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Abstract

Background: The regulation of all gene expression steps (e.g., Transcription, RNA processing, Translation, and mRNA
Degradation) is known to be primarily encoded in different parts of genes and in genomic regions in proximity to
genes (e.g, promoters, untranslated regions, coding regions, introns, etc). However, the entire gene expression codes
and the genomic regions where they are encoded are still unknown.

Results: Here, we employ an unsupervised approach to estimate the concentration of gene expression codes in
different non-coding parts of genes and transcripts, such as introns and untranslated regions, focusing on three model
organisms (Escherichia coli, Saccharomyces cerevisiae, and Schizosaccharomyces pombe). Our analyses support the
conjecture that regions adjacent to the beginning and end of ORFs and the beginning and end of introns tend to
include higher concentration of gene expression information relatively to regions further away. In addition, we report the
exact regions with elevated concentration of gene expression codes. Furthermore, we demonstrate that the
concentration of these codes in different genetic regions is correlated with the expression levels of the corresponding
genes, and with splicing efficiency measurements and meiotic stage gene expression measurements in S. cerevisiae.

Conclusion: We suggest that these discoveries improve our understanding of gene expression regulation and evolution;
they can also be used for developing improved models of genome/gene evolution and for engineering gene expression
in various biotechnological and synthetic biology applications.
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Background

Gene expression codes are known to be partially
encoded in various genomic regions [1-6] and are re-
lated to all gene expression steps (e.g., Transcription,
RNA processing, Translation, Post-translation modifica-
tions, and Degradation). These codes are encoded in
different parts of the genome such as promoters, un-
translated regions (UTRs), coding sequence (CDS) re-
gions, introns, etc. However, the relevant codes and
exact genomic regions where gene expression is encoded
are still partially unknown, specifically in organisms that
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are not widely studied. For instance: the methanogenic
archaeon Methanopyrus kandleri which is living in ex-
treme heat and pressure conditions [7, 8], Ciona intesti-
nalis - a sea squirt living in shallow ocean water [9, 10],
Mpycoplasma penetrans - a species of Mycoplasmataceae
that infects humans in the urogenital and respiratory
tracts [11, 12], the human fungal pathogen Cryptococcus
neoformans [13, 14], and Rhodotorula sp. JGlb — a eur-
ypsychrophilic yeast that was recently sequenced in
Antarctica [15]).

The conventional approaches for deciphering and un-
derstanding gene expression codes and ranking genetic
elements (such as promoters, introns, etc.) are based on
evaluating their effect via various types of large scale
measurements: mRNA levels [16—18], protein abundance
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(PA) [19], ribosome densities (RDs) [20], transcription fac-
tors (TFs) binding sites [21], methylation levels [22], three
dimensional genomic conformation [23, 24], and more.
These approaches have proven to be useful in many con-
texts. However, their major limitation is the fact that they
are all based on comprehensive large scale gene expres-
sion measurements; such high quality data exist in present
for only a few dozen organisms, while today there are
thousands of organisms with sequenced genomes.

A possible solution to these limitations was recently
presented by [25] for studying and engineering coding
regions (i.e. open reading frames; ORFs). The Average
Repetitive Substring Index, or ARSI, is an unsupervised
approach for exploiting unexplored high dimensional in-
formation and codes related to the way gene expression
is encoded in the ORF. This method, based solely on the
genomic sequence of the analyzed organism, computes
the tendency of each coding region (or any other genetic
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element for that matter) to include long substrings that
appear in other CDSs of the organism [25]. It is based
on the assumption that evolution shapes CDSs such that
they include various motifs (up to few dozen nucleotides
in length), which are related to various gene expression
regulatory steps. Since highly expressed genes undergo
evolution to include optimal versions of these motifs
they are expected to share sub-sequences/motifs with
other genes (e.g., other highly expressed genes), resulting
with higher ARSI score. On the other hand, lowly
expressed genes are expected to have less optimized mo-
tifs, i.e. versions of the optimal motifs with various ran-
dom ‘mutations’; these mutations ‘break’ these sequence
motifs and result in lower ARSI score; see Fig. la. The
ARSI score for a given sequence is determined by finding
for each nucleotide position in that sequence the longest
substring that also appears in (at least) one genetic elem-
ent sequence of a reference set of sequences. For
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Fig. 1 lllustration of the various genomic regions containing interleaved regulatory motif sequences and an illustration of the Average Repetitive
Substring Index (ARS)) measure. a The pre-mRNA transcript contains different sections comprising of interleaved regulatory sequence motifs, which affect
gene expression; these regions include exons, introns, and untranslated regions (UTRs). Transcripts of highly expressed genes tend to contain motifs with
the precise sequences. However, in transcripts originating from lowly expressed genes these motifs are more likely to acquire mutations, affecting their
gene expression; this leads to a lower ARSI score for these genes. b In order to compute the ARS/ measure for a certain sequence we find for each
nucleotide position in the sequence the longest substring that starts in this position and appears in one of the reference set of genetic sequence elements.
The score is based on the average over the lengths of all these substrings; see more details in the Methods section and in [25]
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example, the reference set can include (or be related to)
the highly expressed genes or all the genes in a given or-
ganism; see Methods and Fig. 1b.

In this study we expand our scope and generalized it
to study the suspected regulatory information found in
various regions of the DNA and pre-mRNA transcripts,
in a single nucleotide resolution; this includes non-
coding regions both in eukaryotes and prokaryotes.
Specifically, we focused on introns, exons, UTRs, and on
the boundary regions between them, i.e. the exon-intron,
the 5’UTR-ORE, and the ORF-3'UTR junctions. Among
others, we demonstrate how this universal approach can
be used for (1) ranking genomic elements according to
their optimality in terms of gene expression regulation
and (2) detecting regions that are relatively highly popu-
lated with many gene expression codes; our analysis per-
formed comparisons to randomized (Null) models that
preserve basic properties of the original sequence.

Methods

The analyzed organisms

The bacteria E. coli is one of the most well studied
model organism and was chosen as a representative of
prokaryotes [26]. The two fungi analyzed here (S. cerevi-
siae and S. pombe) were chosen since they are well-
studied organisms, which have diverged more than 400
million years ago [27]. These organisms have fully
sequenced genomes, and their exons and introns are
very well annotated.

Sequence and gene expression information

The ORFs and intron-containing genes sequence infor-
mation for S. cerevisiae (strain 288C) was taken from
SGD [28] and the Ares lab database [29]. S. pombe gen-
ome information was taken from the PomBase database
(Assembly 16) [30] and the original full genome sequen-
cing obtained by [31]. The genome of E. coli (K-12,
MG1655) was downloaded from the NCBI website
(https://www.ncbi.nlm.nih.gov/). The protein abundance
(PA) information for all organisms was taken from
PaxDb [19]. The mRNA levels for S. cerevisiae were ob-
tained by integration of the following data sets: [20, 32,
33]. Levels of mRNA for E. coli were taken from [34].
The mRNA levels for S. pombe are based on [35]. See
full details in [36].

Computing the ARSI score

The ARSI score was determined based to the following
scheme: A given gene, transcript, or genetic region
(UTR, intron, CDS, etc.) P, can be described as a se-
quence of nucleotides S; thus, the measure is based on
the tendency of substrings in S to appear in other gen-
etic elements, i.e. in a reference set G. Hence, computing
the ARSI (G,S) score of a specified sequence (S) given a
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reference set of genomic elements (G) is done in two
steps (see Fig. 1b): 1) For each position i in the sequence
S find the longest substring S, that starts in that position
and appears in at least one of the sequences of the refer-
ence set G. 2) Let |S| denote the length of a sequence S;
the ARSI of S is the mean length of all the substrings
S, i.e. ARSI= Y|s}|/|S|.

Please note that the ARSI measure is based on a ref-
erence genome of a given organism, and therefore is
not expected to be affected by various sequencing er-
rors/biases that appear in Next Generation Sequencing
(NGS) experiments. Specifically, in this study the error
rate is very low for the analyzed organisms (less than 1
to 1000). As these errors distribute relatively uniformly,
their effect the ARSI score is negligible: for example in E.
coli the Spearman correlation between the ARSI scores
and the one obtains for a simulation with uniform error
rate of 1:1000 is higher than 0.99 (p < 5-107?) for all 100
such randomization that were performed.

Computing the ARSI profiles

The ARSI profiles were computed as follows: we used
various sliding window sizes (WL equals to 31, 41, 51,
and 71 nucleotides) focusing on the region of interest
(5'UTR/ORF/Intron/3’UTR) and its flanking sequences;
for every region we computed the ARSI score for all
sliding windows, with a single nucleotide shift. Let
ARSI _WL(i) denote the score of a window size of WL
nucleotides, centered on the i, nucleotide of the
gene’s pre-mRNA transcript. The profile of gene j
was defined as the vector of the ARSI values assigned
to n sliding windows of size WL, ie. ARSI.WLgep,
= (ARSI.WIL/(1),ARSIWL/(2),..., ARSLWL/(n)) . All
genes were aligned according to their relevant loca-
tion (ORF start, 5SS, 3’SS, and ORF end). Let ij,. de-
note the positions of the region of interest. The
profiles of mean ARSI were calculated as:

ARSTwiie = (ARSI(iI(,L—(n— 1) WL+1),...,ARSI i), ..., ARSI (itoc + (n-1)- WL)) ,

where ARSIwL(i) is the average ARSI in position i when
considering all genes long enough to have a value in this
position, and (1 - 1/2) - WL is the number of nucleotides
in the complete analyzed exonic and intronic regions
(we used n = 4); see illustrated in Additional file 1: Figure
S3. For calculation simplicity, genes containing 7> 1 in-
trons were duplicated m times. Thus, for each duplicate,
a different intron was retained while the other introns
were extracted.

Generating the null models

The randomized models were designed to conserve the
encoded protein information and intronic and UTR
properties, by maintaining codon-usage bias (CUB),
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canonical splicing signals, and GC content. Introns
nucleotides were uniformly permutated, per gene,
maintaining intronic consensus sequences (5SS, BS,
and 3’SS) and GC content. Untranslated regions such
as 5’'UTR and 3'UTR were also randomized, using a
cyclic shift of the nucleotides that maintained their
GC content properties; 5UTR ATG context was also
maintained. We used three basic randomization schemes
to generate the random sets: (@) Codons only, (b) Introns
only, and (c) UTRs only. A combination of these schemes
was later applied, i.e. (@) + (b) + (), and is used throughout
the study. See full details in [37]. An illustrated of the
randomization models can be seen in Additional file 1:
Figure S4.

Computing Z-scores based on the null models

Z-score (or standard normal distribution scoring) is a
statistical measure, which can be used for quantitative
selection level evaluation; this is done by a comparison
of the real signal to a randomized one. Hence, higher
Z-score value is related to higher p-value, corresponding
to the rejection of our null model (which is described in
the previous sub-section; see also [37]).

Partial correlation analysis

Partial correlation analysis is aimed at finding the correl-
ation between two variables after removing the effects of
other variables; the partial correlation coefficient p,,, ..
between X and Y given a set of n controlling variables
Z={Z1,7Z2 ...,Zn} is the correlation between the re-
siduals Ry and Ry resulting from the linear regression
of X with Z and of Y with Z, respectively; the ap-
proach can be generalized to deal with Spearman cor-
relation [38].

Synthetic YiFP reporter library building and analysis

The building of the synthetic reporter library facilitating
the assessment of native budding yeast introns embed-
ded in a Yellow Fluorescent Protein (YFP), was previ-
ously reported [39-41]. The system contains 240 strains
(termed YiFP) and allows dynamic measurements of
their relative YFP expression levels, which is related
to intronic splicing efficiency in S. cerevisiae; see full
details in [41].

Analysis of mRNA-seq and Ribo-seq measurements

The ribosomal profiling (or Ribo-seq) is a method that
gives quantitative information of ribosome footprints in
a single nucleotide resolution [20]. Ribo-seq/mRNA-seq
raw data was obtained the from the NCBI GEO database
[16] (accession GSE34082). Transcript sequences were
obtained from EnsEMBL for S. cerevisiae (R64-1-1,
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Ensembl release 78). We trimmed 3’poly-A adaptors from
the reads using Cutadapt, version 1.8.3 [42]. Following, we
utilized Bowtie [43] to map them to the S. cerevisiae tran-
scriptome (version 1.1.1). In the first phase (for Ribo-seq
reads only), we discarded reads that mapped to rRNA and
tRNA sequences (Bowtie parameters ‘—n 2 —seedlen 23 —k
1 —norc’). In the second phase (for both Ribo-seq and
mRNA-seq reads), we mapped the remaining reads to the
transcriptome (Bowtie parameters ‘—v 2 —a —strata —best
—norc —m 200’). We tried to extend alignments to their
maximal length by comparing the poly-A adaptor with the
aligned transcript until reaching the maximal allowed
error (i.e. two mismatches across the read, with 3'end mis-
matches avoided). We filtered out reads longer than 32 nt
or shorter than 23 nt for Ribo-seq reads, and filtered out
reads longer than 40 nt or shorter than 25 nt for mRNA-
seq reads. Unique alignments were first assigned to the
RNA/ribosome occupancy profiles. For multiple align-
ments, the best alignments in terms of number of mis-
matches were kept. Then, multiple aligned reads were
distributed between locations according to the distribution
of unique ribosomal/RNA reads in the respective sur-
rounding regions. To this end, a 100 nt window was used
to compute the read count density RCD; (total read counts
in the window divided by length, based on unique reads)
in vicinity of the M multiple aligned positions in the
transcriptome, and the fraction of a read assigned to

each position was determined as: RCDi/ZMIRCD,».
]:

For ribosome footprints, the location of the A-site was
set 15 nt downstream of the 5' of the read.

Results

During gene expression steps the genetic material (DNA,
pre-mRNA, and mature mRNA) interacts with many intra-
cellular molecules and complexes such as the polymerase
[1], the spliceosome [36, 44, 45], pre-initiation complexes
[46, 47], ribosomes [48], tRNAs, miRNAs, and various pro-
teins and factors [5, 49, 50]; see illustration in Additional
file 1: Figure S1. The affinity of these interactions is affected
by the nucleotide composition in various parts of the gene,
transcript, and in proximity to genes [1-5, 21, 46, 49, 51—
56]. Hence, we aimed at estimating the concentration of
gene expression codes in different coding and non-coding
parts of genes and transcripts such as exons, introns, and
UTRs using the ARSI measure. In addition, we aimed
at quantifying the relation between the estimation of
these code concentration and gene expression; see Methods
and Fig. 1. To this end we analyzed the genome of one
prokaryote (Escherichia. coli) and two eukaryotes (the fungi
Saccharomyces. cerevisiae and Schizosaccharomyces. pombe;
for further details regarding these organisms see the
Methods section).
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Evidence that high dimensional gene expression codes
appear in various transcript regions

First, we analyzed the pre-mRNA transcript, dividing it
into separate regions: 5"UTRs, ORFs, introns, 3'UTRs,
and the 250 nt flaking upstream and downstream
sequences from the 5’UTR start and the 3'UTR end, re-
spectively. Specifically, we considered all the genetic ele-
ments in the organismal genome related to each region
as the reference genome, excluding the current one.
First, we computed the ARSI measure for the real and
randomized models; the randomized versions preserve
some of the original sequence properties (e.g., GC con-
tent in non-coding regions and codon distribution and
the encoded proteins related to coding regions); how-
ever, they do not include the same higher dimensional
distributions (see details in Methods). For each genetic
region, we calculated its ARSI score, which is the mean
over the maximum substring length of each of its
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nucleotide positions that can be found in all the other
genetic regions. For E. coli this was done using 4136
genes with measured protein levels [19]. For S. cerevisiae
we used 3,804 genes that have observed protein levels
[57] and 279 intron-containing genes [28, 58]. For S.
pombe we used 5012 genes with measured protein levels
[19] and 2337 intron-containing genes with a total of
4747 introns [30, 31].

The summary of the ARSI scores distribution in the
real vs. the randomized genome appears in Fig. 2. As
can be seen, the real sequence elements in E. coli con-
tain significantly more encoded information than the
randomized ones (e.g., median score of 8.4 vs. 8.23 in
the 5'UTR sequences, respectively; p = 2 - 10", Wilcoxon
signed-rank test that is a paired test). Similar results were
observed in S. cerevisiae (e.g., median score of 8.33 vs. 8.2
in the intron sequences, respectively; p < 4.4-107"°) and S.
pombe (see Additional file 1: Figure S2a). It is important to
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emphasize that a small change in the ARSI score may be
very significant in its effect on the expression levels and
ranking of genes, since regulatory high dimensional motifs
are expected to appear in relatively small fraction of the
genetic material; see Additional file 1: Figure S1.

Detection of the regions in the DNA with high concentration
of gene expression regulatory information

Following, we focused on the coding sequence and
exon-intron boundaries, (i.e. the regions surrounding the
start codon, the stop codon, and the donor and acceptor
splice sites), aimed to systematically infer regions that
are in preference for higher concentration of regulatory
information, at a single nucleotide resolution. To this
end, we used a sliding window scheme with varying win-
dow sizes of 31-71 nt. For each window, we computed
the local ARSI score for all genomic elements, to build an
averaged profile; see Methods and Additional file 1:
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Figure S3. Next, and in order to provide evidence of
selection and estimate the level of condition-specific
expression, we used local Z-score profiles: these pro-
files include deviation of the actual ARSI score from
what is expected by the randomized/Null models in
standard-deviation units (see Fig. 3a, Additional file 1:
Figure S4, and Methods); thus, higher Z-score is re-
lated to higher p-value, corresponding to the rejection
of our null model.

Figure 3b—d shows the mean assembled profiles over
the analyzed genomic regions, aligned to the ORF’s start
and end (b, ¢, left and right, respectively), 5'SS (d, left),
and 3’SS (d, right), and using a sliding window size of
41 nt. As can be seen, for the analyzed organisms, there
is a clear ascent in the ARSI score near the regional
boundaries. In E. coli there is a noticeable peak sur-
rounding the start codon (nucleotides -52 to 26, relative
to the ORF’s start) with a corresponding Z-score of up

Fig. 3 Information concentration (mean ARS/; top) and selection (Z-score; bottom) profiles in various transcript regions for E. coli and S. cerevisiae.
The sequences are aligned to the ORF'S start, 5'SS, 3'SS, and ORF end; in E. coli, which is prokaryote, only the ORF alignments were generated.
a The profiles correspond to the ARS/ score of the actual genomic regions in comparison to the randomized ones, using several sequence
randomization models of the actual transcriptome that maintain consensus sequences and control for codon-usage bias (CUB) and GC content in
various regions (including coding region, intron, and UTR randomizations; see also details in Methods and Additional file 1: Figures S3, S4): the
randomized codon model includes scrambled exonic sequences; the randomized intron model includes scrambled intronic sequences; the
randomized UTR models include scrambled untranslated sequences. b E. coli profiles for the mature mRNA. ¢ S. cerevisiae profiles for the mature
mRNA. d S. cerevisiae profiles for the pre-mRNA. The profiles show that more information is found in the ORF start, rather than downstream in the
ORF; around the intronic splice sites the signal is stronger, as well as downstream from the ORF’s end. In addition, the selective pressure on the
transcript sequence is stronger in these locations. This suggests the possible enrichment of regulatory sequence motifs in these regions; the
distance from the ORF/5'SS/3'SS is relative to the center of the sliding window; sliding window size is 41 nt; other window sizes showed
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to 54.5. Similarly, in S. cerevisiae there is a noticeable
peak following the annotated stop codon (nucleotides
-22 to 165, relative to the ORF’s end). When looking on
S. cerevisiae pre-mRNA of intron-containing genes
aligned to the 3'SS, we can see a region with increased
gene expression code concentration extending from
97 nt upstream from the acceptor site to 256 nt inside
the downstream exons. Results for S. pombe can be seen
in Additional file 1: Figure S2b, c. It is known that the
splice sites and ORF end are populated with many regu-
latory signals [1, 3, 5, 6, 36, 37, 56]; Thus, these finding
demonstrate how the ARSI can be used for detecting
region with regulatory information.

High correlation between the ARSI score of various genetic
elements and the expression levels of the corresponding
genes
Next, we aimed at checking the relation between the
ARSI scores in the aforementioned regions and expres-
sion levels, aiming to show that the ARSI score tends to
be higher for highly expressed genes. We indeed found
significant correlation with all E. coli and in S. cerevisiae
genes, respectively. In addition, the correlation was very
high for intron-containing genes in S. cerevisiae (r=
0.55, p=7.3-107%% Spearman correlation of the ORF
sequences with mRNA levels), which are known to be
very highly expressed. Interestingly, this is was also true
when considering 240 synthetic YiFP library genes in S.
cerevisiae (r=0.27, p=7.2-107") taken from [41]. Cor-
relation remains significant even while controlling for
the sequence length (using partial correlation; see
Methods). See full details in Additional file 2: Table S1.
Following, and in on order to understand if the
ARSI can rank genes based on inspecting their
condition-specific gene expression, we analyzed
mRNA-seq and ribosomal profiling (or Ribo-seq; see
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[20]) measurements of meiotic cell cycle stages in S.
cerevisiae taken from [59]. Specifically, we ranked the
genes based on their RD and mRNA levels for vari-
ous genomic regions (i.e. 5UTR, ORF, and 3'UTR). We
than analyzed the association of ARSI scores with these
measurements, per stage (see details in the Methods). We
found that the correlation between the ARSI score and the
mRNA-seq/Ribo-seq data varies along the cell cycle with a
correlation of up to 0.31/0.35 (see Additional file 1: Fig-
ure S5 p<1.6-10° and p<3-107% respectively).
While the significant time point with the highest RNA-
seq correlation is related to the spores ‘stage, the cor-
relation usually seems relatively similar across the dif-
ferent conditions. This may suggests that, at least in
this example, the gene expression information detected
by the ARSI corresponds in a relatively uniform manner
(in terms of the expression levels of genes and positions
within genes) to different meiotic cell cycle stages. This
makes sense since we expect all cellular conditions
(e.g., cell cycle stages) to constraint the evolution of
transcripts and that the ARSI measure is aimed to cap-
ture all relevant gene expression signals. Detailed cor-
relation information can be found in Additional file 2:
Table S2.

Finally, we found that in both E. coli and S. cerevi-
siae, highly express genes tend to have higher ARSI
scores in most of their genetic regions (Fig. 4; p<
0.05, Wilcoxon rank-sum test) including OREFs, in-
trons, and 3’'UTRs; see full details in Additional file 2:
Table S3. Interestingly, this is also true when consid-
ering YiFP synthetic libraries (p=5.17-10"°). This
suggests that the ARSI score can be used for ranking
genetic regions according to the expression levels of
the genes they are encoded and/or their effect on ex-
pression levels based only on the genome in an un-
supervised manner.

-
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*kk ok S. cerevisiae, 214 Introns * p<0.05
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Fig. 4 Analysis of the average ARSI measure for S. cerevisiae, while using various subgroups and for transcript regions. Highly expressed vs. lowly
expressed genes, based on PA and mRNA levels (a; top and bottom, respectively); introns in highly expressed vs. lowly expressed genes, based
on PA and mRNA levels (b; top and bottom, respectively), and YiFP measurement in the synthetic library (c; see Methods and [41]). Significant
locations are presented in asterisks; see full details in Additional file 2: Table S3




Zafrir and Tuller BMC Bioinformatics (2017) 18:77

Discussion

In this study we examine for the first time various
regions in the gene that contain hidden information re-
lated to gene expression regulation, and especially to the
transcription, splicing, and translation steps. Specifically,
we report for the first time regions in the genome with
elevated gene expression code concentration; these re-
gions are expected to have significant regulatory effect
on gene expression. Our analysis supports the conjecture
that we are able to rank genetic elements according to
their gene expression levels based on the ARSI score.
This ranking is exclusively based on their sequence com-
position without any additional information, probably
captures their ‘optimality’ in terms of fitting to the gene
expression machinery, and can be implemented to better
understand un-studied genomes.

Our analyses suggest that the ARSI (or an improved
version of the ARSI approach) reported here can be used
in genomic studies for various objectives. For example, it
can be used for ranking genes, promoters, UTRs, and in-
trons in organisms (including viruses and metagenomics
data) with no gene expression measurements according
to their potential expression levels, or ‘optimality, based
on the ARSI measure. This can promote inferring the
function of the genes and encourage developing various
systems biology models; in addition, it can be used for
developing and engineering synthetic systems with im-
proved gene expression levels. The ARSI may also be im-
proved, e.g., via optimizing the weighting of different
repetitive length and the number of times they appear in
the genome.

It is important to emphasize that the reported ARSI/
measure correlation is only a first step towards further
studying of the relation between ARSI (and more
generally transcript nucleotide composition) and gene
expression. This notion and other analyses done in this
study (such as the analysis of ARSI for highly expressed
vs. lowly expressed genes, comparison to randomized
genome models, and Z-scoring), support our hypothesis
that some of the examined regions include higher con-
centration of gene expression regulatory information;
consequently, we were able to significantly rank genetic
elements according to their ‘optimality’ based on the
ARSI measure.

One way to better understand the strength/causality/
directionality of the reported relations is via additional
experimental analysis where regions with high ARSI
levels are modified (e.g., using the emerging CRISPR/
Cas9 technology) and the effect on gene expression is
measured. Specifically, it will be interesting to under-
stand the position-specific effect of some of the ARSI
motifs on gene expression via the mentioned experi-
ments. For example, it is possible that some splicing mo-
tifs could activate splicing when located downstream an
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exon, but repress splicing when located upstream of it.
Our approach should be able to recognize these motifs
if their sequence can be found in more than a single lo-
cation in the reference genome, but would not indicate
for any specific function, e.g. whether it is an enhancer
or a repressor motif.

The ARSI approach can also be compared to regula-
tory motifs, identified via different experimental ap-
proaches; for example, it is expected to detect the most
abundance motifs that are related to canonical expres-
sion regulation. On the other hand, it is possible that
some known condition-specific motifs and splicing regu-
latory elements (SREs) would not be recovered in the
ARSI screen; for example, motifs whose cognate factors
are expressed at low levels in the cell may also be missed
due to the focus on highly expressed or many genomic
regions.

Finally, the results reported here suggest that various
regions in the transcripts (including coding regions,
UTRs, and introns) tend to include various gene expres-
sion codes. Thus, a related challenging topic for future
research is the developing of molecular evolution models
that incorporate those types of evolutionary constraints.

Conclusions

Our analysis demonstrates that the ARSI unsupervised
approach can be used for detecting and understanding
gene expression codes in different parts of the genome/
genes in previously un-studied organisms. These codes
should be considered when developing novel models for
genome and transcript evolution; they can be used for
developing novel gene expression models and for gene
expression engineering and synthetic biology systems.
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