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Abstract

Background: Reproducibility in Data Analysis research has long been a significant concern, particularly in the areas
of Bioinformatics and Computational Biology. Towards the aim of developing reproducible and reusable processes,
Data Analysis management tools can help giving structure and coherence to complex data flows. Nonetheless,
improved software quality comes at the cost of additional design and planning effort, which may become impractical
in rapidly changing development environments. | propose that an adjustment of focus from processes to data in the
management of Bioinformatic pipelines may help improving reproducibility with minimal impact on preexisting

development practices.

Results: In this paper | introduce the repo R package for bioinformatic analysis management. The tool supports
a data-centered philosophy that aims at improving analysis reproducibility and reusability with minimal design
overhead. The core of repo lies in its support for easy data storage, retrieval, distribution and annotation. In repo
the data analysis flow is derived a posteriori from dependency annotations.

Conclusions: The repo package constitutes an unobtrusive data and flow management extension of the R
statistical language. Its adoption, together with good development practices, can help improving data analysis
management, sharing and reproducibility, especially in the fields of Bioinformatics and Computational Biology.
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Background
Reproducibility has been often pointed out in literature as
a fundamental point in Data Analysis research. Nonethe-
less it has not yet received due attention in practice, par-
ticularly in the areas of Bioinformatics and Computational
Biology [1-3]. The complexity of bioinformatic data and
processes and the rapidly changing environments in which
they are often dealt with tend to have a negative impact
on best programming practices [4], which dictate careful
planning, accurate design and detailed documentation.
Data flow management is an important part of Data
Analysis with respect to both reusability and reproducibil-
ity [3]. Once a number of recurrent procedures are estab-
lished, each of them can be encapsulated into a module.
Different analysis pipelines can then be designed by prop-
erly interconnecting predefined modules. This approach
elegantly fits a number of data analysis contexts in which
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standard procedures are combined together to build com-
plex pipelines [5]. In addition, although with varying
degrees of flexibility [6], pipeline management tools often
provide the possibility of modifying existing modules or
defining new ones. Besides pipeline modules, resulting
data may be reused as input to other analyses, thus also
requiring proper management.

Many data flow management tools have been developed
with diverse features and approaches, ranging from sim-
ple command line scripting tools like Bpipe [7] to highly
visual and interactive software like Galaxy [8]. Other tools
are designed to add pipeline management support to spe-
cific programming languages, like Ruffus [9] and Pyleaf [4]
for Python. See [6] for a recent review encompassing the
whole spectrum of pipeline management tools.

The support for formalization of an analysis pipeline
design is of course a precious resource in order to fos-
ter reproducibility in Bioinformatics and Computational
Biology. However, it is not always rigorously applicable
in practice. When developing innovative methods for a
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specific application, new knowledge gathered from par-
tial results may induce a feedback loop between data
and processes, with the latter being modified as a con-
sequence of the former. In Software Engineering, similar
concepts are formalized in the context of prototype-based
development [10]. I and colleagues previously pointed
out that an incremental development approach cycling
between results and processes is often implicitly or explic-
itly adopted in bioinformatic research [4]. In such cases,
the use of process-focused management tools may intro-
duce unjustified overhead.

Figure 1 shows an ideal comparison between pure
Process-Centered and Data-Centered pipeline develop-
ment Approaches (PCA and DCA respectively) as defined
in this article. PCA focuses on the selection or adap-
tation of well defined, existing processes for each stage
of the pipeline. DCA relies on results obtained through
prototypical methods in order to refine the processes
themselves. While PCA is desirable, DCA is necessary
when well established processes are not available. Of
course pipeline development may proceed through hybrid
PC/DC approaches in practice.

In this paper a DCA is embraced. Under this paradigm,
the analysis pipeline is not seen as a well defined chain of
processes to run data through, but rather as an a posteriori
reconstruction of how data was processed. A pipeline is
thus mainly conceived as a documentation tool meant to
improve manageability and reproducibility of results. Its
level of detail and completeness is the developer’s choice,
ranging from a flat description of resources to a fully
structured data flow. DCA, however, primarily focuses on
proper storage, retrieval, annotation and distribution of
data produced by each stage of the pipeline.

To the best of my knowledge, the R language cur-
rently misses extensions supporting pipeline management
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(either data- or flow-centered). The language does feature
a range of reproducibility tools, although not dealing with
pipeline management. Support for Literate Programming
[11] is provided by packages such as the popular Sweave
[12], allowing to mix together documentation and code
in order to produce self-documenting processes. How-
ever, data itself is not part of the output. The R package
rctrack [13] was developed to fill this gap. The tool
can automatically track files accessed by R processes and
archive them for reproducibility. This approach is cer-
tainly valuable, although it focuses on making a process
reproducible, without explicit support for structuring it
into a pipeline or managing the produced resources for
reusability.

In the following I introduce the repo extension of the
R statistical language. repo implements the previously
described data-centered approach to pipeline manage-
ment. It is publicly available from the CRAN repository
[14], while more up-to-date versions are maintained at
GitHub [15]. The next Section introduces the general
design of the tool. A more detailed description through
usage examples is presented in the “Results” Section.

Implementation
The R package repo has been developed with the aim of
supporting a data-centered pipeline management philoso-
phy. The tool mainly focuses on storage, retrieval and rich
annotation of data. The definition of the data flow itself is
part of the data annotation. The design of repo assumes
centrality of data and high variability of processes.

In order to foster reproducibility, repo implements
a data repository layer which takes care of managing
permanent storage of both data and annotations. Basic
mandatory annotations for each stored item include a
name, a textual description, and a set of tags. Additional
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annotations include inter-item relations and generic exter-
nal attachments like rich-text documents or images.

The repo interface replaces the standard save and
load R functions for permanent storage and retrieval.
The user passes objects and corresponding annotations
to repo, which transparently stores them to the file sys-
tem. All items and annotations for the same repository
are stored within a single directory. The inclusion of data
descriptors and tags overcomes the need for directory
structure since repository items are retrieved basing on
annotation, as opposed to location. In particular, tags are
used as a generalization of the directory tree model, as
they identify possibly overlapping sets of items.

Repositories in repo are self-contained by design, so
that an entire repository can be easily shared. Moreover,
inside the repository directory all metadata are contained
within a single file, i.e. the index. In fact, the index file
alone can be conveniently shared. It allows to browse
through all items and annotations of a repository taking
advantage of all repo features not dealing with actual
data, such as data analysis flow visualizations. Support for
remote download can be exploited to selectively obtain
data of interest.

In repo the data pipeline is actually reverse-engineered
from relational annotations. For example, the user may
store source code file as a repository item and annotate
other items as being generated by it. Special comments
in the source code can be added to associate a specific
code section with the production of a resource. Depen-
dency between items can also be annotated. The tool
is aware of the data flow implicitly defined by annota-
tions and supports batch actions on interrelated items. In
repo the data flow definition is thus optional as any other
annotation.

repo is an R language extension developed using the
Reference Class paradigm [16]. In the R environment
the user creates an object of class repo associated with
a file system directory and controls the corresponding
repository through the object methods (see Table 1 for a
summary of the available methods). In the next Section a
more detailed view of the tool is provided through direct
examples.

Results

This Section illustrates the main features of the repo
package and its philosophy through an application exam-
ple. The example involves the creation and population of a
repository, its exploration, manipulation and distribution.

Repository creation and population

In repo all the data and annotations for a single
repository completely reside under a specified file sys-
tem position. One repository can store resources pro-
duced by different analyses. The choice between the
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Table 1 A summary of commands available in the latest
development version of the repo package

Command Description

attach Store a generic file into the repository.

attr Retrieves item attributes.

build Runs code chunk associated with an item and
dependant items if needed.

bulkedit Saves repository meta data to a text file for offline
editing or loads the file after editing.

check Checks MD5-consistency of stored items.

chunk Displays the code chunk associated with an item.

copy Copies items between repositories.

cpanel Runs visual interface.

dependencies Returnsand/or plots item dependencies.

export Saves the contents of a repository item to a file in RDS
format.

find Searches all metadata for a partial string match.

get Loads an item into the current workspace.

handlers Returns a list of functions to be used as an alternative
interface to the repository.

has Checks wether an item is present in the repository.

info Displays a summary of information about a regular
item, a project item, or the repository.

lazydo Evaluates specified code caching results in the
repository. Loads results if already cached.

options Sets default parameters to be used by subsequent
calls to the put command.

pies Shows statistics about disk space used by each item
in the repository.

print Summarizes information about items.

project Creates a special “project” item.

pull Overwrites item contents by downloading data from
the associated URL.

put Stores new data into the repository.

related Lists items related to a given item according to
dependencies.

rm Removes items from the repository.

root Returns repository root position on the file system.

set Updates an existing item.

stash Stores an item with unspecified meta information.

stashclear Removes stash-ed items.

sys Runs a system command on a given item.

tag Set tags for an item.

tags Retrieves tags for an item.

untag Removes specified tags from an item.

creation of a single central repository or multiple project-
specific repositories is up to the user. The following
code creates a new, empty repository in a temporary
directory:
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> library(repo)
> repo_root <- file.path(tempdir(), "Cortex")
> rp <- repo_open(repo_root, T)

The example code reported in this Section is contained
in a file named article.Rnw. The next code block
stores the source code as a repository item. The attach
function stores generic files (as opposed to R objects) in
the repository. An item description and a list of tags are
also specified. The project command creates a spe-
cial repository item containing pipeline-wise information.
The opt ions commands sets the default source file and
the default project to associate items with.

> rp$attach(filepath = "article.Row",
description = "Source code of Repo paper",
tags = c("source", "Rnw"))
> rp$project (name = "Mice Cortex data analysis",
description = paste("This is a sample project",
"to demonstrate Repo features"))
> rp$options(src = "article.Rnw",

prj = "Mice Cortex data analysis")

This example uses the “Mice Protein Expression Data
Set” from the UCI repository [17]. In the following block
the data is downloaded and a copy is stored in the
repository, specifying the download URL. The URL field
is useful to trace the provenance of the data, but can
also be used to download the item contents through
the pull function. The variable x1s.name which con-
tains the name of the downloaded file, is also used to
set the identifier of the newly created object in the
repository.

> xls.name <- "Data_Cortex_Nuclear.xls"
> dataURL <- pasteO("http://archive.ics.uci.edu/ml/",
"machine-learning-databases/00342/",
x1s.name)
> download.file(dataURL, destfile = xls.name)
> rp$attach(xls.name, "Mice Protein Expression Data Set",
"excel", URL = dataURL)

The stored data is not in R format. The following
code imports it into the variable data and perma-
nently stores the variable in the repository through the
put function. In this case two relations are annotated
for the newly created item: the generating source code,
set as the file article.Rnw; and a dependency from
the downloaded file (x1s.name variable). Note that
Mice Cortex is annotated as being dependent on the
appropriate repository item, which contains both nec-
essary and sufficient data to build the newly created
resource. However, the actual code loads the data from
the downloaded file and uses a variable defined elsewhere
(x1s.name). These inconsistencies with the process will
be fixed later in accordance to the data-centered paradigm
(see Fig. 1).
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> library(gdata)
> data <- read.xls(xls.name)

> rp$put(data, "Mice Cortex", "Mice Protein Expression Data Set",

c("expression", "cortex", "mice"), depends = xls.name)

The dataset includes missing values and non-real vari-
ables. As a preprocessing step, all incomplete samples are
removed and a reduced version of the dataset is stored.
Dependence of the reduced set from the full set (just
stored as Mice Cortex) is also annotated.

> hasNA <- apply(data, 1, function(x) any(is.na(x)))
> data_reduced <- datal['hasNA, 2:78]
> rp$put(data_reduced, "Mice Cortex notNA",
paste("Mice Protein Expression Data Set without",
"all samples having at least one NA"),

c("expression", "cortex", "mice"), depends = "Mice Cortex")

Suppose that a change is decided about the data prepro-
cessing step. One may want to overwrite the current Mice
Cortex notNA item, but keeping the previous one as a
possible alternative. repo implements a simple versioning
system to accomplish this task. The following code creates
a scaled version of the dataset and overwrites the pre-
viously created Mice Cortex notNA item. However,
since the parameter replace is set to addversion, the
old item is preserved with a new name, as shown by the
print output.

> rp$put(scale(data_reduced), "Mice Cortex notNA",
paste("scaled Mice Protein Expression Data Set without all",
"samples having at least one NA"),
c("expression", "cortex", "mice"), depends = "Mice Cortex",
replace = "addversion")
> rp$print (all = T)

ID Dims Size

Q@article.Rnw - 44.27 kB

Mice Cortex data analysis 2 5.04 kB
@Data_Cortex_Nuclear.xls - 1.55 MB

Mice Cortex 1080x82 608.43 kB
Mice Cortex notNA#1 552x77 314.88 kB

Mice Cortex notNA 552x77 322.06 kB

The attach function can be exploited to store visual-
izations in the repository and link them to the data they
represent. The following code plots a 2-dimensional visu-
alization of the Mice Cortex data to a PDF file and
attach-es it to the item containing the corresponding
data (using the to parameter).

imagefile <- file.path(tempdir(), "Cortex2D.pdf")

pdf (imagefile)

plot(cmdscale(dist(data_reduced)))

invisible(dev.off())

rp$attach(imagefile, "PCA 2D visualization of Mice Cortex data",
c("visualization", "PCA",
to = "Mice Cortex notNA")

vV V. V VvV VvV

"scatter"),

The accuracy of the 2D plot is bound to the amount of
variance explained by the first two Principal Components
of the reduced dataset. The following code creates a plot of
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the variance explained by each Principal Component and
attaches it to the previous plot.

imagefile <- file.path(tempdir(), "CortexPCA.pdf")
pdf (imagefile)

invisible(dev.off())

>

>

> plot(princomp(data_reduced))

>

> rp$attach(imagefile, "Variance explained by PCs of Mice Cortex data",

c("visualization", "PCA", "barplot"),
to = "Cortex2D.pdf")

Repository exploration

repo supports a few commands to visualize information
about a repository or a set of items. Global information
can be visualized through the info command as follows.

> rp$info()
Root: /tmp/Rtmp7Ez6Nqg/Cortex
Number of items: 8
Total size: 2.83 MB

It is also possible to visualize the composition of the
repository in terms of memory usage through the pies

function (see Fig. 2).

> rp$pies()

Other details about single items can be visualized using
the print function. Some items (like attachments) are
hidden by default. The code below lists all the items in the

repository, including hidden ones.
> rp$print(all = T)

ID Dims Size

Q@article.Rnw - 44.27 kB

Mice Cortex data analysis 2 5.04 kB
@Data_Cortex_Nuclear.xls - 1.55 MB

Mice Cortex 1080x82 608.43 kB
Mice Cortex notNA#1 552x77 314.88 kB

Mice Cortex notNA 552x77 322.06 kB

@Cortex2D.pdf - 8.61 kB
@CortexPCA.pdf - 4.46 kB
Others

Mice Cortex notNA

Mice Cortex
Mice Cortex notNA#1
Fig. 2 Example of repository statistics Pie chart visualization of the
repository items according to their memory usage on the disk, as
produced by the pies function
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Three types of relations between items are supported
in repo: attached to, depends on, generated by. Such
relations can be represented through a directed graph.
The dependencies function creates the correspond-
ing visualization (see Fig. 3). When items are prop-
erly annotated, such visualization defines the analysis
data flow.
> rp$dependencies ()

As a repository grows, it may contain a large num-
ber of items from multiple projects. In order to properly
identify item subgroups, tags can be exploited as fil-
ters. Tags are supported by many repo functions and
can be combined using different logic operators. In the
next code block the plot items (associated with the tag
“visualization”) are excluded from the dependency graph
(see Fig. 4).

> rp$print (tags = "visualization", tagfun = "NOT", all = T)

> rp$dependencies(tags = "visualization", tagfun = "NOT", all = T)
D Dims Size
Q@article.Rnw - 44.27 kB
Mice Cortex data analysis 2 5.04 kB
@Data_Cortex_Nuclear.xls - 1.55 MB

Mice Cortex 1080x82 608.43 kB
Mice Cortex notNA#1 552x77 314.88 kB
Mice Cortex notNA 552x77 322.06 kB
The repo package also includes a preliminary visual
interface (see Fig. 5). The current version allows to
browse repository items and load them into the current
workspace.

> rp$cpanel ()

Items access
The most used command in repo is get. get loads an
item from the permanent storage basing on its name.

> rp$get("Mice Cortex")[1:3, 1:3]
MouseID DYRK1A_N ITSN1_N

1 309_1 0.5036439 0.7471932
2 309_2 0.5146171 0.6890635
3 309_3 0.5091831 0.7302468

On the other hand, all the details stored for a single item
are reported by the info function. The summary also
reports the dimensions of the data, its creation date, the
storage space used, the relative file system path to the file
containing the data, and an MDS5 checksum.

> rp$info("Mice Cortex")

ID: Mice Cortex

Description: Mice Protein Expression Data Set
Tags: expression, cortex, mice
Dimensions: 1080x82

Timestamp: 2017-01-24 18:32:27

Size on disk: 608.43 kB

Provenance: article.Rnw

Attached to: -

Stored in: ff/h1/om/ffhlomtlmelnsudwgpfpqs640nal97e2
MD5 checksum: 40b74dfa38d239c¢1032bdf816ddcb6cl

URL: -
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CortexPCA.pdf

Fig. 3 The dependency graph summarizing relations between items in the repository. Three types of relations are supported by repo: attached to,
depends on, generated by. When items are properly annotated, this visualization also represents the analysis data flow

Data_Cortex_Nuclear.xls

Mice Cortex

Mice Cortex notNA#1

article.RAw

Mice Cortex notNA

Cortex2D.pdf

If the exact identifier is unknown the f£ind function Analysis reproducibility
can be used to perform a string matching against all item  While repo focuses on data, it also supports features

details.
> rp$find("pdf", all = T)
ID Dims Size
OCortex2D.pdf - 8.61 kB
@CortexPCA.pdf - 4.46 kB

directly dealing with processes. Such features make the
tool able to reproduce resources basing on the code they
were annotated to. Reproducibility is also supported by
the special project items, which collect information
about an entire analysis, including the list of resources

Mice Cortex notNA

Fig. 4 Selective plot of dependencies within the repository. In this case all the items annotated with the tag “visualization” are excluded

Data_Cortex_Nuclear.xls

article.Rnw

Mice Cortex

Mice Cortex notNA#1
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Repo Control Panel

Current repo: /homelciocio/Cortex ltem details
Select item
Mice Cortex v
Description

Load into workspace

ltems size overview
Tags:

Dimensions:
Data_Cortex_Nuclear. xs;,,._ —
/ : \\\
\
\
/ \ Size on disk:
f \
\ === Others
\ /
\ /
\ Mice Cortex Timestamp:
N\
Mice Cortex
Source:

repository items and load them into the current workspace

Fig. 5 The repository control panel. It is constituted by a Shiny [20] application running in an Internet browser. The user can browse through

involved, R version used and necessary libraries. The
info command implements a special behaviour for
project items, as shown in the following:

> rp$info("Mice Cortex data analysis")
Project name: Mice Cortex data analysis
Description: This is a sample project to demonstrate Repo features
Resources: Data_Cortex_Nuclear.xls
Mice Cortex
Mice Cortex notNA#1
Mice Cortex notNA
Cortex2D.pdf
CortexPCA.pdf

Platform: x86_64-pc-linux-gnu (64-bit)
0S: Ubuntu 16.04.1 LTS
R version: 3.2.3 (2015-12-10)
Packages: gdata 2.17.0

repo 2.0.5.6

Items in the example repository have dependencies set,
thus enabling to trace back which data were used to build
each resource. This may provide significant help in repro-
ducing an analysis or reuse produced items in other anal-
yses. However, the exact process building each resource is
not described, as a generic source file is associated with
all of them. Following the data-centered approach (see
Fig. 1), once the analysis is well assessed, source code can
be cleaned up and single processes assigned to each item.
Although the code used for this example is rather simple,
the following is a refinement of the block related to the
Mice Cortex resource:

## chunk "Mice Cortex" {

print ("Running chunk Mice Cortex...")
library(gdata)

data <- read.xls(rp$get("Data_Cortex_Nuclear.xls"))

vV V. V VvV VvV

rp$put (data, "Mice Cortex", "Mice Protein Expression Data Set",
c("expression", "cortex",
## chunk "Mice Cortex" }

"mice"), depends = x1s.name)

\'2

Note that the x1s.name variable is not used anymore,
and the downloaded data set is loaded from within the
repository. This code is now both necessary end sufficient
to build the Mice Cortex resource if its dependencies
are satisfied. The comments starting with “## chunk” will
be used by repo to associate the Mice Cortex resource
with the actual instructions that are necessary to build it.
The following lines update the source code of the project
by resetting its content and show the newly defined code
chunk:

> rp$set("article.Row", obj = "article.Rnw")

> rp$chunk("Mice Cortex")

print ("Running chunk Mice Cortex...")

library(gdata)

data <- read.xls(rp$get("Data_Cortex_Nuclear.xls"))

rp$put (data, "Mice Cortex", "Mice Protein Expression Data Set",
c("expression", "cortex", "mice"), depends = xls.name)

The build command runs the code associated with
a resource. By default, if the resource has dependencies
not already present in the repository, their associated
code is run first, recursively. Otherwise their code chunks
are skipped. It is also possible to set a session-wise
option to determine other behaviours. For example, the
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following code can be used to download the latest ver-
sion of the file “Data_Cortex_Nuclear.xls” and build the
corresponding Mice Cortex object, without overwrit-
ing the respective previous versions. Annotation of the
Data Cortex Nuclear.xls code chunk, as shown
above for the Mice Cortex chunk, is assumed.
> rp$options(replace = "addversion")
> rp$build("Mice Cortex")
[1] "Running chunk Data_Cortex_Nuclear.xls..."
[1] "Running chunk Mice Cortex..."
> rp$find ("#1", all = T)
ID Dims Size
@Data_Cortex_Nuclear.xls#1 - 1.55 MB
Mice Cortex#1 1080x82 608.43 kB
Mice Cortex notNA#1 552x77 314.88 kB
As previously explained, when new versions of exist-
ing items are created, the latter are renamed by adding
an incremental version number. Note that, thanks to the
mechanism of code chunk annotation, repo supports
reentrancy [6] at each properly defined pipeline stage.

Data exchange

The repo system stores data and metadata into subfold-
ers of the repository root in the R standard RDS format.
Internally, all references to stored files are relative to
the root directory, implying that each repository is com-
pletely self-contained and can be easily cloned or moved.
Dedicated support for data exchange is described in this
Subsection.

The tool can handle multiple repositories and copy
items from one repository to another. For example, the
code below creates a new repository and copies two items
to it:
> rp2_root <- file.path(tempdir(), "Cortex2")
> rp2 <- repo_open(rp2_root, T)
> rp$copy (rp2, c("article.Rnw", "Cortex2D.pdf"), confirm = F)
> print(rp2, all = T)

ID Dims Size
Q@article.Rnw - 44.27 kB
Q@Cortex2D.pdf - 8.61 kB

The related function returns the names of all items
that are directly or indirectly linked to a given item, thus
allowing to select an independent set of items. In the fol-
lowing such a set is saved to the standard R data format
RDS (or their original format for attachments) using the
export function.

exportdir <- file.path(rp$root(), "exported")

dir.create(exportdir)

rp$export (CortexItems, exportdir, askconfirm=F)
list.files(exportdir)
1] "article.Row"
[3] "CortexPCA.pdf"
[6] "Data_Cortex_Nuclear.xls#1" "Mice Cortex#1.RDS"
[7] "Mice Cortex notNA#1.RDS" "Mice Cortex notNA.RDS"
[9] "Mice Cortex.RDS"

>
>
> CortexItems <- rp$related("Mice Cortex")
>
>
[

"Cortex2D.pdf"
"Data_Cortex_Nuclear.xls"
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An interesting application of the URL annotation
regards the distribution of repositories. The buildURL
parameter of the set function can be used to assign
a base URL to all items. The code below copies
the previously selected set of items to the reposi-
tory rp2 and sets a base URL for all items (except
Data Cortex Nuclear.xls).

Data_Cortex_Nuclear.xls).

> rp$copy(rp2, CortexItems, confirm=F, replace=T)
> for(item in CortexItems)
if (item != "Data_Cortex_Nuclear.xls")
rp2$set (item,
buildURL="http://my_website")

> rp2$attr("Mice Cortex", "URL")
[1] "http://my_website/so/j3/n9/s0j3n9f4i76yh3znpwbl7nb7bn2rhfpf"

Once the repository directory is copied to a public web-
site, its index (i.e. the file R_repo.RDS in the repository
root) can be distributed. Users can then selectively down-
load items of interest using the pull repo function. The
check command can be used to run an integrity check
on all repository items.

> rp2%pull("Mice Cortex")
> rp2$check ()

Checking article.Rnw... ok.

Checking Cortex2D.pdf... ok.

Checking Mice Cortex... ok.

Checking Mice Cortex notNA#1... ok.
Checking Mice Cortex notNA... ok.
Checking CortexPCA.pdf... ok.

Checking Data_Cortex_Nuclear.xls... ok.
Checking Data_Cortex_Nuclear.xls#1l... ok.
Checking Mice Cortex#1l... ok.

Checking for extraneous files in repo root... ok.

Discussion

The “Results” Section shows how the repo package can
be used in the usual context of R development by replacing
the common actions of storing and retrieving processed
data with feature-reach calls to a data abstraction layer. A
summary of the described commands together with other
currently supported commands is reported in Table 1.
Dependency annotations are used by the tool to recon-
struct the data flow, and exploit such implicit structure
both for data management and documentation purposes.
The tool does not require any particular structuring of the
code into modules or any coding conventions in general,
allowing the developer to use his preferred programming
paradigm and framework. However, resources can be eas-
ily associated with any portion of consecutive lines of
code in order to define the exact process associated with
a pipeline stage. repo features for data management and
annotations are now well established and included in the
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stable version available on CRAN [14]. The complemen-
tary process management features, such as the chunk and
build commands, instead, are included in the latest ver-
sion of the package [15] and constitute the current devel-
opment focus of repo. Proper storage of resources and
processes can greatly help in making data pipelines man-
ageable and reproducible, within the same lab or across
different labs. However, repo currently misses support
for standard data exchange formats, which limits repro-
ducibility of data flows across platforms [18, 19], posing
a stimulating priority for further development of the tool.
Finally, the support of most repo features through its
visual interface will improve its overall usability, particu-
larly for inexperienced users.

Conclusions

Data Analysis management tools can greatly help in mak-
ing computational research manageable and reproducible.
However, in rapidly changing development environments
the implied overhead may constitute a significant obsta-
cle. I developed the repo R package for data-centered
pipeline management with the aim of supporting repro-
ducible analysis while keeping design and documentation
overhead at a minimum. This is achieved by support-
ing the management of data and metadata storage and
retrieval within the R environment. Future developments
of repo include the support for data exchange formats
and coverage of most features through the visual interface.
The tool is publicly available from the CRAN reposi-
tory [14]. More up-to-date versions are maintained on the
GitHub web site [15].

Availability and requirements

Project name: repo

Project home page: https://github.com/franapoli/repo
Archived version: 10.5281/zenodo.159584

Operating system(s): Platform independent
Programming language: R

Other requirements: R environment including digest
and tools packages. Tested on R version 3.2.3.

License: GNU GPL

Any restrictions to use by non-academics: no
restrictions

Abbreviations

CRAN: Comprehensive R archive network; DCA: Data centered pipeline
development approach; PCA: Process centered pipeline development
approach
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