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Abstract

Background: Next generation sequencing provides a count of RNA molecules in the form of short reads, yielding
discrete, often highly non-normally distributed gene expression measurements. Although Negative Binomial (NB)
regression has been generally accepted in the analysis of RNA sequencing (RNA-Seq) data, its appropriateness
has not been exhaustively evaluated. We explore logistic regression as an alternative method for RNA-Seq studies
designed to compare cases and controls, where disease status is modeled as a function of RNA-Seq reads using
simulated and Huntington disease data. We evaluate the effect of adjusting for covariates that have an unknown
relationship with gene expression. Finally, we incorporate the data adaptive method in order to compare
false positive rates.

Results: When the sample size is small or the expression levels of a gene are highly dispersed, the NB regression
shows inflated Type-I error rates but the Classical logistic and Bayes logistic (BL) regressions are conservative. Firth’s
logistic (FL) regression performs well or is slightly conservative. Large sample size and low dispersion generally make
Type-I error rates of all methods close to nominal alpha levels of 0.05 and 0.01. However, Type-I error rates are
controlled after applying the data adaptive method. The NB, BL, and FL regressions gain increased power with large
sample size, large log2 fold-change, and low dispersion. The FL regression has comparable power to NB regression.

Conclusions: We conclude that implementing the data adaptive method appropriately controls Type-I error rates in
RNA-Seq analysis. Firth’s logistic regression provides a concise statistical inference process and reduces spurious
associations from inaccurately estimated dispersion parameters in the negative binomial framework.
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Background
Next generation sequencing (NGS) gene expression
measurement methods simultaneously quantify tens of
thousands of unique Ribonucleic Acid (RNA) molecules
extracted from biological samples. These RNA sequen-
cing (RNA-Seq) methods produce data that can be
transformed into numerical values that are proportional
to the abundance of RNA molecules and reflect the
expression and turnover of those molecules. Identifying
differentially expressed (DE) genes is an important step

to understanding the molecular mechanism of disease.
As with any statistical analysis, the underlying structure
of the data dictates appropriate methodology. The NGS
methods provide a count of RNA molecules that do not
follow a normal distribution. The Negative Binomial
(NB) distribution appropriately models the biological
dispersion of a gene, and NB regression has been used
to analyze RNA-Seq data. When Y, a random variable,
follows a NB distribution with mean (μ) and dispersion
(ϕ), the parameterization of the probability mass
function, expected value, and variance of Y are
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Y∼NBðμ;ϕÞ;where μ ≥ 0 and ϕ ≥ 0 such that
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E½Y � ¼ μ; and var ½y� ¼ μþ μϕ2:

Because the total number of reads of each sample will
likely be different, a normalization step is required prior to
performing differential expression inferences between two
conditions. Normalization approaches have been evaluated
elsewhere [1]. Based on these evaluations, we implemented
the DESeq normalization approach in this study [2].
Estimation of the dispersion parameter (ϕ) of each

gene is challenging with the small number of observa-
tions typically available in RNA-Seq studies. An overesti-
mated dispersion may result in loss of power to detect
DE genes and an underestimated dispersion parameter
may increase false discoveries. Two of the most sophisti-
cated and widely used software packages for identifying
DE genes are DESeq2 and edgeR [3, 4], which estimate
the dispersion parameter of each gene using empirical
Bayes shrinkage and Cox-Reid adjusted profile likelihood
methods, respectively.
Many RNA-Seq analysis methods have been evaluated

in different settings including multi-group study designs
[1, 5–9]. Soneson et al. [9] compared performance of
RNA-Seq analysis tools (edgeR, DESeq, baySeq [10],
NBPSeq [11], TSPM [12], EBSeq [13], NOIseq [14],
SAMseq [15], ShrinkSeq [16] and limma [17]) using real
and simulated data sets. They reported that when
sample size is small, the results should be cautiously
interpreted. However, when sample size is large, the
limma using variance stabilizing transformation method
performed well. Seyednasrollah et al. [18] evaluated eight
computational methods such as edgeR, DESeq, baySeq,
NOISeq, SAMseq, limma, Cuffdiff2 [19], and EBSeq
using publically available human and mice RNA-Seq
data. They concluded that no method fits for all situa-
tions and results from distinct methods could be largely
different. Rapaport et al. [7] assessed commonly used
analysis packages (Cuffdiff, edgeR, DESeq, PoissonSeq
[20], baySeq, and limma) for RNA-Seq data. They ana-
lyzed human RNA-Seq data with those methods and
emphasize the importance of large sample replicates to
accurately detect association with genes. Tang et al. [6]
included TCC [21], edgeR, DESeq, DESeq2, voom [22],
SAMseq, PoissonSeq, baySeq, and EBSeq in their evalu-
ation with multi-group data. The edgeR and DESeq2
packages were recommended in their assessment.
DESeq2 and edgeR are generally accepted in the analysis
of RNA-Seq data because these packages are designed to
properly handle studies with small sample size and lowly
expressed genes. However, the appropriateness of the

NB model compared to the logistic model has not been
exhaustively evaluated. Because many RNA-Seq studies
are designed to compare cases and controls, we explore
logistic regression as an alternative approach, in which
disease status is modeled as a function of RNA-Seq
reads. This is a reversal of the experimental and explana-
tory variables in the NB model in the RNA-Seq setting.
An attractive feature of the logistic framework is that the
estimation of a dispersion parameter for gene expression
is not necessary. Although some studies analyzed their
data modeled as a function of gene expression [23, 24], a
comparison to standard NB methods was not conducted.
We evaluate logistic regression models in which the
dependent variable is disease status and gene expression is
the independent variable.
Because of the substantial costs associated with RNA-Seq

technology and the challenges in obtaining appropriate tis-
sue sample sizes may be limited in some studies. When
sample size is small the distribution of test statistics may
not achieve the expected asymptotic distribution. Hence,
we incorporated the data adaptive method into NB and
logistic regressions because this approach estimates a re-
calibrated distribution of test statistics. We evaluated the
validity of the data adaptive method in RNA-Seq studies.
Another important feature of differential expression

analysis is covariate adjustment. Adjustment for con-
founders is crucial in protecting against spurious associ-
ations. We define a confounder as a covariate that is
associated with both the experimental and explanatory
variables. Covariates in RNA-Seq analysis are associated
with disease status, technical artifacts from experimental
methodology, or intrinsic biological properties of a
system in RNA-Seq models. If these covariates affect the
abundance measurements of RNA-Seq data, then the
covariates could significantly confound the association
between RNA-Seq and disease status. Again, we consid-
ered two approaches for differential expression analysis:
1) NB regression where gene expression values are the
outcome variable and case–control status is the predictor
variable and 2) logistic regression where case–control
status is a function of gene expression values. If disease-
associated covariates are not associated with gene
expression, then these covariates are non-predictive (NP)
covariates in models with RNA-Seq as the outcome. The
effect of adjusting for covariates, when the relationship be-
tween covariates and gene expression is not assessed
through statistical tests or prior studies, has not been
extensively evaluated in RNA-Seq studies using the NB
framework. If we alternatively consider a logistic model,
the NP covariates in the NB model become non-
confounding predictive (NCP) covariates in the logistic
model, because the covariates are not associated with the
independent variable (gene expression) but are associated
with the dependent variable (disease status).

Choi et al. BMC Bioinformatics  (2017) 18:91 Page 2 of 13



We use both simulated data sets and an application to
a real Huntington’s disease (HD) RNA-Seq data set [25].
The results of this study will guide the selection of an
appropriate regression model and guide decisions
regarding covariate adjustment in RNA-Seq studies.

Methods
This study focuses on a gene as a unit; hence various
gene-based scenarios are considered.

Regression methods for analyzing RNA-Seq data
Negative binomial (NB) regression
NB regression uses the Maximum-Likelihood (ML) fit-
ting process [26]. The generalized linear model (GLM)
framework is used by DESeq2 and edgeR. In the current
study, GLM was implemented using the glm(,family =
negative.binomial(1/ϕ)) function in the R-package
“MASS” and utilized either the estimated dispersion
from ML, Quasi-likelihood (QL) or the true dispersion
value from the simulation scenario. ML and QL methods
are described in Additional file 1: Supplementary
Method Section 1. In our real data application, the
original data and permuted data sets were analyzed with
DESeq2 [3].

Classical logistic (CL) regression
We conducted GLM in a logistic regression frame-
work using the logit link function using the glm(,family =
binomial) function in R. In the RNA-Seq setting CL re-
gression may be limited by small sample size and
complete separation. If the expression values of a gene are
completely or nearly completely separated between case
and control groups, which may occur when the effect size
is large, the ML estimation from CL regression may fail to
converge. Because complete separation may be an indica-
tor of differential expression, we implemented Bayes and
Firth’s logistic regressions, which overcome complete
separation bias.

Bayes logistic (BL) regression
Gelman et al. [27] proposed a prior to estimate stable
coefficients in a Bayesian framework, when data show
separation. The proposed prior is the Cauchy distribu-
tion with center 0 and scale 2.5. They demonstrated that
this flat-tailed distribution has robust inference in
logistic regression and is computationally efficient. The
procedure is implemented by incorporating an EM
algorithm into iteratively reweighted least squares, using
the bayesglm function in the R-package “arm”.

Firth’s logistic (FL) regression
The ML estimators may be biased due to small sample
size and small total Fisher information. Firth proposed a
method that eliminates first-order bias in ML estimation

by introducing a bias term in the likelihood function
[28]. Heinze and Schemper demonstrated that Firth’s
method is an ideal solution when the data show separ-
ation [29]. The logistf function in the R-package “logistf”
was used.

Simulation study
The performance of statistical models was evaluated
through Type-I error and power scenarios using combi-
nations of the parameter values in Table 1.

Generating simulated RNA-Seq data
For each scenario, the read counts (yi) were sampled
from the NB distribution with mean (μ) and disper-
sion (ϕ) as specified in Table 1. We simulated 10,000
independent replicates per scenario using the follow-
ing steps and evaluated Type-I error rate and power
per scenario based on results from these 10,000 inde-
pendent replicates.
First, we generated simulated sample (i) data with their

case (D = 1) and control (D = 0) statuses determined by
the study design shown in Table 1. Then, a gene (g)
expression value for each sample (yig) was generated
following the NB distribution conditioning on the
disease status. The log2fc determined the mean expres-
sion value for cases (ygD=1) in power scenarios. When
simulating under the null hypothesis (Type-I error
scenarios) log2fc = 0 and the mean expression value
(μgD) was equal for cases and controls. We considered
only up-regulation of genes, and assumed the dispersion
was the same for cases and controls. The simulation
model for the RNA-Seq count data is:

yige NBðμgD;ϕgÞ;

where μgD≥0, ϕg≥0, D is the binary case–control status
of a sample (i), μg is mean expression value of a gene g.
μgD=1 is the mean expression value for cases for gene g
and is calculated as 2log2fc × μgD=0.

Table 1 Parameters and their values in simulation scenarios

Parameter Values

Design Balanced, Unbalanced2,
Unbalanced4

Number of cases (ND=1) 10, 25, 75, 500

Mean expression value in controls (μD=0) 50, 100, 1000, 10000

Dispersion (ϕ) 0.01, 0.01, 0.5, 1

Covariate OR (CovOR) 1, 1.2, 3, 5, 10

log2 fold-change (log2fc) 0, 0.3, 0.6, 1.2, 2

Number of Covariates 0, 1, 2, 3, 5, 10

Choi et al. BMC Bioinformatics  (2017) 18:91 Page 3 of 13



Generating simulated covariate data
The binary covariates (X) were simulated to follow a bi-
nomial distribution conditioning on case–control status
of each sample. The conditional probability was calcu-
lated based on the CovOR.

XjD e BðND; PDÞ;

where D is disease status (control = 0; case = 1), ND is
sample size of D, PD=0= 0.5, and PD=1 =CovOR/(CovOR+ 1).
When the number of cases is 10, CovOR of 10 is not
considered. For every 10 replications among 10,000
replications in a scenario, a new covariate set was gener-
ated to incorporate between and within variance of
covariates. All covariates in a model were independent
and had the same CovOR.

Analyzing simulated data
We performed NB regression with Model A and con-
ducted the CL, BL, and FL regressions with Model B.

Model A : log E Y½ �ð Þ ¼ β0 þ β1D
XC

k¼1
βkþ1Xk

� �

Model B : logit E D½ �ð Þ ¼ β�0 þ β�1Y þ
XC

k¼1
β�kþ1Xk

� �

where Y is read count, D is case/control status and C is
the number of covariates. Models without covariates
were analyzed using all regression methods in order to
compare the performances of unadjusted models.
Models adjusting for covariates were analyzed only using
NB and FL regressions to evaluate different types of
covariate effects.
Scenarios for which log2fc = 0 are Type-I error studies.

Otherwise, the scenarios are power studies. Type-I error
rates, at significance (alpha) levels 0.05 and 0.01, were
calculated based on replicates with converged results.
For power studies, because different Type-I error rates
were observed among the distinct regression methods,
comparing the power of different regression methods
using the same threshold is not appropriate. For fair
comparison, an empirical threshold for each regression
method was calculated. Then, we computed the
empirical power of each regression method using their
empirical thresholds. Although only positive log2fcs
were simulated in those scenarios in which power was
evaluated, we consistently used two-sided tests for both
Type-I error and power studies. The equations for
Type-I error rate and empirical power are shown in
Additional file 1: Supplementary Method Section 2.

Validation of data adaptive (DA) method using cross-
validation technique
The DA method re-estimates a distribution of test
statistics under the null hypothesis of no association [30].

The DA approach enables one to obtain a recalibrated dis-
tribution of test statistics because when sample size is
small, the asymptotic distribution may not be appropriate.
This method also avoids heavy computing burden com-
pared to implementing permutation tests with all possible
permutations. The results from the DA method are vali-
dated using a cross-validation technique. Detailed proce-
dures are provided in Additional file 1: Supplementary
Method Section 3.

Huntington’s disease (HD) study
A real RNA-Seq data set was analyzed using the DESeq2
R-package, which implements a NB GLM. The data set
was also analyzed utilizing R (v3.0.0) to implement CL,
BL, and FL regressions. The logistic regressions modeled
case–control status as a function of normalized counts
of a gene and covariates. The publicly available HD data
set [25] was downloaded from the GEO database (acces-
sion number GSE64810, https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE64810). This data set contains
20 HD cases and 49 neurologically normal controls.
Details of the HD data set are provided in Additional
file 1: Supplementary Method Section 4.

Generating permuted HD Data
The original HD study used RNA Integrity Number
(RIN) and Age at Death (AAD) as covariates. RIN was
included due to the potential confounding effect
between HD and the abundance of RNAs. To remove
the effect of RIN in our permutations, at first, samples
were divided by RIN categories. Then, each gene was
resampled within each category of RIN. Because AAD
was included in the regression model due to its associ-
ation with HD, the relationship between HD and AAD
was preserved during the permutation process. We
generated 10,000 Monte-Carlo permutations.

Analyzing permuted HD data
For the original HD data and each permutated data set,
DE genes were identified using the NB model (Model A)
as implemented in DESeq2. We also implemented the
CL, BL, and FL regressions (Model B) to compare
statistical models. In logistic models, we used normal-
ized counts from DESeq2 as an independent variable.
For these analyses, we adjusted for AAD and RIN.
The Type-I error rates at our alpha levels using

supplementary equation (2.1), and the exact p-values
[31] were calculated with the results from the 10,000
permutations. The DA method was applied using our
permutation results [30] to measure Type-I error rates
and to obtain adjusted p-values of each gene.
For HD data analysis, asymptotic p-values, exact p-

values using 10,000 permutation results, and DA using
1000 p-values were calculated and corrected for multiple
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testing by imposing a false discovery rate (FDR) of 0.05.
To assess the model adequacy, QQ-plots of original,
exact and DA p-values were generated, and genomic
inflation factors, λgc, were calculated. This λgc is the ratio
of the median of the observed test statistics divided by
the expected median of an asymptotic distribution. If a
λgc is greater than 1, this may suggest inflation in the test
statistics and may indicate the presence of systemic bias
such as hidden population structures, latent covariates,
technical artifacts, etc. [32].

Analyzing HD data with simulated covariates
To evaluate the effect of covariates in a model, the same
method for generating covariates in our simulation study
was applied to the HD data set to create simulated
covariates. In this real data application, we focused on a
moderate covariate effect on HD status (CovOR = 1.2).
The HD data were analyzed using the NB GLM in
DESeq2 with Model A and using the FL regression with
Model B with 1000 replicated sets of simulated covari-
ates (C = 1, 2, 3, 5, or 10). The change of λgc with the
addition of a varying number of simulated covariates in
a model was evaluated.

Results
Simulation results of NB vs. Logistic regressions
Type-I error simulations
Type-I error rates from the simulated results of the sce-
narios at two alpha levels are presented in Table 2. All
analyses presented in Table 2 were converged. The NB
regressions using ML, QL and true dispersions show

almost identical levels of performance (see Additional
file 2: Table S1). When the sample size is small or the
dispersion is high, NB regression shows inflated Type-I
error rates but the CL and BL regressions are conserva-
tive (see Table 2). Large sample size and low dispersion
generally yielded Type-I error rates that were close to
the specified alpha levels as shown in Additional file 3:
Figure S1. The increment of μD=0 is not influential. The
FL regression performs well or presents moderate
conservativeness at both alpha levels. The Type-I error
rates of the FL regression are less affected by the small
sample size and the large dispersion than other logistic
regressions. The Type-I error rates of additional scenar-
ios exhibit patterns that are consistent with results in
Table 2. The unbalanced design results shown in
Additional file 4: Table S2 are consistent with the
balanced design results in Table 2.
In most scenarios, the DA method reduces the infla-

tion observed with NB regression and the controls
conservativeness observed with the CL, BL, and FL re-
gressions. However, with small sample size, conservative
results are still observed at alpha level 0.01 for the CL
and BL models. The DA method with NB and FL regres-
sions showed well-controlled Type-I error rates at all
alpha levels even with small sample size.

Power simulations
We summarize the empirical power results from the bal-
anced design with 10 cases in Fig. 1. The performance of
the NB regressions with ML, QL and true dispersions
are almost identical, as seen in Additional file 5: Table S3.
Larger sample sizes increase power for all regression
methods. The influence of mean expression in controls
appears with small log2fc in Fig. 1. When sample size,
log2fc, and dispersion are small, increase of mean
expression in controls leads to an increase of power at
both alpha levels. When log2fc is large and dispersion is
small, the CL regression shows very low power. The NB,
BL, and FL regressions gain power with large log2fc and
low dispersion. These three regression methods have
comparable empirical power and CL regression results in
lower power in all scenarios.

Application to RNA-Seq data in Huntington’s disease
Type-I error permutations
The Type-I error rates from the permuted data sets at two
alpha levels are shown in Figs. 2 and 3. We categorize
genes in 5 groups by the estimated dispersion of a gene:
(0, 0.05), (0.05, 0.15), (0.15, 0.8), (0.8, 1.5), and (1.5, 10).
We define genes with dispersion >0.8 as largely dispersed.
In the NB results from DESeq2, as dispersion

increases, the Type-I error rates increase when genes are
in the categories of (0, 0.05), (0.05, 0.15), and (0.15, 0.8).
However, genes in the (0.8, 1.5), and (1.5, 10) categories

Table 2 Type-I error rates of regression methods from the
balanced design having μD=0 = 1000

Alpha ND=1 Disp NB CL BL FL

0.05 10 0.01 0.066 0.023 0.023 0.044

10 1 0.094 0.016 0.017 0.039

25 0.01 0.057 0.044 0.040 0.049

25 1 0.064 0.034 0.032 0.044

75 0.01 0.054 0.050 0.048 0.051

75 1 0.056 0.045 0.043 0.048

500 0.01 0.049 0.049 0.048 0.049

500 1 0.054 0.052 0.052 0.053

0.01 10 0.01 0.018 <0.001 <0.001 0.007

10 1 0.032 <0.001 0.001 0.007

25 0.01 0.014 0.005 0.004 0.011

25 1 0.019 0.002 0.002 0.009

75 0.01 0.012 0.009 0.008 0.010

75 1 0.013 0.007 0.006 0.010

500 0.01 0.011 0.010 0.010 0.011

500 1 0.011 0.010 0.010 0.011
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exhibit decreasing Type-I error rates (Additional file 6:
Figure S2). Genes in the (0.8, 1.5), and (1.5, 10) categor-
ies largely have very low mean expression values. After
excluding genes having mean expression values less than
3, Type-I error rates increase as the estimated dispersion
increases as shown in Fig. 2. These increasingly liberal
Type-I error rates are observed at both alpha levels and
are consistent with our simulation results.
In the CL, BL and FL regression results, we observe

that genes in the categories of (0, 0.05), (0.05, 0.15), and
(0.15, 0.8) produce increasingly conservative Type-I

error rates at both alpha levels, as presented in Fig. 3.
However, these increasingly conservative Type-I error
rates are attenuated in the (0.8, 1.5), and (1.5, 10)
categories (Additional file 7: Figure S3). Because we
observe this inconsistent pattern of Type-I error rates
among extremely lowly expressed genes in the DESeq2
results, we also examined the set of genes excluding
those with mean expression values less than or equal to
3. After exclusion of genes with low expression, the
remaining genes show consistent increasingly conserva-
tive Type-I error rates as dispersion increases as shown

Fig. 1 Empirical power of regression methods from the balanced design with ND=1 = 10. Power of the Negative Binomial with true dispersion
(NB), Classic Logistic (CL), Bayes Logistic (BL), and Firth’s Logistic (FL) regressions at alpha levels of 0.05 and 0.01 are shown. The black dotted horizontal
lines represent 95 and 90% power. Mean expression values (μ = 50 and 1000) are separated by black dotted vertical lines. Four dispersion values (0.01,
0.1, 0.5, and 1) are placed within each mean expression value. Dotted lines within each symbol imply 95% confidence interval. a The figure represents
the results from the balanced design with ND=1 = 10 and log2fc = 0.3. b This figure shows the summary from the balanced design with ND=1= 10
and log2fc = 0.6
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Fig. 2 Type-I error rates from DESeq2 analysis of the permuted HD data. Type-I error rates from the DESeq2 (negative binomial model) analysis of
the permuted HD data at alpha levels of 0.05 and 0.01 are presented in the figure. Each black empty dot represents the Type-I error rate of a gene. The
red dots denote average values of Type-I error rates in each category of dispersion groups. The black dotted horizontal lines are our alpha levels. a
shows Type-I error rates of genes having mean expression value of greater than 3 at alpha level of 0.05. b displays Type-I error rates of genes having
mean expression value of greater than 3 at alpha level of 0.01

Fig. 3 Type-I error rates from logistic regressions of the permuted HD data. Figure 3 contains Type-I error rates from Classical Logistic (CL), Bayes
Logistic (BL), Firth’s Logistic (FL) regressions of the permuted HD data at alpha levels of 0.05 and 0.01. Each empty dot represents Type-I error rate
of a gene. The dots filled with colors inside of boxes denote average values of Type-I error rates in each category of dispersion groups. The black
dotted horizontal lines are our alpha levels. a shows Type-I error rates of genes having mean expression value of greater than 3 at alpha level of
0.05. b displays Type-I error rates of genes having mean expression value of greater than 3 at alpha level of 0.01
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in Fig. 3. Although Type-I error rates from the FL
regression are also more conservative when dispersion is
large, Type-I error rates are relatively well controlled
compared to CL and BL regressions. The Type-I error
rates observed in the real data set using logistic regres-
sion confirm our simulation results.
The DA method controls Type-I error rates well for

the DESeq2 results (Additional file 8: Figure S4) and the
FL regression results (Additional file 9: Figure S5) at
both alpha levels, regardless of dispersions of all genes.
The Type-I error rates from CL and BL regressions at
significance level of 0.01 are conservative as seen in
Additional file 9: Figure S5.
We also observed the bias of the regression methods

using permuted HD data sets. As shown in Additional
file 10: Figure S6, FL regression revealed the smallest bias.

HD results from the NB vs. logistic regressions
We analyze the HD data using NB GLM in the DESeq2
R-package, and using CL, BL, and FL regressions with
the R-functions described in the Methods section. All re-
gression results are corrected with the DA method using
1000 permutation results, and are adjusted for multiple
testing using an FDR of 0.05. The Q-Q plots and λgc are
shown in Additional file 11: Figure S7. The DA method
reduced the mean λgc from the results of DESeq2 and
increased the mean λgc from the results of the CL, BL,
and FL regressions. As shown in Additional file 12:
Figure S8, we identified 3,203 genes that were significant
across all methods. The FL regression also identified 307
genes as DE genes that were not identified by the other
methods. The DESeq2 approach identified 944 genes
that were not significant using the other methods. The
10 most significant genes (FDR < 0.05) from FL regres-
sion that are not significant (FDR > 0.05) in the DESeq2
but significant in CL, BL and FL regressions are shown
in Table 3. The most significant gene is SLC1A6 with
p-value equal to 3.2E-06 from FL regression. Of the
genes that are not significant (FDR > 0.05) in the CL, BL

and FL analyses, the 10 most significant (FDR < 0.05)
from DESeq2 are shown in Additional file 13: Table S4.
The genes that are significant in FL analysis are listed in
Additional file 14: Table S5.

Simulation results of various covariate models from the
NB and FL regressions
The properties of the NB regression that are shown in
Simulation results of NB vs. Logistic regressions are also
presented in the simulation results with various covari-
ate models.

Type-I error simulations
Type-I error rates from the simulated data to evaluate
the inclusion of covariates in the models are presented
in Table 4. When dispersion is small, an increasing
number of NP covariates do not increase Type-I error
rates in the NB models. Although the number of covari-
ates appears to increase Type-I error rates when dispersion
is 0.01 and CovOR is 5 (Table 4), this slightly increased
Type-I error rate is close to the Type-I error rates in the
model when dispersion is 0.01 and CovOR is 1.2. Adding
more NP covariates when the dispersion is large increases
Type-I error rates. The effects of large CovOR on Type-I
error rates are not notable in NB models. Large sample size
weakens the inflation that arises from a large number of
NP covariates within large dispersion in the NB model.
Type-I error rates with distinct dispersions are almost
identical at both alpha levels (Additional file 15: Table S6).
The same covariates that are non-predictive (NP)

covariates in a NB model are non-confounding predict-
ive (NCP) covariates in logistic models. Unlike the NB
regression, even with small sample size (Table 4), when
the CovOR is small, the FL regression is robust regard-
ing the increment in the number of NCP covariates.
When CovOR is large, Type-I error rates from FL
regression become very conservative as the number of
NCP covariates increase. Type-I error rates are not
affected by large dispersion. When sample size is

Table 3 Top 10 significant genes from FL regression among genes not significant in DESeq2

Gene Mean. Exp. Case Mean. Exp. Cont Disp NB.Pval CL.Pval BL.Pval FL.Pval

SLC1A6 374 554 0.29 0.039 4.3E-04 4.5E-04 3.2E-06

SERHL2 210 163 0.17 0.016 3.2E-04 6.3E-03 1.2E-05

KCNK9 315 454 0.30 0.063 3.0E-04 9.2E-04 1.7E-05

DISP2 687 937 0.21 0.047 5.5E-04 8.2E-04 4.3E-05

SPOCK2 12370 15649 0.09 0.010 8.9E-04 1.1E-03 8.0E-05

C20orf27 726 934 0.11 0.019 5.9E-04 2.4E-04 9.5E-05

IST1 3388 3134 0.02 0.009 5.7E-04 4.5E-03 9.6E-05

ARC 596 1058 0.40 0.030 1.1E-03 1.2E-03 1.0E-04

STRADB 980 844 0.03 0.013 1.4E-03 1.5E-03 1.0E-04

PCP4 734 1330 0.37 0.086 1.1E-03 2.2E-03 1.2E-04
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increased, Type-I error rates are less affected by in-
creased number of NCP covariates with large CovOR.
In all scenarios, the DA method controls Type-I error

rates well in the NB and FL regressions at both alpha
levels. The newly approximated distribution of test sta-
tistics diminishes deviated Type-I error rates that were
not controlled when many covariates were included in
the NB and FL models.
In addition to Type-I error rates, the bias is also calcu-

lated for each scenario. As shown in Additional file 16:
Table S7, as dispersion increases, bias from NB regres-
sion increases. However, the bias from FL regression is
robust with increasing dispersion. The bias does not
change much for any of the models, as CovOR and the
number of covariates changes.

Power simulations
The results of the power simulations to evaluate the
inclusion of covariates in the models are summarized in
Fig. 4. The empirical power of the NB regressions using
different dispersion estimation methods was similar for
all power scenarios (Additional file 17: Table S8). When
sample size is increased the overall power is increased in
both NB and FL regression.
In our simulation, the power of NB and FL regression

is affected by three factors 1) Dispersion, 2) CovOR, and
3) Number of NP/NCP covariates in a model, when
sample size is fixed. Large dispersion, large CovOR, and
increasing number of NP/NCP covariates in a model
decrease power. NB regression is less sensitive to an
increase of NP covariates with small dispersion. As
shown Fig. 4a, NB regression results in marginally more
power than FL regression when the number of covariates
is large and dispersion is small. When dispersion is large
but CovOR is small, the loss of power in NB regression
is more sensitive to the increase in number of NP covar-
iates than in FL regression as seen in Fig. 4b. Especially,
in Fig. 4b with the CovOR of 1.2, the power of FL
regression with 10 covariates in a model is more

powerful than NB regression with 10 covariates. Regard-
less of dispersion, when CovOR and the number of co-
variates in a model are large, NB regression shows
slightly better power than FL regression. This is demon-
strated in Fig. 4 with CovOR equal to 5.

HD results from covariate models
The HD data were analyzed using DESeq2 and FL regres-
sion with additional simulated covariates. A summary of
λgc is presented in Table 5. An increase of the NP/NCP
covariates leads to a marginally lower median of the λgc.
The standard deviations of the λgc are increased with the
increase of NP/NCP covariates.

Discussion
In this study, we propose using a logistic regression
framework as an alternative to NB regression to analyze
RNA-Seq data for case–control studies. We have shown
in our simulations that FL regression performs well in
terms of controlling Type-I error rates and shows com-
parable empirical power. The dispersion is not estimated
in the logistic framework, thus avoiding potential false
association resulting from incorrectly estimated disper-
sion. The simulations presented focused on single genes
varying relevant parameters (mean, dispersion, log2fold-
change); transcriptome-wide data were not simulated.
The Type-I error simulations presented demonstrate

that NB regression has inflated Type-I error rates with
small sample size. The degree of inflation is varied by
the scale of the dispersion parameter with constant sam-
ple size. The relationship between increased Type-I error
and dispersion was confirmed through permutation of a
real data set. Although large sample size reduced the
inflation from NB, the high cost of RNA-Seq technology
and difficulty of obtaining certain sample tissues may
preclude a larger sample size in some studies. The
distinct Type-I error rates observed with varying disper-
sion parameter values may violate the general assump-
tion that p-values from non-DE genes follow a uniform
distribution. However, the current simulation and per-
mutation studies validate that the DA method is a suit-
able alternative approach that controls Type-I error rates
in all regression methods.
The empirical power of the NB, BL, and FL regres-

sions are comparable across all scenarios. Lower power
was observed for CL regression, which appears to be
driven by scenarios of complete separation and a failure
to converge. With large log2fc and small dispersion,
simulated data are likely to show complete separation; in
these scenarios the NB, BL and FL regressions are more
powerful. For many circumstances with small sample
size, the CL regression demonstrated the lowest empir-
ical power among all methods because the CL regression
is not able to accommodate complete separation.

Table 4 Type-I error rates with covariate models from balanced
design of ND=1 = 10 and μD=0 = 1000

Disp CovOR Ncov Alpha = 0.05 Alpha = 0.01

NB FL NB FL

0.01 1.2 1 0.071 0.049 0.023 0.01

0.01 1.2 5 0.076 0.05 0.026 0.009

0.01 5 1 0.061 0.041 0.018 0.006

0.01 5 5 0.08 0.021 0.024 0.001

1 1.2 1 0.103 0.041 0.036 0.006

1 1.2 5 0.151 0.045 0.067 0.008

1 5 1 0.102 0.039 0.037 0.007

1 5 5 0.142 0.02 0.061 0.001
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Analysis of the HD data showed λgc was decreased after
applying the DA method to the results from NB GLM in
DESeq2 but was increased after applying DA method to
the results from CL, BL and FL regression. The exact p-
values from 10,000 permutations revealed the same pattern.
This pattern is consistent with our simulation results where
Type-I error rates were inflated in the NB framework and
conservative in the logistic framework when test statistics
were compared with a theoretical asymptotic distribution.
Although it is unknown which genes are truly DE in

the HD data set, we compared DE genes identified in

Fig. 4 Empirical power of covariate models from balanced design with ND=1 = 10 and μD=0 = 1000. The power of Negative Binomial with true
dispersion (NB), and Firth’s Logistic (FL) regressions at significance level 0.05 and 0.01 is shown in the figure. Black dotted horizontal lines
represent 95 and 90% power. The odds ratios between covariates and case–control status (CovOR = 1.2 and 5) are partitioned by vertical black
dotted lines. The number covariates (0, 1, 2, 3, 5 (, and 10)) in the model are positioned within each CovOR. Dotted lines within each symbol
represent the 95% confidence interval. a Balanced design from ND=1 = 10, μD=0 = 1000, dispersion = 0.01, and log2fc = 0.3. b Balanced design of
ND=1 = 25, μD=0 = 1000, dispersion = 1, and log2fc = 2

Table 5 Summary of λgc from HD analyses with simulated covariates

Ncov Median_NB SD_NB Median_FL SD_FL

1 4.05 0.10 3.50 0.16

2 4.02 0.14 3.46 0.22

3 4.00 0.17 3.40 0.27

5 3.93 0.22 3.28 0.35

10 3.74 0.29 2.95 0.53
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the HD data by different statistical approaches. We
found that SLC1A6 (solute carrier family 1, member 6;
EAAT4) did not show evidence of association with HD
when using DESeq2, but was highly significant when
using FL regression, as shown in Table 3. SLC1A6, which
is highly expressed in the cerebellum of human brain
compared to other regions [33], showed lower levels of
expression in prior studies of mood disorder diseases
such as bipolar and major depression disorders in the
striatum in situ hybridization study [34]. In addition,
Utal et al. [35] showed that Purkinje cell protein 4
(PCP4), also known as PEP-19, had dramatic reduction
in HD. This gene was not significantly associated with
HD status when using DESeq2 (p-value = 0.086) but
showed strong association when using FL regression (p-
value = 1.2 × 10−4). We also found that some genes
expressed highly in both cases and controls may not be
detected in the NB framework, because it utilizes the
ratio of mean expressions of cases and controls. For in-
stance, the normalized mean expression value of
SPOCK2 is 12,370 in cases and 15,649 in controls. Al-
though the difference of the means is large, the gene
might not be statistically significant due to the small
effect size (log2fold-change = −0.34) in the NB frame-
work. However, this gene is strongly associated with HD
in our logistic framework (Table 3). SPOCK2, also
known as SPARC/osteonectin and Testican-2, plays an
important role in the central nervous system [36]. As a
member of the testican group, the expression in various
neuronal cell types including cell types cerebral cortex,
thalamus, hippocampus, cerebellum was reported by in
situ hybridization [36]. Several studies showed evidence
of associations with prostate, colon, and breast cancer
and bronchopulmonary dysplasia [37, 38].
The top genes that showed associations exclusively in

NB GLM, except for gene S100A11, have low average
counts as shown in Additional file 13: Table S4. The esti-
mated dispersions for these genes are also fairly large
suggesting that they may be false positives.
The effect of including covariates has not been investi-

gated for RNA-Seq studies. Identifying relationships with
covariates for all genes is computationally demanding
and existing software do not allow for defining gene-
wise models for all genes, which makes this approach
challenging. Therefore, RNA-Seq studies that include
covariates in a single model applied to all genes will
likely result in some gene expression models that include
unassociated covariates. Hence, it is important to inves-
tigate the effect of NP covariates in RNA-Seq analysis.
Simulations that included NP covariates in the NB

model showed inflated Type-I error rates and a loss of
power. With large dispersion, this inflation and loss of
power becomes severe. The Type-I error in the FL
regression is not notably affected by the increment of

number of NCP covariates when the CovOR is small. With
large CovOR and increased number of NCP covariates,
conservative Type-I error rates are observed. The DA
method effectively controls the increase of Type-I error
rates even with larger CovOR and high number of NP/
NCP covariates. Our empirical power results show that the
FL regression is more greatly influenced by the increase of
covariates than the NB regression, when CovOR is large.
Our HD analyses with simulated NP/NCP covariates

demonstrated that an increase in the number of NP/NCP
covariates results in a less stable λgc(Table 5). Adding more
NP covariates in an NB model slightly decreases the
median of λgc, and hence an increased in the median of p-
values. In other words, many p-values in a set are gener-
ally increased. Based on our simulation results with NP
covariates, Type-I error rates of largely dispersed genes
are likely to be inflated and power of differentially
expressed genes are likely to be decreased. Therefore, this
slightly decreased median may indicate that the loss of
power is greater than the gain of Type-I error rates.
Adding more NCP covariates in a model also slightly

decreases the median of the λgc in FL regression. This
decreased median might be caused by the loss of power,
and this loss may occur from NCP covariates in a model
according to our simulation results. Under a moderate
CovOR, the number of NCP covariates in a model does
not affect the Type-I error rates.
The change in the median λgc with additional covari-

ates is larger in FL regression than in NB regression
because the FL regression results are solely affected by
the loss of power. NB regression results are influenced
by both increased Type-I error and decreased power.
The standard deviation of λgc is increased with adding
NP/NCP covariates in a model. This means that the results
generated from a model that includes many covariates is
not likely to be reliable, even if these covariates are associ-
ated with case–control status but not gene expression.

Conclusions
In conclusion, unlike NB, CL and BL regressions, FL
regression controls Type-I error rates well and maintains
comparable power even with small sample size. Firth’s
logistic regression is an excellent alternative to NB
regression for analysis of RNA-Seq data in case–control
studies. We recommend implementing the DA method
in analysis of RNA-Seq data to appropriately control
Type-I error rates. If computational burden of permuta-
tions required for the DA method precludes using this
approach, FL regression is the best option for controlling
Type-I errors with comparable power to NB regression.
However, a parsimonious model is necessary to obtain
robust results in the FL regression setting. This ap-
proach can be extended in multiple classes of disease
status using a multinomial logistic regression method.
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Additional file 1: Supplementary Method. This document provides
detailed descriptions of the dispersion estimation method, Type-I error rates
and empirical power calculations, procedures of data adaptive method using
cross-validation technique, and Huntington’s disease data. (DOCX 56 kb)

Additional file 2: Table S1. Type-I error rates of the NB regression from
the balanced design with ND=1= 10. Mean: The mean expression values in
cases and controls, Disp: Dispersion, NB: Negative Binomial regression, MLD:
Maximum likelihood estimated dispersion, QLD: Quasi-likelihood estimated
dispersion, TD: True dispersion specified in the simulation. (DOCX 55 kb)

Additional file 3: Figure S1. Type-I error rates of regression methods from
the balanced design. Type-I error rates of the Negative Binomial with true
dispersion (NB), Classic Logistic (CL), Bayes Logistic (BL), and Firth’s Logistic (FL)
regressions at alpha levels of 0.05 and 0.01 are shown. The black dotted
horizontal lines represent 5 and 1% of Type-I error rates. Dispersion values
(ϕ= 0.01 and 1) are separated by black dotted vertical lines. Four values of the
number of cases (10, 25, 75 and 500) are placed within each dispersion value.
Dotted lines within each symbol imply 95% confidence interval. Figure S1 (A):
The figure presents the Type-I error rates when μ= 50. Figure S1 (B): This figure
shows the Type-I error rates when μ= 1000. (PNG 399 kb)

Additional file 4: Table S2. Type-I error rates of regression methods
from the unbalanced design with μD=0 = 1000. Alpha: Significance levels,
ND=1: The number of cases, ND=0: The number of controls, Disp: Dispersion, NB:
Negative binomial regression with true dispersion, CL: Classical logistic regression,
BL: Bayes logistic regression, FL: Firth’s logistic regression. (DOCX 65 kb)

Additional file 5: Table S3. Empirical power of NB regression from the
balanced design with ND=1 = 10 and log2fc = 0.3. Mean: The mean
expression values in cases and controls, Disp: Dispersion, NB: Negative
Binomial regression, MLD: Maximum likelihood estimated dispersion,
QLD: Quasi-likelihood estimated dispersion, TD: True dispersion specified
in the simulation. (DOCX 56 kb)

Additional file 6: Figure S2. Type-I error rates from DESeq2 analysis of
the permuted HD data. This contains Type-I error rates from DESeq2
(negative binomial model) analysis of the permuted HD data at alpha
levels of 0.05 and 0.01. Each black empty dot represents Type-I error rate
of a gene. The red dots denote average values of Type-I error rates in
each category of dispersion groups. The black dotted horizontal lines are
our alpha levels. Figure S2 (A) shows Type-I error rates of all genes at
alpha level of 0.05. Figure S2 (B) displays Type-I error rates of all genes at
alpha level of 0.01. (PNG 309 kb)

Additional file 7: Figure S3. Type-I error rates from logistic model analyses
of the permuted HD data. Figure S3 contains Type-I error rates from Classical
Logistic (CL), Bayes Logistic (BL), Firth’s Logistic (FL) regressions of the permuted
HD data at alpha levels of 0.05 and 0.01. Each empty dot represents Type-I
error rate of a gene. The dots filled with colors inside of boxes denote average
values of Type-I error rates in each category of dispersion groups. The black
dotted horizontal lines are our alpha levels. Figure S3 (A) shows Type-I error
rates of all genes at alpha level of 0.05. Figure S3 (B) displays Type-I error rates
of all genes at alpha level of 0.01. (PNG 470 kb)

Additional file 8: Figure S4. Type-I error rates from DESeq2 analysis
with the DA method using the permuted HD data. Figure S4 contains
Type-I error rates from DESeq2 (negative binomial model) analysis with
DA method of the permuted HD data at alpha levels of 0.05 and 0.01.
Each black empty dot represents Type-I error rate of a gene. The red dots
denote average values of Type-I error rates in each category of dispersion
groups. The black dotted horizontal lines are our alpha levels. Figure S4
(A) summarizes Type-I error rates of all genes with DA method at alpha
level of 0.05. Figure S4 (B) displays Type-I error rates of all genes with DA
method at alpha level of 0.01. (PNG 223 kb)

Additional file 9: Figure S5. Type-I error rates from logistic model
analyses with the DA method using the permuted HD data. Figure S5
presents Type-I error rates from Classical Logistic (CL), Bayes Logistic (BL), Firth’s
Logistic (FL) regressions with the DA method of the permuted HD data at
alpha levels of 0.05 and 0.01. Each empty dot represents Type-I error rate of a
gene. The dots filled with colors inside of boxes denote average values of
Type-I error rates in each category of dispersion groups. The black dotted

horizontal lines are our alpha levels. Figure S5 (A) shows Type-I error rates of
all genes with DA method at alpha level of 0.05. Figure S5 (B) represents Type-
I error rates of all genes with DA method at alpha level of 0.01. (PNG 453 kb)

Additional file 10: Figure S6. Bias from regression methods using the
permuted HD data with μg > 3. Figure S6 contains bias from Negative
Binomial regression using DESeq2, Classical Logistic regression (CL), Bayes
Logistic regression (BL), and Firth’s Logistic regression (FL). Each black
empty dot represents the bias of a gene. The black dotted horizontal line
is no bias point. The bias of each gene is calculated using effect sizes of
10,000 permutations. (PNG 53 kb)

Additional file 11: Figure S7. Q-Q plots of the HD Analyses. Figure S7
exhibits the Q-Q plots from the HD analysis adjusting for age at death
and RIN from DESeq2 (A), and Classical (B), Bayes (C), and Firth’s (D) Logistic
regressions. Each regression method contains three different ways of
calculating p-values (Original, DA, and Perm). “Original” p-values (Blue dots)
are estimated from asymptotic distribution. “DA” p-values (Black
dots) are evaluated from data adaptive asymptotic distribution
using 1,000 permutations. “Perm” p-values (Yellow dots) are calculated using
10,000 permutations. (PNG 157 kb)

Additional file 12: Figure S8. Venn diagram of HD analysis results using
DA method. Each colored circle represents a different regression method.
The numbers inside of the circles are the number of genes significant at
FDR 0.05 based on p-values adjusted using the Data Adaptive (DA) method.
There were 3,203 significant genes in common across all the methods. The
FL identified the largest number of significant genes compared to CL and
BL. The NB independently identified 944 genes. (PNG 474 kb)

Additional file 13: Table S4. Top 10 significant genes from DESeq2
among genes not significant in logistic regressions. Mean.Exp.Case:
Normalized mean expression value in cases, Mean.Exp.Cont: Normalized
mean expression value in controls, Disp: Dispersion, NB.Pval: P-values
from negative binomial regression with true dispersion, CL.Pval: P-values
from classical logistic regression, BL.Pval: P-values from Bayes logistic
regression, FL.Pval: P-values from Firth’s logistic regression. (DOCX 53 kb)

Additional file 14: Table S5. All significant genes in FL regressions using
the DA method. Mean.Exp.Case: Normalized mean expression value in cases,
Mean.Exp.Cont: Normalized mean expression value in controls, Disp: Dispersion,
NB, CL, BL, FL: P-values from negative binomial regression, classical logistic
regression, Bayes logistic regression, Firth’s logistic regression. (XLS 1013 kb)

Additional file 15: Table S6. Type-I error rates of the NB regression
from the balanced design with ND=1 = 10 and μ = 1000. Disp: Dispersion,
CovOR: Odds ratios between covariates and case–control status, Ncov:
The number of covariates in a model, NB: Negative binomial regression,
MLD: Maximum likelihood estimated Dispersion, QLD: Quasi-likelihood estimated
Dispersion, TD: The dispersion is used for the sampling. (DOCX 59 kb)

Additional file 16: Table S7. Bias with covariate models from the
balanced design of ND=1= 10 and μD=0 = 1000. Disp: Dispersion, CovOR: Odds
ratios between covariates and case–control status, Ncov: The number of
covariates in a model, NB_TD: Negative binomial regression with the
dispersion is used for the sampling, FL: Firth’s logistic regression. (DOCX 47 kb)

Additional file 17: Table S8. Type-I error rates of the NB regression
from the balanced design with ND=1 = 10, μD=0 = 1000, and log2fc = 0.3.
Disp: Dispersion, CovOR: Odds ratios between covariates and case–control
status, Ncov: The number of covariates in a model, NB: Negative binomial
regression, MLD: Maximum likelihood estimated Dispersion, QLD:
Quasi-likelihood estimated Dispersion, TD: The dispersion is used for
the sampling. (DOCX 59 kb)

Additional file 18: R code. This R code regenerates the simulated data
sets. (R 6 kb)
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