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Abstract

Background: Conventional differential gene expression analysis by methods such as student’s t-test, SAM, and
Empirical Bayes often searches for statistically significant genes without considering the interactions among them.
Network-based approaches provide a natural way to study these interactions and to investigate the rewiring
interactions in disease versus control groups. In this paper, we apply weighted graphical LASSO (wgLASSO) algorithm
to integrate a data-driven network model with prior biological knowledge (i.e., protein-protein interactions) for
biological network inference. We propose a novel differentially weighted graphical LASSO (dwgLASSO) algorithm that
builds group-specific networks and perform network-based differential gene expression analysis to select biomarker
candidates by considering their topological differences between the groups.

Results: Through simulation, we showed that wgLASSO can achieve better performance in building biologically
relevant networks than purely data-driven models (e.g., neighbor selection, graphical LASSO), even when only a
moderate level of information is available as prior biological knowledge. We evaluated the performance of dwgLASSO
for survival time prediction using two microarray breast cancer datasets previously reported by Bild et al. and van de
Vijver et al. Compared with the top 10 significant genes selected by conventional differential gene expression analysis
method, the top 10 significant genes selected by dwgLASSO in the dataset from Bild et al. led to a significantly
improved survival time prediction in the independent dataset from van de Vijver et al. Among the 10 genes selected
by dwgLASSO, UBE2S, SALL2, XBP1 and KIAA0922 have been confirmed by literature survey to be highly relevant in
breast cancer biomarker discovery study. Additionally, we tested dwgLASSO on TCGA RNA-seq data acquired from
patients with hepatocellular carcinoma (HCC) on tumors samples and their corresponding non-tumorous liver tissues.
Improved sensitivity, specificity and area under curve (AUC) were observed when comparing dwgLASSO with
conventional differential gene expression analysis method.

Conclusions: The proposed network-based differential gene expression analysis algorithm dwgLASSO can achieve
better performance than conventional differential gene expression analysis methods by integrating information at
both gene expression and network topology levels. The incorporation of prior biological knowledge can lead to the
identification of biologically meaningful genes in cancer biomarker studies.
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Background
Typically, a differential gene expression analysis (e.g., stu-
dent’s t-test, SAM, Empirical Bayes, etc.) is performed
to identify genes with significant changes between bio-
logically disparate groups [1–3]. However, independent
studies for the same clinical types of patients often lead to
different sets of significant genes and had only few in com-
mon [4]. This may be attributed to the fact that genes are
members of strongly intertwined biological pathways and
are highly interactive with each other. Without consider-
ing these interactions, differential gene expression analy-
sis will easily yield biased result and lead to a fragmented
picture.
Network-based methods provide a natural framework

to study the interactions among genes [5]. Data-driven
network model reconstructs biological networks solely
based on statistical evidence. Relevance network is one
common data-driven network model [6, 7]. It uses corre-
lation or mutual information to measure the “relevance”
between genes and sets a hard threshold to connect high
relevant pairs. Relevance network has extensive applica-
tion due to its simplicity and easy implementation. How-
ever, its drawback becomes significant when the variable
number increases: it confounds direct and indirect asso-
ciations [8]. For example, a strong correlation for gene
pair X-Y and X-Z will introduce a less strong but prob-
ably still statistically significant correlation for gene pair
Y-Z. As a result, when the number of genes is large, rel-
evance network tends to generate over-complicated net-
works that contain overwhelming false positives. Bayesian
network is another classic data-driven network model
[9]. Unlike undirected graphs such as relevance networks,
Bayesian networks generate directed acyclic graphs, in
which each edge indicates a conditional dependence rela-
tionship between two genes given their parents. The
benefits of using Bayesian networks are: 1) By modeling
conditional dependence relationship, Bayesian networks
only identify direct associations; 2) With directions in the
graph, Bayesian networks allow to infer causal relation-
ship. However, it’s challenging to apply Bayesian networks
on high-throughput omic data since learning the struc-
ture of Bayesian networks for high dimensional data is
time-consuming and can be statistically unreliable. Addi-
tionally, Bayesian network cannot model cyclic structures,
such as feedback loops, which are common in biological
networks.
Recently, Gaussian graphical models (GGMs) have

been increasingly applied on biological network inference
[10–12]. Similar to Bayesian network, GGMs can remove
the effect of indirect associations through estimation of
the conditional dependence relationship. At the same
time, they generate undirected graphs and have no lim-
itation on modeling only acyclic structures. In GGMs, a
connection between two nodes corresponds to a non-zero

entry in the inverse covariance matrix (i.e., preci-
sion matrix), which indicates a conditional dependency
between these two nodes given the others. GGMs dates
back to early 1970s when Dempster introduced “covari-
ance selection” problem [13]. The conventional approach
to solve this problem relies on statistical test (e.g., devi-
ation tests) and forward/backward selection procedure
[14]. This is not feasible for high-throughput omic data
when the number of genes is ranging from several hun-
dred to thousands while the number of samples are only
tens to hundreds. In addition, the “small n, large p” sce-
nario for omic data (i.e., sample size is far less than the
variable number), makes maximum likelihood estima-
tion (MLE) of precision matrix not to exist because the
sample covariance matrix is rank deficient. To deal with
these issues, Schäfer et al. proposed to combine Moore-
Penrose pseudoinverse and bootstrapping technique to
approximate the precision matrix [15]. Others applied �1
regularization to get a sparse network [16–18]. Taking
into account of the sparsity property of biological net-
works and the computational burden of bootstrapping,
�1 regularization methods are preferred. Among various
�1 regularization methods, Meinshausen et al. performed
�1 regularized linear regression (i.e., LASSO) for each
node to select its “neighbors” [16]. Given all its neigh-
bors, one node is conditionally independent with the
remaining ones. Since LASSO is performed for each node,
this ‘neighbor selection’ approach may face a consistency
problem. For example, while gene X is selected as Y’s
neighbor, gene Y may not be selected as X’s neighbor
when performing LASSO for gene X and gene Y sepa-
rately. Compared with neighbor selection method, a more
reasonable approach is graphical LASSO, which directly
estimates precision matrix by applying �1 regulation on
the elements of the precision matrix to obtain a sparse
estimated precision matrix [17, 18]. We will pursuit the
extension of graphical LASSO in this paper.
In additional to data-driven network models, there

are many publicly available databases such as STRING
(http://string-db.org), KEGG (http://www.genome.jp/
kegg), BioGRID(http://thebiogrid.org/), and Consen-
susPathDB (http://consensuspathdb.org/), where one
can extract various types of interactions including
protein-protein, signaling, and gene regulatory interac-
tions [19–22]. Biological networks reconstructed from
these databases have been reported useful. For example,
Chuang et al. reconstructed protein-protein interaction
(PPI) network from multiple databases to help identify
markers of metastasis for breast cancer studies using
gene expression data [23]. They overlaid the gene expres-
sion value on its corresponding protein in the network
and searched for sub-networks whose activities across
all patients were highly discriminative of metastasis.
By doing this, they found several hub genes related to

http://string-db.org
http://www.genome.jp/kegg
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known breast cancer mutations, while these genes were
not found significant by conventional differential gene
expression analysis. They also reported that the identified
sub-networks are more reproducible between different
breast cancer cohorts than individual gene markers.
However, databases are far from being complete. Net-
works constructed purely based on the databases have a
large number of false negatives. In addition, databases are
seldom specific to a certain disease, so the interactions
that exist in the databases may not be reflective of the
patient population under study. In contrast, data-driven
models are likely to have a large number of false positives
due to background noise. Considering this, an appropri-
ate approach to integrate the prior biological knowledge
from databases and data-driven network model is desir-
able for more robust and biologically relevant network
reconstruction [24].
Previously, prior biological knowledge has been incor-

porated into the neighbor selection method [25]. It
relies on the Bayesian interpretation of LASSO and
assigns two different prior distributions for connections
that are present in the database and those are not.
Recently, weighted graphical LASSO (wgLASSO) has
been proposed to incorporate prior biological knowl-
edge into graphical LASSO by assigning different weights
to the entries of precision matrix [26]. In this work,
we extend the original wgLASSO algorithm, explain this
idea from a Bayesian perspective, and perform compre-
hensive comparisons between wgLASSO and compet-
ing data-driven network models (e.g., neighbor selection,

graphical LASSO). Additionally, exploring the topological
changes between biological disparate groups may lead
to new discoveries that cannot be identified by con-
ventional differential gene expression analysis [27–29].
For example, high-degree nodes (i.e., hubs) that only
exist in one of the biologically disparate groups may
indicate the regulatory rule of the hub genes only in
that group. Knowledge-fused differential dependency net-
work (KDDN) is a recently proposed method to con-
struct knowledge incorporated network that can show the
rewiring connections between two groups [29]. An open-
source Cytoscape app is available for easy implementation
[30]. In this paper, we propose a novel algorithm called
differentially weighted graphical LASSO (dwgLASSO) for
network-based differential gene expression analysis. This
is achieved by building separate networks for biologically
disparate groups using wgLASSO, exploring the topolog-
ical changes between different groups, and prioritizing
significant gene list from conventional differential gene
expression analysis as shown in Fig. 1. Other previously
reported methods include those that focus on integrat-
ing prior biological knowledge into data-driven network
model to identify sub-networks that are related to the dis-
ease under study [31, 32]. Our work differs with these
methods since we compute a differential network score
for each gene and prioritize them for subsequent analy-
sis rather than outputting a sub-network list for biological
interpretation. Also, methods that directly incorporate
gene networks or prior biological knowledge into statis-
tical models for classification and regression tasks have

Fig. 1 An overview of dwgLASSO. The input is gene expression data (e.g., Microarray, RNA-seq data, etc.) and the output is a prioritized list based on
the differential network (DN) score defined within dwgLASSO
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been reported [33, 34]. The rationale is that functionally
linked genes tend to be co-regulated and co-expressed,
and therefore should be treated similarly in the statistical
model. Our work leaves the statistical model untouched.
Instead, it focuses on using the best set of gene biomark-
ers as an input to the statistical model. This is considered
to have advantages over providing multiple linked genes
from the network whose expression values have simi-
lar patterns. We show the application of dwgLASSO on
two independent microarray datasets from breast can-
cer patients for survival time prediction, and on TCGA
RNA-seq data acquired from patients with hepatocellular
carcinoma (HCC) for classification task between tumor
samples and their corresponding non-tumorous liver
tissues.
The rest of the paper is organized as follows. “Methods”

section introduces the extended wgLASSO algorithm and
the proposed dwgLASSO for network-based differential
gene expression analysis. “Results and discussion” section
presents the results of wgLASSO and dwgLASSO based
on simulation, microarray and RNA-seq data. Finally,
“Conclusion” section summarizes our work and discusses
possible future extensions.

Methods
Network inference using wgLASSO
Consider a centered and scaled data matrix
Xn×p

(
i.e.,

∑n
i=1 xij = 0,

∑n
i=1 x2ij = 1

)
, it measures the

intensities of p genes on n samples, from a p-dimensional
Gaussian distribution with zero means on each dimen-
sion and positive definite covariance matrix �p×p (i.e.,
X ∼ N (0,�)). Suppose the sample size n is far less
than the variable number p (i.e., n � p), then the
MLE of the precision matrix (i.e., � = �−1) does
not exist since the sample covariance matrix S is rank
deficient. If we further assume � is sparse, then a �1
regularization term can be added to the negative log-
likelihood function f (X|�) = − log det� + tr(S�) for
a sparse precision matrix estimation as shown in Eq. (1).
Graphical LASSO is an algorithm to efficiently solve
Eq. (1) by using block coordinate descent [8, 9]. Once
the sparse precision matrix �̂ is obtained, a non-zero
element in �̂ (i.e., θ̂ij �= 0) indicates a conditional depen-
dence between xi and xj given the others. For network
G = {(i, j); 1 ≤ i < j ≤ p}, we have Ĝ = {(i, j) : θ̂ij �= 0}.

arg min
��0

− log det� + tr(S�) + λ ‖�‖1 (1)

where � is the precision matrix, � � 0 is the constraint
that � has to be positive definite, S is the sample covari-
ance matrix, tr denotes the trace, the sum of the diagonal
elements in a matrix, ‖�‖1 represents the �1 norm of �,
the sum of the absolute values of all the elements in�, and
λ is the tuning parameter controlling the sparsity of �.

LASSO based estimates have a Bayesian interpretation
[35]. �̂ is the maximum a posteriori (MAP) estimate for
the posterior distribution p(�|X) with a Laplacian prior
distribution p(�) as shown in Eq. (2). The LASSO term
λ ‖�‖1 in Eq. (1) is now part of p(�) = exp(−λ ‖�‖1)
with zero means and a scaling parameter λ. From the
Bayesian perspective, p(�) encodes the prior knowledge
of the network topology. For a database that contains
only binary information (connecting or not) for a given
gene pair, a natural way is to assign two different scal-
ing parameters λ1 and λ2 for connecting pairs and those
are not connected, as shown in Eq. (3). For connecting
pairs, their Laplacian prior distribution is diffused, while
for non-connecting pairs their Laplacian prior distribu-
tion is concentrated (i.e., λ1 � λ2). In another word, a
larger penalty will be assigned to non-connecting pairs to
increase the chance of their corresponding entries in �

to shrink to zero. In reality, tuning λ1 and λ2 at the same
time involves two dimensional grid search, which is quite
time-consuming for high-dimensional data. An extreme
solution to set λ2 = 0 links all the connecting gene pairs
from the database in the graph, neglecting the fact that the
databasemight contain some spurious connections for the
disease under study.

p(�|X) = p(X|�)p(�)

p(X)

∝exp(log det� − tr(S�))×exp(−λ ‖�‖1) (2)
p(�) = exp(−λ1

∑
‖�non−con‖1)−λ2

∑
‖�con‖1) (3)

Instead of using the binary information, a continuous
confidence score is more suitable to incorporate prior bio-
logical knowledge into graphical LASSO. The confidence
score can be obtained from multiple resources. For exam-
ple, an estimated functional association score for PPIs
is provided by STRING database. We scale this confi-
dence score into the range [0,1] and create a weight matrix
Wp×p. In W, 1 indicates a complete trust for a gene pair
to be connected, 0 represents that no evidence supports a
gene pair to be connected. In this way, we can assign dif-
ferent penalties to different gene pairs as shown in Eq. (4).
Compared to Eq. (3), (4) also gives larger penalty for less
likely connecting gene pairs, but now there is only one
tuning parameter λ. For a fixed λ, R package glasso can
solve Eq. (4) efficiently givenW [17].

arg min
��0

− log det�+ tr(S�)+λ ‖(1 − W) ∗ �‖1 (4)

where 1 is all 1 matrix,W is the weight matrix containing
the confidence score for each gene pair and ∗ represents
the element-wise multiplication between two matrices.
For LASSO based optimization problem as shown in

Eq. (4), tuning the parameter λ is crucial since it con-
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trols the sparsity of the output �̂. Typically, λ is tuned
by cross-validation, Akaike information criterion (AIC),
Bayesian information criterion (BIC), or stability selec-
tion [36]. Considering that AIC and BIC often lead to
data under-fitting (i.e., over-sparse network) and stability
selection requires extensive computational time, we pre-
fer to use cross validation with one standard error rule
to select the optimal tuning parameter λopt . By using one
standard error rule, we can achieve the simplest (most
regularized) model whose error is within one standard
deviation of the minimal error. Our wgLASSO algorithm
is shown below.

Algorithm 1 wgLASSO
Input:

A centered and scaled data matrix Xn×p;
A weight matrixWp×p;
A regularization parameter set �;
A cross validation fold number k.

Output:
Estimated precision matrix �̂.

1: Randomly and equally divide X into k folds, given by
X̃1, X̃2,. . . , X̃k .

2: for each λ ∈ � do
3: for eachm ∈ {1, 2, . . . , k} do
4: Run graphical LASSO algorithm with input

Xin =[ . . . , X̃m−1, X̃m+1, . . . ], and regularization
parameter λ × (1 − W) to obtain the estimated
precison matrix �̂

λ

m.
5: Calculate the negative log-likelihood function

as the model fitting error f
(
X̃m|�̂λ

m

)
=

− log det �̂λ

m + tr
(
S̃m�λ

m

)
.

6: end for
7: Calculate the standard error for f

(
X̃1|�̂λ

1

)
,

f
(
X̃2|�̂λ

2

)
,. . . , f

(
X̃k|�̂λ

k

)
as SE(�̂

λ
) =

√
var

(
f
(
X̃1|�̂λ

1

)
,...,f

(
X̃k |�̂λ

k

))

k .
8: Compute the average model fitting error

f (X|�̂λ
) =

∑k
l=1 f

(
X̃l|�̂λ

l

)

k .
9: end for

10: Obtain λmin that achieves the minimal model fitting
error λmin = {λ : min

λ∈�
f (X|�̂λ

)}.
11: Move λ in the direction of increasing regularization

until reaching to one standard error limit λopt = {λ :
f (X|�̂λ

) = f (X|�̂λmin
) + SE(�̂

λmin
)}.

12: Run graphical LASSO algorithm with input X and
regularization parameter λopt × (1−W) to obtain the
final estimated precision matrix �̂.

Network-based differential gene expression analysis using
dwgLASSO
Figure 2 shows the framework of the proposed
dwgLASSO algorithm for network-based differential gene
expression analysis. dwgLASSO prioritizes the significant
list obtained from the conventional differential gene
expression analysis based on the topological changes
between the group-specific networks built by wgLASSO.
Specifically, dwgLASSO first performs differential gene
expression analysis to obtain a list of significant genes
whose expression values differ between the two biolog-
ically disparate groups. Then based on these significant
genes, dwgLASSO builds group specific networks
using wgLASSO. After the networks are constructed,
dwgLASSO calculates a differential network score for
each gene in the significant list based on the topological
changes between the two group-specific networks. In
calculating the differential network score, dwgLASSO
first computes the node degree for each gene in both
networks, meaning the number of neighbors each gene is
connected with. Then considering the size of the two net-
works are different, the node degrees are scaled into the
range [0,1]. At last, the differential network score for one
gene is computed as the absolute value of the difference
between the two associated scaled node degrees from
different groups. Finally, with the differential network
scores, dwgLASSO prioritizes the significant list from
the conventional differential gene expression analysis
in a decreasing order. The prioritized gene list is used
for subsequent analysis such as building classification
or regression models. We believe dwgLASSO can help
classification or regression models to achieve better pre-
diction performance since the prioritized list integrates
information at the gene expression and network structure
levels. More than that, the incorporation of prior bio-
logical knowledge is more likely to identify biologically
meaningful genes. Detailed algorithm for dwgLASSO is
shown below.

Results and discussion
Simulation data
Biological networks are reported to be scale-free, which
means the degree distribution of the network follows a
power law [37]. We considered this scale-free property
of biological network in generating simulation data using
R package huge [38]. Using huge, a scale-free network
was built by inputting the node number p. The sparsity
of the network s is fixed, depending on p. For exam-
ple, when the node number is 100, the sparsity of the
network is 0.02, indicating only 2% of all possible con-
nections (i.e., p×(p−1)

2 ) exist in the scale-free network.
Once the scale-free network is built, huge creates the true
precision matrix �true based on the network topology
and the positive definite constraint �true � 0 so that
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Algorithm 2 dwgLASSO
Input:

The raw data matrix Xraw
n×p;

A weight matrixWp×p.
Output:

Prioritized significant list LdwgLASSO.
1: Perform conventional differential gene expression

analysis on Xraw to obtain a significant list L.
2: Get two centered and scaled group specific data

matrix X(1)
n1×psig and X(2)

n2×psig from Xraw and L, picking
out only the significant genes.

3: Build group specific networks G(1) and G(2) by
running wgLASSO algorithm with {X(1),W} and
{X(2),W} as inputs.

4: for each i ∈ L do
5: Compute the node degree d(1)

i and d(2)
i from G(1)

and G(2), respectively.
6: end for
7: for each i ∈ L do
8: Compute the scaled node degree sd(1)

i and sd(2)
i as

sd(1)
i =

d(1)
i −min

j∈L

(
d(1)
j

)

max
j∈L

(
d(1)
j

)
−min

j∈L

(
d(1)
j

) ,

sd(2)
i =

d(2)
i −min

j∈L

(
d(2)
j

)

max
j∈L

(
d(2)
j

)
−min

j∈L

(
d(2)
j

) .

9: Compute the differential network score dnsi =
|sd(1)

i − sd(2)
i |.

10: end for
11: Prioritize L based on the differential network score in

a decreasing order to obtain LdwgLASSO.

�true = (�true)−1 exists. At last, simulation data Xn×p ∼
N (0,�true) was generated.
We created simulation datasets with various p and n,

as seen in Table 1. The weight matrix W, which con-
tains prior biological knowledge, was constructed based
on �true. In reality, databases may also contain spurious
connections for the disease under study. To evaluate how
the incorrect connections inW will impact wgLASSO, we
introduced an additional metric, acc. When acc = 60%,
we randomly reassigned 40% incorrect connections inW.
Specifically, W was created as follows. Initially, for zero
entries in �true, the corresponding entries in W were
also zero; for non-zero entries in �true, the corresponding
entries in W were randomly generated from the uniform
distribution U(0, 1). Then, we randomly assigned incor-
rect connections into W based on the acc value while
keeping the total connections in W the same as those in
�true. Under the assumption that incorrect entries in W
should have lower confidence scores compared to those

of correct entries, we generated incorrect entries from the
uniform distribution U(0, 0.5).
We estimated the true network topology by using

neighbor selection, graphical LASSO, and the proposed
wgLASSO methods. For neighbor selection method, two
strategies were applied to deal with the inconsistency
problem. Neighbor selection with “or” operator accepted
inconsistent connections while neighbor selection with
“and” operator rejected them. To make a fair comparison,
we tuned the regularization parameter in each method to
ensure the output network has the same sparsity as the
true network (i.e., s = 0.02 for p = 100, s = 0.004 for p =
500). For each n and p scenario, we regenerated Xn×p 100
times, calculated the false positives and false negatives of
connections for each method, and listed their means and
standard deviations in Table 1. To evaluate how the incor-
rect connections in W would impact the performance of
wgLASSO, we randomly reassigned 40% (acc = 60%) and
60% (acc = 40%) incorrect prior biological knowledge in
W. From Table 1, we can conclude that the estimated net-
work from wgLASSO has much less false positives and
false negatives, compared with those from neighbor selec-
tion and graphical LASSO methods. A decrease of acc in
W would lead to more false positives and false negatives
from wgLASSO, but it still outperforms neighbor selec-
tion and graphical LASSO methods when the acc in W is
only as moderate as 40%.
To make more comprehensive comparison, we plot-

ted precision recall curve to evaluate the performance
of neighbor selection, graphical LASSO and wgLASSO
methods.We ran the abovemethods with p = 100, n = 50
and acc = 40% in W, computed the precision and recall,
and generated the plot as shown in Fig. 3. From Fig. 3,
wgLASSO displays a clear improvement over neighbor
selection and graphical LASSOmethods. This agrees with
our expectation since wgLASSO considers whether the
connection has supporting evidence from database and
how well it fits the data in the model.

Microarray data
We applied the proposed dwgLASSO algorithm on two
breast cancer microarray datasets: Bild et al. and van de
Vijver et al. datasets [39, 40]. The former includes 158
patients with all their survival records, and was used
for training. We excluded patients with less than 5-year
follow-up time. Among the remaining patients, 42 with
less than 5-year survival during the follow-up time were
considered to form high risk group while the other 60
formed the low risk group. van de Vijver et al. dataset
contains 295 breast cancer patients, together with their
survival records, and was used for independent testing.
Both datasets are available at PRECOG website (https://
precog.stanford.edu), an online repository for querying
cancer gene expression and clinical data, and have been

https://precog.stanford.edu
https://precog.stanford.edu
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Fig. 2 Framework for dwgLASSO

preprocessed for subsequent statistical analysis [41]. The
raw Bild et al. and van de Vijver et al. datasets are also
available at Gene Expression Omnibus (GSE3143) and R
package seventyGeneData, respectively [42].
Our interest is to obtain a prioritized significant gene

list based on dwgLASSO for more accurate survival time
prediction. The workflow is shown in Fig. 4. We first per-
formed univariate analysis on Bild et al. dataset to select a
list of statistically significant genes based on concordance
index between the expression value and survival time [43].
This lead to a total of 58 genes whose adjusted p-values
were less than 0.05. The inflation of Type I error caused
by multiple testing was controlled by the false discovery
rate (FDR) using the Benjamini-Hochberg procedure. The

total 58 significant genes are included in Additional file 1:
Table S1 along with their associated adjusted p-values.
We then applied wgLASSO algorithm to build two sepa-
rate networks using the total 58 significant genes for the
high risk and low risk groups, respectively. The weight
matrixWwas constructed based on the confidence scores
from STRING database after inputting the 58 significant
genes to investigate the PPIs among them. For gene pairs
with no confidence scores from STRING, we assigned the
corresponding entries in W to zeros. In wgLASSO, we
performed 10-fold cross validation and chose the opti-
mal tuning parameter λopt by one standard error rule.
Fig. 5 shows our chose of λopt : λopt = 0.223 for high
risk group and λopt = 0.184 for low risk group. From the

Table 1 The mean and standard deviation (in parenthesis) of false positives (FP) and false negatives (FN) for connections from
neighbor selection (NS), graphical LASSO (gLASSO) and weighted graphical LASSO (wgLASSO) methods under different node number
(p) and sample size (n) scenarios

p n
NS (or) NS (and) gLASSO wgLASSO (acc = 60%) wgLASSO (acc = 40%)

FP FN FP FN FP FN FP FN FP FN

100 50 150 (17) 151 (10) 166 (15) 157 (10) 154 (23) 148 (11) 112 (17) 104 (11) 129 (18) 122 (11)

100 113 (16) 111 (15) 132 (17) 122 (16) 114 (20) 112 (15) 82 (15) 74 (13) 93 (16) 87 (12)

200 69 (13) 59 (18) 78 (15) 72 (21) 79 (17) 63 (19) 51 (11) 39 (14) 58 (13) 50 (15)

500 250 707 (42) 679 (77) 758 (43) 738 (82) 710 (48) 681 (77) 480 (36) 451 (66) 549 (39) 526 (60)

500 425 (30) 453 (129) 473 (42) 493 (134) 431 (40) 468 (129) 277 (26) 290 (87) 330 (31) 313 (106)

1000 175 (22) 164 (117) 189 (27) 177 (118) 199 (28) 186 (126) 109 (18) 110 (76) 130 (21) 135 (88)

The best performance is marked in bold
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Fig. 3 Precision recall curves for neighbor selection, graphical LASSO
and weighted graphical LASSO methods under p = 100, n = 50 and
acc = 40%

networks, we calculated the node degree for each gene in
two groups

(
dhi , dli

)
, scaled them based on the network

size
(
sdhi , sdli

)
, and computed the differential network

score
(
dnsi = |sdhi − sdli|

)
. At last, we prioritized the 58

significant genes based on the network differential scores
in a decreasing order.
To evaluate whether dwgLASSO could lead to more

accurate survival time prediction, we tested the prioritized

gene list using different methods on the independent van
de Vijver et al. dataset. The 295 patients were divided
into high risk and low risk groups according to the risk
scores calculated using multivariate Cox regression from
the top 10 significant genes based on dwgLASSO, a
competing prior knowledge incorporated network anal-
ysis method (i.e., KDDN), and conventional differential
gene expression analysis (i.e., concordance index). Unlike
dwgLASSO that builds group-specific networks, KDDN
generates only one network with all rewiring connec-
tions. From the network constructed by KDDN, we com-
puted the node degree for each gene to help prioritize
the significant gene list. Kaplan-Meier survival analy-
sis was then performed to evaluate the performance of
the above three scenarios. The resulting survival curves
are shown in Figs. 6a, b, and d. To evaluate how much
the incorporation of prior biological knowledge con-
tributes to the improved performance of dwgLASSO, we
tested the top 10 significant genes selected based on
dwgLASSO with no prior biological knowledge incor-
porated (i.e., W = 0). The resulting survival curve is
shown in Fig. 6c. As expected, dwgLASSO with no prior
biological knowledge incorporated is equivalent to using
graphical LASSO in building group specific networks
(Fig. 4). As illustrated in Fig. 6, the top 10 significant
genes from dwgLASSO with prior biological knowledge
incorporated yielded the best performance (p − value =
7.01 × 10−7, hazard ratio = 3.325), compared to the
top 10 significant genes from KDDN (p − value =
7.46 × 10−7, hazard ratio = 3.304), the top 10 significant

Fig. 4Workflow of dwgLASSO for more accurate survival time prediction on microarray data
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Fig. 5 Error curves to choose optimal tuning parameter λopt using 10-fold cross validation by one standard error rule. The blue line indicates the one
standard error for λmin in the direction of increasing regularization

genes based on dwgLASSO with no prior biological
knowledge incorporated (p − value = 0.00031, hazard
ratio = 2.316), and the top 10 significant genes based on
concordance index (p − value = 0.002, hazard ratio =
2.037). We believe the improved performance achieved by
dwgLASSO and KDDN are due to the extra information
provided from the topological changes between high risk
and low risk groups. Also, dwgLASSO and KDDN benefit
from incorporating prior biological knowledge to obtain
more reliable and biologically relevant genes shared across
independent datasets, leading to better prediction perfor-
mance than those that do not use prior biological knowl-
edge (Fig. 6). Table 2 presents the top 10 significant genes
selected based on concordance index and dwgLASSO

with prior biological knowledge incorporated, together
with their adjusted p-values. The top 10 genes from
the other methods are presented in Additional files 2:
Table S2.
Among the top 10 significant genes based on

dwgLASSO in Table 2, UBE2S has been reported to be
over-expressed in breast cancer [44]. The authors showed
UBE2S knockdown suppressed the malignant character-
istics of breast cancer cells, such as migration, invasion,
and anchorage-independent growth. SALL2 has also
been reported as a predictor of lymph node metastasis in
breast cancer [45]. Unlike UBE2S, SALL2 was identified
as a tumor suppressor gene that can suppress cell growth
when over-expressed [46]. Additionally, XBP1 has been

Fig. 6 Survival curves. a top 10 significant genes based on dwgLASSO with prior biological knowledge incorporated, b top 10 significant genes
based on KDDN, c top 10 significant genes based on dwgLASSO with no prior knowledge incorporated, d top 10 significant genes based on
concordance index
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Table 2 The top 10 significant genes based on conventional differential gene expression analysis (i.e., concordance index) and
dwgLASSO with prior biological knowledge incorporated, along with their adjusted p-value

Top 10 significant genes based on concordance index Top 10 significant genes based on dwgLASSO

Gene symbol Adjusted p-value Gene symbol Adjusted p-value

BTD 0.000167029 SALL2 0.018149333

FKTN 0.000424976 UBE2S 0.015577505

LRRC17 0.000424976 RAB11FIP5 0.001638818

RAB11FIP5 0.001638818 KIAA1467 0.005012636

EMX2 0.002384716 XBP1 0.005019825

HNRNPAB 0.002384716 KIAA0922 0.021163875

TKT 0.002805234 EMX2 0.002384716

LANCL1 0.003481701 OAZ2 0.040090787

TFF3 0.003481701 NDC80 0.030630047

USF2 0.004094746 CCT5 0.048116117

Common genes are marked in bold

reported to be activated in triple-negative breast cancer
and has a pivotal role in the tumorigenicity and progres-
sion of this breast cancer subtype [47]. KIAA0922 has
also been reported as a novel inhibitor of Wnt signaling
pathway, which is closely related to breast cancer [48].
None of UBE2S, SALL2, XBP1 and KIAA0922 is among
the top 10 significant genes based on concordance index
according to Table 2.
In Fig. 7, we showed the neighbors of UBE2S and

SALL2 in the high risk and low risk groups based on the
networks created by wgLASSO from Bild et al. dataset.
UBE2S is over-expressed in the high risk group while
SALL2 is under-expressed. This agrees with that UBE2S
is a promoting breast cancer gene while SALL2 is a sup-
pressor breast cancer gene [44, 46]. Additionally, UBE2S
has higher scaled node degree in the high risk group
while SALL2 has higher scaled node degree in the low
risk group

(
sdhUBE2S = 0.286, sdlUBE2S = 0.778, sdhSALL2 =

1.0, sdlSALL2 = 0.444
)
. This shows, as a promoting breast

cancer gene, UBE2S is more actively connected with its
neighbors in the high risk group while, the suppressor
breast cancer gene, SALL2 is more actively connected
with its neighbors in the low risk group. In Fig. 7, yellow
edges represent connections that have been supported
from STRING database. We can see that these connec-
tions based on prior biological knowledge are not always
showing up from the output of wgLASSO. This is a nice
property since prior biological knowledge only provides
evidence. We still need the support from the data to
make a connection. Therefore, by integrating prior bio-
logical knowledge into data-driven models, we expect
to build more robust and biologically relevant networks.
Table 3 shows the survival time prediction performance
when the top 5, top 10 and top 15 significant genes

are selected by each of the four methods as the inputs
to the multivariate Cox regression model (Fig. 6). In
all three cases, the proposed dwgLASSO algorithm with
prior biological knowledge incorporated achieved the best
performance, followed by KDDN and dwgLASSO with-
out prior biological knowledge incorporated. The method
that relies purely on concordance index had the least
performance.

RNA-seq data
Using UCSC Cancer Genomics Browser, we obtained
TCGA RNA-seq data (level 3) acquired from patients
with HCC [49]. The RNA-seq data was acquired by anal-
ysis of 423 liver tissues, including 371 primary tumor,
50 solid normal and 2 recurrent tumor samples based
on Illumina HiSeq 2000 RNA Sequencing platform and
mapped onto the human genome coordinates using UCSC
cgData HUGO probeMap. Among the 371 primary tumor
samples, 50 of them can find its corresponding solid nor-
mal samples. To evaluate dwgLASSO on RNA-seq data,
we apply a workflow shown in Fig. 8. We first picked
out the 100 samples whose tumor tissues and their cor-
responding non-tumorous tissues can both be found.
Randomly, we selected 60 of them (30 tumor samples
and their corresponding normal samples) as the training
dataset. The remaining 40 samples (20 tumor samples and
their corresponding normal samples) were used as test-
ing dataset 1. Considering testing dataset 1 only contains
40 samples, we created testing dataset 2 by combining the
above 40 samples and the remaining 321 tumor samples
whose corresponding normal samples cannot be found.
With testing datasets 1 and 2, we evaluated the perfor-
mance of dwgLASSO on both balanced and large sample
size datasets. Specifically, we preprocessed RNA-seq data
using R package DESeq2 on the training dataset [50].
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Fig. 7 Neighbors of UBE2S and SALL2 in two groups. a neighbors of UBE2S in the high risk group, b neighbors of UBE2S in the low risk group,
c neighbors of SALL2 in the high risk group, d neighbors of SALL2 in the low risk group. Label colors represent over- (red) or under- (green) expression
in the high risk group. Node shapes indicate unique (circle) or shared (rectangle) genes between the two groups. Node colors show the significance
of the gene expression value between the two groups. Yellow edges represent interactions recorded in the STRING database. Thickness of the edge
indicates the strength of the interaction

From DESeq2, we selected statistically significant genes
whose adjusted p-values were less than 0.01 for subse-
quent analysis. At this step, the number of significant
genes is typically between 1000 and 2000. We prioritized
the significant gene list based on dwgLASSO. From the
prioritized gene list, the top 5 genes were selected to train
a logistic regression classifier to distinguish tumor and
normal samples. The trained logistic regression classifier

was finally evaluated on testing datasets 1 and 2. To com-
pare dwgLASSO with other methods, we also prioritized
the significant gene list based on adjusted p-value from
DESeq2, dwgLASSO without prior biological knowledge
incorporated and KDDN, built logistic regression clas-
sifier using the top 5 genes on the prioritized list and
evaluated the trained classifier on the testing datasets 1
and 2.

Table 3 The survival time prediction performance (p-value and hazard ratio) for the top 5, top 10 and top 15 significant genes based
on concordance index: DEA, dwgLASSO with no prior biological knowledge incorporated: dwgLASSO (no prior), KDDN, and dwgLASSO
with prior biological knowledge incorporated: dwgLASSO (prior)

Methods
Top 5 significant genes Top 10 significant genes Top 15 significant genes

p-value Hazard ratio p-value Hazard ratio p-value Hazard ratio

DEA 0.0073 1.851 2.00E-03 2.037 4.00E-04 2.274

dwgLASSO (no prior) 0.0066 1.864 3.10E-04 2.316 4.60E-06 2.969

KDDN 0.0022 2.028 7.46E-07 3.304 8.04E-06 2.889

dwgLASSO (prior) 0.0013 2.104 7.01E − 07 3.325 9.37E − 07 3.25

The best performance is marked in bold when the gene number is fixed
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Fig. 8Workflow of dwgLASSO for more accurate classification prediction on RNA-seq data

The above procedure was repeated 100 times and the
means and standard deviations for sensitivity, specificity
and area under curve (AUC) were calculated using test-
ing datasets 1 and 2 as shown in Table 4. In agreement
with microarray data, network-based methods with prior
biological knowledge incorporated yielded the best per-
formance, followed by network-based method without
prior biological knowledge incorporated, and the con-
ventional differential gene expression analysis method
was the worst. This is expected since both dwgLASSO
and KDDN methods take into account of the changes of
genes at gene expression and network topology levels, and
incorporate prior biological knowledge into their network
models.

Conclusion
In this paper, we apply a novel network inference method,
wgLASSO to integrate prior biological knowledge into a

data-driven model. We also propose a new network-based
differential gene expression analysis method dwgLASSO
for better identification of genes associated with bio-
logically disparate groups. Simulation results show that
wgLASSO can achieve better performance in building
biologically relevant networks than purely data-driven
models (e.g., neighbor selection and graphical LASSO)
even when only a moderate level of information is avail-
able as prior biological knowledge. We demonstrate the
performance of dwgLASSO in survival time prediction
using two independent microarray breast cancer datasets
previously published by Bild et al. and van de Vijver et
al. The top 10 genes selected by dwgLASSO based on
the dataset from Bild et al. dataset lead to a significantly
improved survival time prediction on the dataset from
van de Vijver et al., compared with the top 10 signif-
icant genes obtained by conventional differential gene
expression analysis. Among the top 10 genes selected by

Table 4 The mean and standard deviation (in parenthesis) of sensitivity, specificity and area under curve (AUC) calculated for
conventional differential gene expression analysis: DEA, dwgLASSO with no prior biological knowledge incorporated: dwgLASSO (no
prior), KDDN, and dwgLASSO with prior biological knowledge incorporated: dwgLASSO (prior)

Methods
Testing dataset 1 Testing dataset 2

Specificity Sensitivity AUC Specificity Sensitivity AUC

DEA 0.950 (0.07) 0.913 (0.06) 0.951 (0.04) 0.950 (0.07) 0.941 (0.04) 0.983 (0.01)

dwgLASSO (no prior) 0.988 (0.03) 0.888 (0.11) 0.972 (0.02) 0.988 (0.03) 0.956 (0.05) 0.990 (0.01)

KDDN 0.963 (0.08) 0.950 (0.04) 0.980 (0.02) 0.963 (0.08) 0.939 (0.03) 0.989 (0.01)

dwgLASSO (prior) 0.988 (0.03) 0.950 (0.07) 0.982 (0.03) 0.988 (0.03) 0.965 (0.03) 0.994 (0.01)

The best performance is marked in bold
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dwgLASSO, UBE2S, SALL2, XBP1 and KIAA0922 have
been previously reported to be relevant in breast can-
cer biomarker discovery study. We also tested dwgLASSO
using TCGA RNA-seq data acquired from patients with
HCC on tumors samples and their corresponding non-
tumorous liver tissues. Improved sensitivity, specificity
and AUC were observed when comparing dwgLASSO
with conventional differential gene expression analysis
method. Future research work will focus on applying
dwgLASSO on other omic studies such as proteomics and
metabolomics.

Additional files

Additional file 1: Table S1: The total 58 significant genes along with their
associated adjusted p-values. (CSV 1.09 kb)

Additional file 2: Table S2: The top 10 significant genes based on KDDN
and dwgLASSO without prior biological knowledge incorporated.
(CSV 4.00 kb)
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