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Abstract

Background: Tandem mass spectrometry (MS/MS) followed by database search is a main approach to identify peptides/
proteins in proteomic studies. A lot of effort has been devoted to improve the identification accuracy and sensitivity for
peptides/proteins, such as developing advanced algorithms and expanding protein databases.

Results: Herein, we described a new strategy for enhancing the sensitivity of protein/peptide identification through
combination of mRNA and peptide abundance in Percolator. In our strategy, a new workflow for peptide identification
is established on the basis of the abundance of transcripts and potential novel transcripts derived from RNA-Seq and
abundance of peptides towards the same life species. We demonstrate the utility of this strategy by two MS/MS
datasets and the results indicate that about 5%~ 8% improvement of peptide identification can be achieved with 1%
FDR in peptide level by integrating the peptide abundance, the transcript abundance and potential novel transcripts
from RNA-Seq data. Meanwhile, 181 and 154 novel peptides were identified in the two datasets, respectively.

Conclusions: We have demonstrated that this strategy could enable improvement of peptide/protein identification
and discovery of novel peptides, as compared with the traditional search methods.
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Background
Mass spectrometry (MS)-based methods have become a
powerful and main means for identifying peptides/pro-
teins in proteomics studies. Generally, the acquired MS/
MS data from mass spectrometry is analyzed with the
software and searched against protein sequence data-
bases for protein identification. Several such software
are available, commercial or freely available, such as
SEQUEST [1], MASCOT [2], X!Tandem [3], OMSSA
[4], MyriMatch [5] and MS-GF+ [6]. Generally, the algo-
rithms development in these software aim at improving
the estimation scores that evaluate the extent of peptide
spectrum match (PSM) and reflect the quality of the
cross-correlation between the experimental and the the-
oretical data. In general, the better the two datasets are
matched, the higher scores are achieved. The top rank
PSM is not necessarily correct, however, due to flaws of
scoring algorithm or poor quality of MS/MS spectrum.

Hence, correct match is introduced using a target-decoy
search model to estimate a false discovery rate (FDR). Al-
though sophisticated algorithms for annotation of mass
spectra have dramatically developed, the identification rate
to peptides/proteins upon MS/MS data is still not so satis-
fied yet, because a poor identification of peptides/proteins
is related with many causal factors, such as low efficiency
of peptide ionization, low-quality or noisy MS/MS spectra,
dynamic range of protein abundances, the complexity of
protein samples and flaws of scoring algorithm.
There are two method categories that are developed to

improve the sensitivity of peptide/protein identification
upon MS/MS data. One is the post-processing algorithm
that is designed to validate and filter PSMs based on the
search engine’s results, such as PeptideProphet derived
from the empirical modeling [7], Percolator comes from
the semi-supervised learning [8] and IPeak based on the
multi-search engines [9]. These algorithms usually in-
corporate additional information from the MS/MS
experiments for re-scoring PSMs, such as retention time
of peptide chromatography, peptide charge state, or
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mass accuracy. Another one is the algorithms to utilize
external information, i.e. the information gained from
the non-MS/MS-based experiments, such as RNA-Seq
data [10–12]. Recently Wang et al. described an ap-
proach to utilize the mRNA abundance to limit the sizes
of protein sequence databases as to improve the sensitiv-
ity of protein identification [13]. Meanwhile, Avinash et
al. proposed a method to utilize RNA-Seq and GPMDB
protein observation frequency to rescore or adjust the
protein identification probabilities as to augment the
identification sensitivity, even though its application was
restricted at protein but not at peptide or PSM level
[14]. Also Wu et al. described a novel bioinformatics
workflow to focus on the identification of new peptides
which were not present in the standard protein data-
bases but in the datasets derived from RNA-Seq data
[15]. This workflow, however, doesn’t utilize the abun-
dance information from the RNA-Seq data to assist in
peptide identification. Though many efforts have been
devoted to the two categories, there is lack of method
that enables combination of the advantages from both
methods.
In this work, we introduced a novel workflow of

proteomic analysis by integration of the post-processing
algorithm and the external information gained from
RNA-Seq data. Through incorporating the abundance
of mRNAs and peptides for rescoring PSMs, and the
potential novel transcript sequences, we demonstrated
the sensitivity of peptide/protein identification and dis-
covery of novel peptides to be significantly improved in
the new type of pipeline.

Methods
Datasets
The two MS/MS datasets were used in this study, the
MS/MS data for Jurkat cell line and mouse liver tissues
generated by LTQ Orbitrap velos. The raw data were
downloaded from the PeptideAtlas (http://www.pepti-
deatlas.org/) or iProx (http://www.iprox.cn) data reposi-
tory with the identifier PASS00215 or IPX00003601
(ftp://211.102.209.248/IPX00003600/IPX00003601/). The
paired end 200 bp sequencing RNA-Seq data for the
Jurkat cell line generated from Illumina HiSeq 2000 was
downloaded at NCBI’s Gene Expression Omnibus (GEO)
repository with accession number GSM1104129 [16].
The paired-end 90 bp sequencing RNA-Seq data for
mouse liver tissue generated by Wu et al. was down-
loaded from the Short Read Archive under study acces-
sion number SRP033468 [15].

RNA-Seq data processing
The analysis of RNA-Seq data was conducted under the
Trapnell’s protocol [17]. For Jurkat cell line, the se-
quence reads were mapped to the Ensembl human

genome (release GRCh37.75) using Tophat (version
2.0.8). Transcriptome reconstruction and expression
quantification were implemented by Cufflinks (version
2.2.1). For mouse liver, the parameters for Tophat and
Cufflinks were followed by that suggested by Wu et al.
[15]. Fragments Per Kilobase of transcript per Million
mapped reads (FPKM) was used for estimation of the
transcriptional abundance for each transcript [18]. Basic-
ally, the original data gained from pair-end sequencing
was input into Cufflinks, and the transcript abundance
was estimated with the optimized parameters in the pro-
gram (The detailed scripts to generate the FKPM values
were presented in Additional file 1).

The customized protein sequence database
After getting mapping result from Tophat, Custom-
ProDB (version 1.7.0) was used to construct a cus-
tomized protein database. In the customized database,
an identified protein with its corresponding FPKM
less than 0.1 was filtered out. Novel transcripts were
constructed by Cufflinks, and further compared with
reference annotation using Cuffcompare (version
2.2.1), in which transcripts labeled with j stand poten-
tially novel isoforms (fragments), and with u represent
unknown, intergenic transcripts. The translated pep-
tides with the longest frame were added into the cus-
tomized database.

Peptide search upon MS/MS data
The raw MS/MS data were converted into MGF and
mzXML format by using msconvert in ProteoWizard
software package (v. 3.0.5047). Mascot (version
2.3.02) was employed for peptide search upon MS/
MS data against Ensembl human proteome database
(release GRCh37.75) and the customized database,
respectively. Trypsin was specified as the enzyme
with a maximum of two missed cleavages. For the
two datasets, precursor mass tolerance was set at
10 ppm, and fragment ion mass tolerance at 0.05 Da
for Jurkat and at 0.5 Da for mouse liver. Carbamido-
methylation of cysteine was set as a fixed modifica-
tion, and oxidation of methionine was set as a
variable modification. The automatic Mascot decoy
database search was performed. The results of Mascot
were processed by MascotPercolator (v2.07) [8, 19].
The q-value for identification was set to 1% at PSM
or peptide level.

Peptide identification through integrating the abundance
of peptides and transcripts
The abundance for each peptide based on extracted ion
chromatogram (XIC) was estimated by a tool developed
in-house (more details are described in Additional file 2).
The transcript abundance was directly derived from the
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RNA-Seq data analysis. For a transcript that well matched
with protein database, its abundance was directly assigned
a feature in rescoring PSM, for a sequence from decoy
database, a randomly selected transcript abundance was
assigned, and for an un-transcribed sequence, the tran-
script abundance was assigned as zero. The two sets of
quantitative features were taken by Percolator that is an
efficacious semi-supervised learning method for rescoring
of database searching result [19]. To avoid overfitting, Per-
colator randomly splits the PSMs into three subsets and
trains three separate SVM classifiers, each trained on two
of the three subsets and tested on the remaining subset
[20]. In addition, in total there are 47 features derived from
MascotPercolator output were also used for rescoring
PSMs and were shown in (see Additional file 3: Figure S1).
The detailed parameters and command line used for
Percolator are presented in Additional file 1.

Results and Discussion
Construction of the customized database
In a cell, a part of the genome encoding genes is tran-
scriptional. It is reasoned that the transcripts at very low
level could be translated to limited proteins, which are
unlikely to be easily detected. With RNA-Seq technol-
ogy, the transcript abundance in cells and tissues could
be measured more accurately and reproducible, while
FPKM value is assumed as a criterion to evaluate the
unexpressed or lowly expressed genes. The detailed
scripts to generate the FKPM values were presented in
Additional file 1. The total number of reads and align-
ment rate for the datasets used in this study were pre-
sented in (see Additional file 4: Table S1). Firstly, we
constructed the reduced protein sequence databases by

eliminating the proteins whose corresponding transcript
expressions were below the selected threshold. Based on
the RNA-Seq data obtained from Jurkat cell line, 104763
entries in the Ensembl human protein database were
shrunk to 71021 entries using CustomProDB, while
8909 potential polypeptides were found from the poten-
tial novel transcripts. Thus, the customized database for
Jurkat cell line comprised 79930 entries. With the simi-
lar strategy, the customized database for mouse liver
contained 31843 entries including 6099 potential poly-
peptides. As shown in Table 1, before filtering low-RNA-
level protein entries, the identified peptides in peptide
level FDR less than 1% were 71499 and 50083 for Jurkat
cell line and mouse liver, while after the filtering, the
values became 72283 and 50993 with slight increase of
1.10% and 1.82%, respectively. Specifically, 71043 and
49607 peptides were identified by the both methods
in Jurkat cell line and mouse liver datasets, respect-
ively. Impressively, 66 novel peptides were identified
in the customized database in Jurkat cell line with-
out filtering low-RNA-level protein entries, whereas
105 novel peptides were found in the customized
database after the filtering. In the mouse liver, the
similar results were achieved, indicating that 76
novel peptides were identified in the customized
database without filtering the low-RNA-level protein
entries, whereas 116 new peptides were detected in
the reduced database. It was obvious that the re-
duced and customized database through eliminating
the proteins with the corresponding transcript at low
level could slightly improve the identification sensi-
tivity to peptides. In summary, up to 2.11% improve-
ment of peptide identification could be achieved

Table 1 Summary of peptide identification with 1% FDR in peptide level for different methods on two data sets

No. Methods Jurkat cell line Mouse liver

Peptide Improvement Peptide Improvement

1 DBref 71645 - 49937 -

2 DBref + DBnovel 71499 - 50083 -

3 DBref + DBnovel + Rlow 72283 1.10% 50993 1.82%

4 DBref + DBnovel + Rlow + FmRNA 75649 5.80% 52503 4.83%

5 DBref + DBnovel + Rlow + Fpeptide 76259 6.66% 52170 4.17%

6 DBref + DBnovel + Rlow + Fpeptide+mRNA 77682 8.65% 53024 5.87%

Note:
1. DBref : searching MS/MS data against with the reference protein database and then using MascotPercolator to process the identification results
2. DBref + DBnovel : searching MS/MS data against with the reference protein database adding the novel transcript-derived proteins, and then using MascotPercolator to
process the identification results
3. DBref + DBnovel + Rlow : searching MS/MS data against with the customized protein database (reference proteins + novel transcript-derived proteins + removing
low-RNA-level protein entries), and then using MascotPercolator to process the identification results
4. DBref + DBnovel + Rlow + FmRNA : searching MS/MS data against with the customized protein database (reference proteins + novel transcript-derived proteins + removing
low-RNA-level protein entries), and then using MascotPercolator to process the identification results with adding the transcript abundance as a feature (FmRNA)
5. DBref + DBnovel + Rlow + Fpeptide: searching MS/MS data against with the customized protein database (reference proteins + novel transcript-derived proteins + removing
low-RNA-level protein entries), and then using MascotPercolator to process the identification results with adding the peptide abundance (MS1 XIC of peptide) as a
feature (Fpeptide)
6. DBref + DBnovel + Rlow + Fpeptide+mRNA: searching MS/MS data against with the customized protein database (reference proteins + novel transcript-derived
proteins + removing low-RNA-level protein entries), and then using MascotPercolator to process the identification results with adding the two
features (Fpeptide+mRNA = FmRNA + Fpeptide)
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with searching the MS/MS data against the cus-
tomized protein database (Table 1, method: DBref +
DBnovel + Rlow) as compared with the reference pro-
tein database (Table 1, method: DBref ).

Improvement of peptide identification on account of
transcript abundance
It is generally accepted that the transcript abundance is
not well correlated with the protein abundance in cell or
tissue. However, many studies have reported that the
abundance between RNA and protein levels are posi-
tively correlated and it is a reasonable assumption that
proteins corresponding to high-abundance transcripts
are more likely to be found in a sample [21, 22]. The
abundance correlations of mRNA and protein in
Jurkat cell line and mouse liver are basically positive
with correlation efficiencies at 0.6318 and 0.4987
(Fig. 1a and b), respectively. In this study, we postu-
lated transcript abundance as a feature to impact the
peptide or protein identification. Hence, transcript
abundance was taken as a feature in Percolator pro-
cessing. For a protein, its corresponding transcript
abundance was obtained from the RNA-Seq data. If
a transcript was undetectable, then the feature value
was assigned zero, while if a PSM was matched to
more than one protein, the largest transcript abun-
dance was taken as the feature value. As regards the
two RNA-Seq data sets described above, Jurkat cell
line and mouse liver, the features for transcript
abundance (FPKM) and peptide abundance (MS1
XIC) for target PSMs and decoy PSMs were shown
in Fig. 2, indicating that the feature for either tran-
script or peptide in target PSMs was distinct from
that in decoy PSMs, however, the feature values
appeared a large diversity. With inputting the tran-
script abundance into Percolator processing, the
peptide identified were 75649 for Jurkat cell line and

52503 for mouse liver, respectively. As compared
with the identification results in Fig. 3, the total
peptides identified was increased approximately 5%,
in which the overlap rates were about 95% for Jurkat
cell line and 96% for mouse liver. Of the mis-
overlapped peptides, 3783 peptides for Jurkat cell
line and 2214 for mouse liver were only identified
through the treatment of transcript abundance,
whereas 417 peptides for Jurkat cell line and 704 for
mouse liver were merely detected without such treat-
ment. The comparison for the identified peptides
strongly suggested that transcript abundance was a
useful feature to benefit peptide identification.

Improvement peptides identification on account of MS1 XIC
MS1 XIC areas for peptide MS1 spectra corresponding
to peptide identification events were generally extracted
from corresponding RAW data files, and were treated as
an indicator for peptide abundance. We considered MS1
XIC as a feature to enhance the peptide identification
rate, and took it into Percolator processing. By process-
ing the same datasets with MS1 XIC as a feature, the
peptides identified were 76259 for Jurkat cell line and
52170 for mouse liver, respectively. Compared the data
without MS1 XIC treatment, the identification rate was
improved to about 6.7% for Jurkat cell line and 4.2% for
mouse live due to introducing the new feature. In the
identified peptides through with/without MS1 XIC treat-
ment, approximately 94% of them for Jurkat cell line and
97% for mouse liver were overlapped. As for the mis-
overlapped peptides, 4318 for Jurkat cell line and 1698
for mouse liver were specifically identified after input-
ting MS1 XIC, while 342 and 521 for the two species
were uniquely perceived under without MSI XIC treat-
ment. These results hence endorsed our postulation that
the MS1 XIC feature can benefit peptide identification
in Percolator processing.

Fig. 1 The correlation of transcript and protein abundances. (a) Jurkat cell line dataset and (b) mouse liver dataset. The Pearson correlation coefficients
were 0.6318 and 0.4987 for Jurkat cell line and mouse liver datasets, respectively. Intensity based absolute quantification (iBAQ) was utilized to
represent the protein abundance
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Further improvement of peptide identification with the
combined features
As adding each feature, FPKM or MS1 XIC, into Perco-
lator did improve peptide identification rate, a proposal
was naturally raised if the combination of the two fea-
tures could further enhance the rate. We integrated both
FPKM and MS1 XIC features into Percolator as the
protocol illustrated in Fig. 4, and re-searched the MS/
MS data upon the same two datasets described above.
Total identified peptides by the treatment were 77682
for Jurkat cell line and 53024 for mouse liver, with 8.7%
and 5.9% increase compared without addition of the
features, which almost completely covered the peptides
identified without the treatment (Fig. 3). Moreover, the
specifically identified peptides after the treatment were
5628 for Jurkat cell line and 2758 for mouse liver, which
the corresponding peptides derived from the un-
treatment were only 229 and 727, respectively. Further-
more, we investigated the quality of uniquely identified
402 peptides by the method with adding MS1 XIC
eature but not for the method with adding both FPKM
and MS1 XIC features, and a comparison of Mascot
scores for peptide identification towards all the peptides

Fig. 2 The distribution of two features (XIC and FPKM) in target and
decoy PSMs. The value of the two features are log transformed

Fig. 3 Peptide identification versus different q-values and Venn plot for peptide identification. (a) and (b) Graphs display the estimated
number of correct peptides for the Jurkat cell line and mouse liver data sets. (c) and (d) Unique peptide Venn plots for four methods.
“MP” stands for processing by MascotPercolator, FPKM stands for processing by MascotPercolator adding FPKM as feature, XIC stands for
processing by MascotPercolator adding XIC as feature, XIC + FPKM and FX stand for processing by MascotPercolator adding both FPKM
and XIC as features
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identified in the dataset was presented in (Additional
file 5: Figure S2). The results demonstrated large portion
of the 402 peptides with very low scores, indicating their
unsatisfied quality of identification. According to the
above results, we concluded that the number of iden-
tified peptides can be significantly improved with
simultaneously using FPKM and MS1 XIC as the fea-
tures for post-processing by Percolator. In addition,
the 183 novel peptides for Jurkat cell line and 154 for
mouse liver came from the RNA-Seq derived database
with filtering proteins at low transcript abundance. In
previous study, Shanmugam et al. found that the sen-
sitivity of protein identification could improved by
using RNA-Seq and GPMDB protein observation fre-
quency. In their study, the probability adjustment of
identification was limited at protein level but not for
peptide, and the potential novel sequences from
RNA-Seq data was not fully utilized. Besides, they
combined the two features for probability adjustment,
RNA-Seq and GPMDB protein observation frequency,
and observed no remarkable improvement after the
treatment. In addition, we compared the results of
our approach with that of the method (building cus-
tomized database from RNA-Seq data) similar with
previous study [13]. The details of building the cus-
tomized database were described above. Our ap-
proach identified 7.47% more peptides and 2.54%
more proteins (77682 peptides, 6415 proteins) than
the previous method (72283 peptides, 6256 proteins)
on Jurkat cell line dataset. And our approach identi-
fied 3.98% more peptides and 0.46% more proteins

(53024 peptides, 5010 proteins) than the previous
method (50993 peptides, 4987 proteins) on mouse
liver dataset. The results in PSM level were similar with
that in peptide level as shown in (Additional file 6: Table
S2). We also systematically evaluated these features im-
portance based on the weighting scores generated from
Percolator. The evaluation results have been presented in
(see Additional file 3: Figure S1). The results strongly indi-
cated that the two features offered higher weight than
most of other features used in Percolator processing. Our
data as shown above demonstrated the identification rates
were indeed improved in either individual feature or com-
bined features, suggesting that the two features, FPKM
and MS1 XIC, were properly selected for improvement of
peptide identification, especially in Percolator.
As for building customized database (step 1) and

adding the two features into Percolator processing
(step 2), in order to further explorer which step is
more important, when only performed the step 1, as
shown in Table 1 (Method: DBref + DBnovel + Rlow),
72283 peptides were identified and this is 0.89% more
peptide identification than the standard approach
(taken reference protein as the database) (71645 pep-
tides) on Jurkat cell line dataset. There were 50993
peptides identified and this is 2.11% more peptide
identification than the standard approach (taken
reference protein as the database) (49937 peptides) on
mouse liver dataset. When performed the step 1 and
2 (Table 1, method: DBref + DBnovel + Rlow + Fpeptide+mRNA),
77682 peptides were identified and this is 8.43% more
peptide identification than the standard approach (71645
peptides) and 7.47% more peptide identification than step
1 on Jurkat cell line dataset. There were 53024 peptides
identified and this is 6.18% more peptide identification
than the standard approach (49937 peptides) and 3.98%
more peptide identification than step 1 on mouse liver
dataset. The results indicated that step 2 is more import-
ant than step 1.

Permutation test for the features taken for improvement
of peptide identification
In order to ensure the authenticity for the expanded
identifications due to addition of the features, we
conducted a permutation test (100 times) by shuffling
FPKM and XIC assignment for peptide identification
in Percolator processing. In this permutation test, the
p-value was calculated as “(the number of peptide
identification greater than that from the non-shuffling
features processing)/(the times for permutation)”. The
test results shown in Fig. 5 revealed that the p-values
for addition of FPKM, XIC, or both features were all
less than 0.05, indicating the enhancement of peptide
identification was truly dependent upon the specific
feature but not the order of adding feature.
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Conclusions
Using RNA-Seq data including its qualitative and quanti-
tative information is reasoned a promising strategy to
improve the sensitivity of peptide identifications and
identify novel peptides in proteomic analysis on the basis
of MS/MS data. In this study, we described an approach
how to integrate the post-processing algorithm with
the RNA-Seq information for improving the sensitivity
and accuracy of peptide identification. With incorpor-
ating of the transcript and peptide abundance as the
feature to rescore PSMs during peptide searching, we
demonstrated that this approach could significantly
improve the sensitivity in peptide identification and
novel peptide detection.
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