Fq-Score 0.7600
Discontiguous Precision 0.6914
Recall 0.3060
Fq-Score 0.4242
Overlapping Precision 0.8632
Recall 0.2832
Fq-Score 0.4265
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(3) Overlapping disorder mentions

The weakness of recognizing overlapping disorder men-
tions lies in the recall as well. There are mainly two
reasons.

a) The samples of overlapping disorder mentions only
account for 6.49%. What’s more, Table 6 indicates that
the more disorder mentions overlap with each other at
the same time, the sparser the multi-label of them will
be. Thus the performance in predicting tokens whose
label contains many bits 1, namely the token belongs
to many disorder mentions, is poor. But from another
perspective, tokens which belong to many disorder men-
tions simultaneously are rare so that they will not affect
the final result too much. When the percentage of over-
lapping disorder mentions rises, the result would be
better.

b) A disadvantage of our multi-label scheme is that the
multi-labels of the same disorder mention may be differ-
ent in some situations. Sentence 11) and 12) are two exam-
ples (these two examples are simplified versions of the
original sentences, because there are too many disorder
mentions in the original ones).

11) Abdomen: nontender.

12) Abdomen: nontender, nondistended.

In sentence 11), there is only one disorder mention
Abdomen nontender. According to the multi-label scheme,
the bit b; of the multi-label of Abdomen and the bit
c1 of the multi-label of nontender would be assigned 1
because Abdomen is the first and nontender is the last
token of disorder mention Abdomen nontender. Thus, the
label of Abdomen is “000000, 000000, 000001, 000000” and
the label of nontender is “000000, 000001, 000000, 000000”.
But in sentence 12), there are two disorder mentions
Abdomen nondistended and Abdomen nontender. The bits
b1 and by of the label of Abdomen would be assigned 1
because it is the beginning of both the two disorder men-
tions; the bit ¢; of the label of nondistended would be
assigned 1 because it is the last token of the first disor-
der mention Abdomen nondistended; the bit ¢y of the label
of nontender would be assigned 1 as well because it is
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the last token of the second disorder mention Abdomen
nontender. Thus, the label of Abdomen, nontender
and nondistended are “000000,000000,000011, 000000’
“000000, 000010, 000000, 000000” and “000000,000001,
000000,000000’, respectively. Therefore, the same disor-
der Abdomen nontender may have different multi-labels
in different situations so that our model may be confused.
Since the situation of sentence 11) would occurs much
more frequent than sentence 12), our model would tend
to predict the label of the disorder mention Abdomen
nontender as in sentence 11). To some extent, this charac-
teristic weakens the performance of our model.

Comparison with baselines

Baseline 1: CRF model with our multi-label scheme

As shown in Fig. 6, in strict mode, the best F;-Score
of CRF model is 0.7173 while the best F;-Score of our
SSVM model is 0.7343; in left match mode, the best F;-
Score of CRF model is 0.7327 while the best Fi-Score
of our SSVM model is 0.7462; in right match mode,
the best Fi-Score of CRF model is 0.7511 while the
best F1-Score of our SSVM model is 0.7650. Therefore,
we can see SSVM model outperforms CRF model in
this task.

Baseline 2: SSVM model with BIOHD and BIOHD 1234 scheme
BIOHD and BIOHD1234 multi-label scheme can deal
with discontiguous and overlapping disorder mentions.
But they also have some limitations. As Tang said in
[19], neither BIOHD nor BIOHD1234 scheme can rep-
resent sentences which contains two or more head enti-
ties, such as sentence 13) where there are two disorder
mentions blood third ventricles and blood four ventri-
cles. There are other complicated situations that neither
BIOHD nor BIOHDI1234 can deal with, such as sen-
tence 14) where there are two disorder mentions atrial
pacemaker artifact and pacemaker capture. However, our
multi-label scheme can handle all these complicated situ-
ations. Figure 7 shows the results of BIOHD, BIOHD1234
and our multi-label scheme. The performance for contigu-
ous, discontiguous and overlapping disorder mentions are
showed respectively.
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Precision

Recall

F,-Score

Precision

Recall

F,-Score




Lin et al. BMC Bioinformatics (2017) 18:75

Page 9 of 11

Contiguous disorder

Discontiguous disorder

Fig. 7 Comparison among BIOHD, BIOHD1234 and our multi-label scheme
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13) There is a small amount of blood seen within the
third and fourth ventricles.

14) There is intermittent appearance of apparent atrial
pacemaker artifact without capture.

For all the three types of disorder mentions, the F;-
Scores of our multi-label scheme are higher than BIOHD
and BIOHD1234. In particular, for overlapping disor-
der mentions, the F1-Score of our multi-label scheme is
0.4265 while the score of BIOHD and BIOHD1234 are
only 0.2410 and 0.2837 respectively. Because there are
few complicated sentences like sentence 13) and 14) in
the data set, the advantage of our multi-label scheme is
not fully reflected. In addition, when the percentage of
overlapping disorder mentions rises, the performance of
our model in recognizing overlapping disorder mentions
would be better.

The experiments demonstrate that our multi-label
scheme is better than Tang’s BIOHD and BIOHD1234 in
this task. To figure out why our total F;-Score does not
catch up with Tang’s best F;-Score 0.783, we performed
a baseline in which we removed all discontiguous and
overlapping disorder mentions, then we trained an SSVM
model with BIO scheme and our features, so that we can
compare it with the results got under the same conditions
except the feature sets in [19]. The results showed in
Table 11 indicate that features used by Tang et al. [19] are
more effective than ours. This might be the reason why
Tang’s F;-Score is higher than ours. We would like to try
more features to boost the performance of our model in
our future work.

Error analysis
With further analysis, the main errors of our model are
categorized as follows.

(1) New disorder mention prediction error

The new disorder mentions account for 40.72% in aver-
age among all the mentions in testing data set. Although
we added word representation features to increase the
model’s ability to recognize new disorder mentions so that
the recall of those mentions increased from 0.4565 to
0.6498, there are still 36.02% of new mentions not rec-
ognized. The possible reasons are: a) some of the new
disorder mentions have a very long span length (this
will be explained in the following part Long distance
dependency). b) some of new disorder mentions have a
complex structure so that there are few disorder mentions
have similar features with them in the training data. Con-
sider the disorder mention elevated CE’s in sentence 15) as
an example, few disorder mentions have the similar case
pattern feature aaaaaaaa AAa, POS feature J] NN POS
and capitalization feature ELEVATED CE'’S in the context.

15) He was noted to have ST segment elevations in
inferolateral leads, elevated CE’s

Table 11 Comparison between SSYM model with different
feature sets

Features Precision Recall Fy-Score
Our features 0.6560 0.5875 0.6199
Tang's features 0.842 0.722 0.777




Lin et al. BMC Bioinformatics (2017) 18:75

F-Score

S o o 9o
W N - oo
T T T T

L 1 Il 1

S
i
T
L

0.3 L L L Il Il L
0 1 2 3 4 5 or more

Span length

Fig. 8 Results for disorder mentions with different span lengths

(2) Boundary error

Errors often occur in the boundary of a disorder. a)
Adjectives and nouns before contiguous disorder men-
tions are sometimes misjudged as the beginning of the
disorder. The examples in sentence 9) demonstrate these
situations. b) adjectives and nouns located at the left
boundary of contiguous disorder mentions are often omit-
ted. The examples in sentence 10) demonstrate these
situations.

(3) Long distance dependency

As Table 7 shows, the span length of some disorder men-
tions in the data are pretty long. For instance, the span
length of the disorder Abdomen tenderness in sentence
16) reaches 16. Long span length increases the difficulty
of disorder recognition, especially when the span length
exceeds the feature window sizes.

16) Abdomen: soft, NT/ND, normoactive BS, no
masses, no rebound or tenderness.

Figure 8 shows the result for recognizing disorder men-
tions with different span lengths. The blue broken line
indicates the Fi-Scores. Figure 8 illustrates that as the
span length increases, the performance descends. There-
fore, our model fails to recognize many disorder mentions
because their span lengths are too long and we do not
capture complex features.

Summarization for the multi-label scheme

To summarize, the major advantage of our multi-label
scheme is that it can handle complicated situations in
entity recognition tasks. The major limitations of our
scheme are: 1) because the multi-labels of the same disor-
der mention may be different in some situations, the train-
ing instances of complicated disorder mentions would be
sparse. 2) The number of possible disorder mentions is
limited by the bits used in the multi-label scheme. How-
ever, the situations where there are more than six entities
in a sentence are rare. Moreover, we can use more bits to
raise the limit if needed.
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Conclusions

Aiming at the disorder recognition task,we integrate a
multi-label version of the BILOU scheme with an SSVM
model to create a novel multi-label SSVM model. Using
binary digits to record the disorder mention details,
the multi-label scheme enables us to recognize com-
plicated disorder mentions, e.g., those overlapping with
each other. The best F;-Score of our model is 0.7343.
In addition, for overlapping disorder mentions, the F;-
Score of our multi-label scheme is 0.1428 higher than
the baseline “BIOHD1234” scheme. This shows the per-
spective of the multi-label scheme in dealing with recog-
nition of complicated named entities in biomedical text
mining.

In the future, we would like to generate more features
such as semantic group features. We also intend to address
the problems described in the section Error Analysis. Fur-
thermore, we would like to try some other models such
as neural network to recognize disorder mentions from
clinical texts.
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