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A novel measure and significance testing in
data analysis of cell image segmentation
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Abstract

Background: Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells.
Designing a performance measure and conducting significance testing are critical for evaluating and comparing
the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed
and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the
measures and their correlation coefficient is not described, and thus the statistical significance of performance
differences between CIS algorithms cannot be assessed.

Results: We propose the total error rate (TER), a novel performance measure for segmenting all cells in the
supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes
as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the
pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven
CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based
on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation
coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to
classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the
hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences
between CIS algorithms.

Conclusions: A novel measure TER of CIS is proposed. The TER’s SEs and correlation coefficient are computed.
Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing.

Keywords: Cell image segmentation, Cell assays, Performance measure, Misclassification error rate, Total error
rate, Standard error, Confidence interval, Correlation coefficient, Significance testing, Bootstrap method
Background
Cell image segmentation (CIS) is an essential part of
quantitative imaging of biological cells, which is critical
to fields such as high content screening, live cell tracking
and analysis, and the analysis of subcellular structures
[1–3]. Segmenting cells from fluorescent microscopy im-
ages for image-based cell assays in cytometry requires
the design and development of algorithms that are opti-
mized for a particular set of images. The performance of
a CIS algorithm can affect the quantitative results de-
rived from an image analysis pipeline.
In order to use the well-established statistical approach

to evaluate and compare CIS algorithms [4] so that the
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statistical significance of the performance differences be-
tween CIS algorithms can be determined, besides de-
signing a novel CIS performance measure, the standard
error (SE) of the measure and the correlation coefficient
of measures between two CIS algorithms must be solved.
These three issues are all dealt with in this article.
In this study, only supervised evaluation is carried out.

Cells segmented manually by experts are treated as the
ground-truth (GT) cells, whereas cells segmented using
an algorithm are named as the algorithm-detected (AD)
cells. The set-theoretic relationship between a GT cell and
its related AD cell, as shown in Fig. 1, consists of three
regions: 1) the intersection region, the pixels of the GTcell
identified by the algorithm; 2) the false negative (FN) re-
gion, the pixels of the GT cell missed by the algorithm; 3)
the false positive (FP) region, the pixels of the AD cell that
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Fig. 1 A schematic diagram showing the set-theoretic relationship between a GT cell and an AD cell where the sizes of regions are shown in
terms of pixel numbers
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are mistakenly picked up and do not belong to the GT
cell.
The numbers of pixels of the GT cell, the FN region,

the AD cell, the FP region, and the intersection region
are denoted by nG, ng, nA, na, and nI, respectively,
which are subject to the constraint condition nG – ng =
nA – na = nI. The FN rate is ng / nG, and the FP rate
equals na / nA. In this article, it is assumed that all AD
cells are counted as one AD cell taken on the level of
pixels if they are related to one GT cell; and all GT cells
are treated as one GT cell taken on the level of pixels if
they are associated with one AD cell.
Some CIS algorithms may perform better than others

for cells with some specific characteristics. Many mea-
sures and methods have been proposed and imple-
mented to evaluate the performance of segmentation
methods, such as the Jaccard index, the Rand index, the
Kappa statistic, and others as shown in the literature1

[5–9]. However, computing the SEs of the measures and
their correlation coefficient is not described, although
the uncertainty of the Kappa statistic was computed only
for very small sizes of samples [10].
In this article, it starts with defining the misclassifica-

tion error rate (MER) for segmenting a single cell in a
fluorescent microscopy image. Two MERs are discussed:
the average MER ra that is an arithmetic mean of the FN
rate and the FP rate, and the weighted MER rw that is a
weighted sum of these two rates using themselves as
weights. The latter is more conservative than the former.
Thus, the weighted MER rw is recommended. Then, the
total error rate (TER), which is a novel performance
measure for segmenting all cells, is defined to be a
weighted sum of all MERs, and thus statistically aggre-
gates all MERs. The weight is the size of a GT cell
divided by the total size of all GT cells in the population.
Hence, the penalties on the result for an algorithm are
higher if larger GT cells are not segmented correctly.
Weight is widely employed in scientific research. In
our research, as stated above, error rates are used as
weight in the definition of the weighted MER, and
the sizes of GT cells are used as weight while defining
the TER that is a consequence of using the formula
of the total probability in statistics (see section “The TER
for segmenting all cells”). In different applications, weight
may have different concepts, for instance, in Ref. [11].
Many factors can affect how accurately a CIS algo-

rithm detects the boundary of a cell. The cell size is
one major factor. Many approaches have taken account
of the size factor, but in different contexts such as the
unsupervised objective evaluation methods [12].
The TER is supported by the pairwise comparisons

of MERs using 106 manually segmented GT cells with
different sizes and seven CIS algorithms obtained from
ImageJ [13]. The CIS algorithms are IJ_Huang, IJ_Re-
nyiEntropy, IJ_Li, IJ_MaxEntropy, IJ_Intermodes,
IJ_Minimum and IJ_Triangle, numbered by 1 through
7 according to their performance levels in descending
order.
The 106 cells were taken from the A10 rat smooth

muscle cell line. The raw image data and manual seg-
mentation mask data are stored at the National Institute
of Standards and Technology Semantics for Biological
Data Resource: Cell Image Database [14]. The imaged
cells were stained TxRed c2 maleimide (Invitrogen)
(5 mg/mL in DMSO stock) which labels sulfhydryl
groups present on cellular proteins. Fluorescence images
were acquired with an Olympus IX71 inverted micro-
scope (Center Valley, PA) equipped with an automated
stage (Ludl, Hawthorne, NY), automated filter wheels
(Ludl), a Xe arc lamp fluorescence excitation source, a
10 x ApoPlan 0.4 NA objective (Olympus), and a Cool-
SNAP HQ CCD camera (Roper Scientific, Tucson, AZ).
The filter conditions for imaging the TxRed stained cells
were a 555 nm notch excitation (PN# S555_25x, Chroma
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Technologies, Brattleboro, VT) and a 630 nm notch
emission filter (PN#S630_60m). In Fig. 2, nine fluores-
cent microscopy images illustrate the data used, where
the cell sizes vary (concerning details of cell sizes, see
section Results below).
The results derived from the TER are also consistent

with the qualitative observations from the histograms of
MER (see section “The TER and its SE and CI”). More
importantly, the TER method is more effective than the
bivariate approach using the scatter plot of the FN and
FP rates, and the approach using cumulative distribution
function (CDF) of MER. It is challenging to compare the
performance of two CIS algorithms while the two scatter
plots overlap or the two CDF curves of MER cross each
other.
Then, the issue is how to estimate the SE of the TER.

In this article, the SE and 95% confidence interval (CI)
of the TER for CIS algorithms are computed based on
the SE of MER. The calculation of the SE of MER was
accomplished by using the nonparametric bootstrap
method under the constraint condition shown above.
To do so, dummy scores are assigned to pixels in dif-

ferent regions. For a GT cell, Score 2 is assigned to all
nI pixels in the intersection region and Score 0 is
assigned to all ng pixels in the FN region. For its related
AD cell, Score 0 is assigned to all nI pixels in the inter-
section region and Score 2 is assigned to all na pixels in
the FP region. And a threshold is assigned to be 1.
As a result, the score distributions of a GT cell and of

its related AD cell are similar to those in the receiver
operating characteristic (ROC) analysis [15–20]. Indeed,
the FN rate and the FP rate with respect to the threshold
Fig. 2 Nine fluorescent microscopy images of representative A10 rat smoo
1 in the CIS are exactly the same as the cumulative
probabilities of type I error and type II error in ROC
analysis, respectively. And in ROC analysis, the SEs of
statistics of interest can be computed using the nonpara-
metric bootstrap method.
Our bootstrap scheme is carried out under the con-

straint condition nG – ng = nA – na = nI during bootstrap
resampling, which is particular required for the CIS in
the supervised evaluation involving GT cells and AD
cells, as depicted in Fig. 1. In the meantime, the stochas-
tic nature of the bootstrap method is explored in this
article.
The bootstrap is applied in many areas such as evaluat-

ing stability of clusters [21]. For different applications with
different statistics of interest under different circum-
stances, there are many different bootstrap schemes about
how to resample the original data. Due to our cell sizes,
nonetheless, it is computationally prohibitive to generate
the exact bootstrap distribution formed by all possible
bootstrap replications of the statistic of interest [10].
In this article, moreover, it demonstrates how the correl-

ation coefficient of TERs between two CIS algorithms is
computed using the synchronized resampling algorithm.
Without the correlation coefficient of TERs, the two-
algorithm hypothesis testing cannot be conducted [4].
All these are very useful and important in the prac-

tice of CIS. The error bars of the TER displaying the
95% CI can be used to determine whether the differ-
ence between the performance level of a CIS algorithm
and a hypothesized value is statistically significant in
evaluation of CIS algorithms. This is related to the
one-algorithm hypothesis testing, which can simply be
th muscle cells selected from 106 manually segmented cells



Fig. 3 The average MER ra is a plane (green) and the weighted MER
rw is a surface (red) with respect to the FN rate rfn and the FP rate
rfp. They are tangent along a straight line (blue)
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judged by observing whether the 95% CI of the TER
contains, below, or above the hypothesized value [17].
The error bars of the TER can also be used to classify

CIS algorithms into different classes in terms of per-
formance accuracies in comparison of CIS algorithms.
When the CIs overlap within the same class, because the
SE of TER and the correlation coefficient can be com-
puted, the two-algorithm hypothesis testing can be con-
ducted to determine the statistical significance of the
performance difference between two CIS algorithms. In
this article, only the two-algorithm hypothesis testing
will be detailed.

Methods
The MER for segmenting a single cell
The design of a novel performance measure in the CIS
data analysis starts with defining the MER for identifying
a single cell in a fluorescent image in the supervised
evaluation. As stated above, the numbers of pixels, nG,
ng, nA, na, and nI, must satisfy the constraint condition,

nG− ng ¼ nA− na ¼ nI : ð1Þ
The FN rate rfn and the FP rate rfp are

rfn ¼ ng
nG

and rfp ¼ na
nA

: ð2Þ

Several MERs can be defined in terms of the FN rate
rfn and the FP rate rfp. Besides “simplicity and ease of
understanding” [22], conservativeness is also a criterion
for defining MER in this article. Hence, two MERs are
discussed as follows,

ra ¼ rfn þ rfp
2 ;

rw ¼ r2fn þ r2fp
rfn þ rfp

:
ð3Þ

The average MER ra is an arithmetic mean of rfn and
rfp, and the weighted MER rw is the one using rfn and rfp
themselves as weight so that the larger error rate pays
more penalties. As rfn and rfp approach to zero, rw goes
to zero as well. Both ra and rw vary in the region [0, 1]: 0
stands for the best segmentation when an AD cell is
identical to the related GT cell, and 1 means the worst
classification when an AD cell and the associated GT cell
are disjoint.
First, it is trivial to prove that the arithmetic mean

of the FN rate rfn and the FP rate rfp is greater than or
equal to the geometric mean

ffiffiffiffiffiffiffiffiffiffiffi
rfnrfp

p
, which is subse-

quently greater than or equal to the harmonic mean
2rfnrfp / (rfn + rfp) [23]. These three means are all
equal if and only if rfn = rfp. So, the arithmetic mean
leads to more conservative (i.e. larger) estimates for
the error rates.
Further, when either FN rate rfn or FP rate rfp ap-
proaches zero, both geometric and harmonic means go
to zero, which indicates perfect segmentation in the su-
pervised evaluation, no matter how much the other
error rate is. Under such circumstances, however, the
arithmetic mean approaches half of the other error rate.
Second, the weighted MER rw is compared with the

average MER ra. Both of them are simple and easy to
understand. However, as stated above, the weighted
MER rw does penalize errors because of using the
error rate as weight [22]. Moreover, it is trivial to
prove from Eq. (3) that rw = ra if and only if rfn = rfp;
otherwise, rw > ra. This can also be seen in Fig. 3,
where ra is a plane in green and rw is a surface in red
as functions of rfn and rfp. The red surface is above the
green plane except they are tangent along a straight
line in blue. In other words, the weighted MER rw is a
more conservative measure than the average MER ra.
If an algorithm segments a small GT cell completely

with a relatively very large AD cell, then rfn = 0 and
rfp→ 1. If an algorithm detects a large GT cell with a
relatively very small AD cell located completely inside
the GT cell, then rfp = 0 and rfn→ 1. They all imply that
rw→ 1 but ra→ 1/2 due to Eq. (3). These two cases can
also be seen from Fig. 3. Indeed, under these two cir-
cumstances, the MER should be much larger than 1/2
and close to 1. It indicates that the weighted MER rw
can deal with these special cases better than the average
MER ra, although in reality such special cases occur
quite rarely.
Both rw and ra can be expressed as functions of the

size of the intersection region nI so that a simulation can
be carried out. The former is a linear function with
negative slope. The latter is a more complicated function
that decreases first and then increases as nI increases if
nG ≠ nA; but is the same function as the former if nG =
nA. Both functions are symmetric with respect to nG and
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nA. All these imply that rw and ra behave differently
when nI varies. That is, when an AD cell approaches to
the related GT cell, rw decreases first and then increases
if nG ≠ nA, but ra always decreases. One may ask: Why
cannot a CIS algorithm segment a GT cell completely
when the AD cell is getting so close to it?
Based on these analyses, the weighted MER rw rather

than the average MER ra is recommended. Thus, in this
article, only those results computed using the weighted
MER rw will be shown. Nonetheless, as far as computa-
tional results are concerned, qualitatively speaking, there
is not too much discrepancy between the two MERs.
These will be mentioned in the following text.
Figure 4 shows the histograms of the weighted MERs

generated using Algorithms 1, 2, and 3 to segment 106
cells (see section Results). These three histograms overlap
each other. However, they shift towards larger MER from
Algorithm 1 to 3, suggesting that Algorithm 1 may be bet-
ter than Algorithm 2 that in turn may be better than
Algorithm 3. If the average MERs are employed, the
relationship of the three histograms remains the same.

The TER for segmenting all cells
As pointed out in section Background, in this article, it
is assumed that all AD cells are counted as one AD cell
taken on the level of pixels if they are related to one GT
cell; and all GT cells are treated as one GT cell taken on
the level of pixels if they are associated with one AD cell.
Hence, generally speaking, segmenting a cell in fluores-
cent microscopy images is an exclusive event with re-
spect to detecting other cells. Then, to measure the
performance level of a CIS algorithm, based on the for-
mula of the total probability in statistics [4, 24, 25], the
TER ε is defined to be a weighted sum of all MERs,

ε≡ Pr CISð Þ ¼
XN
i¼1

Pr CIS jCið Þ Pr Cið Þ

¼
XN
i¼1

MERi � SiXN

j¼1
Sj

;

ð4Þ
Fig. 4 Histograms of the weighted MERs generated using Algorithms 1 (a)
where N is the total number of GT cells, Pr(CIS)
stands for the total probability of making misclassifi-
cation errors while using an algorithm to detect all
cells in a fluorescent image, the conditional probability
Pr(CIS | Ci) means the MER while segmenting the i-th GT
cell in the image which is denoted by MERi, and Pr(Ci) is
the probability of the occurrence of the i-th GT cell that is
assumed to be the ratio of the size of the i-th GT cell Si to
the total sizes of all GT cells. Hence, the TER ε statistically
aggregates all cells’ MERs,
It can be proven that the TER ε varies in the region [0, 1],

where 0 stands for the best performance of the algorithm
and 1 means the worst performance. As shown in Eq. (4),
the cell sizes are used as weights. So, it can ensure that it
penalizes errors and the penalties for misclassifying cells
are proportional to the sizes of cells [22].

The SE and 95% CI of TER
First, the SE of MER is computed using a bootstrap
method. Second, based on that, the SE and 95% CI of
TER are calculated. Third, the variation of the SE of
TER is explored due to the stochastic nature of the boot-
strap approach.

The SE of MER for segmenting a single cell
The MER for segmenting a single GT cell consists of the
FN rate and the FP rate, and these two rates are formed
by the numbers of pixels in different regions as shown
from Eq. (1) to Eq. (3). Based on the assignment of
dummy Scores 0 and 2 described in section Background,
the score set for a GT cell is expressed as,

G ¼ gi ¼ 0 i ¼ 1; …; ng ; gi ¼ 2
�� ��i ¼ ng þ 1; …; nG

� �
;

ð5Þ

and the score set for its related AD cell is denoted as,

A ¼ ai ¼ 2 i ¼ 1; …; na; ai ¼ 0j ji ¼ na þ 1; …; nAf g;
ð6Þ

where the constraint condition Eq. (1) must hold true.
, 2 (b), and 3 (c)
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There are five possibilities regarding the set-theoretic
relationship between a GT cell and its associated AD
cell: 1. the two cells are disjoint, 2. they are completely
overlapped, 3. the GT cell completely contains the AD
cell, 4. the AD cell completely contains the GT cell, 5.
they are partially overlapped. Case 5 occurs most often
in this study.
In the following, the bootstrap algorithm for comput-

ing the SE of MER is presented in a way to deal with
Cases 4 and 5, in which both na and nI = nA – na are
positive. Thus, the bootstrap random resampling with
replacement (WR) can be legitimately applied to the
score set of an AD cell in Eq. (6) [15–20]. Here is the
nonparametric one-sample bootstrap algorithm of com-
puting the SÊ of MER for segmenting a single cell.

where M is the number of bootstrap replications. As
shown from Step 1 to 10, this algorithm runs M times.
In the i-th iteration, there is an endless while loop from
Step 2 to 8. In this loop, nA scores are randomly selected
WR from the original score set A in Eq. (6) to form a
new score set A'i, which contains n'a i Score 2 forming a
new FP region and nA - n'a i Score 0 forming a new
intersection region, as shown in Step 3. Then, the con-
straint condition Eq. (1) needs to be checked. If the size
of the new intersection region is less than or equal to
the size of the GT cell in Step 4, the size of the new FN
region, n'g i, is determined in Step 5 and the while loop
breaks in Step 6; otherwise, the endless while loop
continues.
After the while loop breaks, the i-th estimated MÊRi

can be obtained in Step 9 from the new sizes of FP re-
gion and FN region, n'a i and n'g i, and the original sizes
of the AC cell and the GT cell, nA and nG, using Eqs. (2)
and (3). Finally, after M iterations, in Step 11, a boot-
strap distribution is formed by the bootstrap replications
of the MER, i.e., {MÊRi | i = 1, …, M}, and then the
standard error SÊ(MER)B can be estimated using the
sample standard deviation of this distribution.
Algorithm I can be easily converted to handling Case
3 in which there is no pixel in the FP region, if the
score set of the GT cell in Eq. (5) is resampled. So, the
scores and sets related to an AD cell should be replaced
by the scores and sets related to a GT cell in Step 3,
and the statements in Steps 4 and 5 should be changed
to “if nG - n'g i ≤ nA then” and “n'a i = nA - (nG - n'g i)”
accordingly.
In Case 1, both rfn and rfp equal 1 and thus both ra

and rw are 1. In Case 2, both rfn and rfp equal 0 and thus
both ra and rw are 0. In these two cases, the estimates of
SEs of both ra and rw are assumed to be 0, meaning that
there is no variation associated with such MERs. So, the
output of Algorithm I for Cases 1 and 2 is assumed to
be zero.
The remaining issue is to determine how many itera-

tions this bootstrap algorithm needs to run in order to
reduce the bootstrap variance and ensure the accuracy
of the computation. The appropriate number M of the
bootstrap replications was determined to be 2000 based
on our empirical bootstrap variability studies in ROC
analysis [17–20].

The SE and 95% CI of TER for segmenting all cells
After the bootstrap estimated SÊ of MER for segmenting
each GT cell is computed, assuming that detecting and
segmenting different GT cells in fluorescent microscopy
images are mutually independent, the estimated variance
of the TER ε for detecting all GT cells can be obtained
based on Eq. (4),

Var εð Þ ¼
XN
i¼1

SiXN

j¼1
Sj

0
@

1
A

2

� SÊ MERð Þ2B i ð7Þ

where N is the total number of cells, Si is the size of the
i-th GT cell, and SÊ(MER)B i stands for the bootstrap es-
timated SÊ of MER for segmenting the i-th GT cell.
Then, the estimated SÊ of the TER ε is defined to be

the square root of Var (ε). Again from Eq. (4), generally
speaking, if no independent random variable dominates
the others, the distribution of the TER can be assumed
to be approximately normal because of the central limit
theorem [26]. Thereafter, the estimated 95% CÎ of the
TER ε can be obtained by adding and subtracting 1.96
times the estimated SÊ.

The variation of the SE of TER
The nature of the bootstrap method is stochastic. Each
execution of the bootstrap algorithm may result in dif-
ferent SÊs of MERs and thus different SÊs of a TER. It is
necessary to investigate how much the estimated SÊ of
the TER varies. Hence, a distribution of such estimates
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needs to be generated. Here is the algorithm to create
such a distribution.

where M is the number of bootstrap replications, N is
the total number of cells, L is the number of the Monte
Carlo iterations, and Step 4 is the while loop in Algo-
rithm I from Step 2 to 8.
From Step 3 to 7, Algorithm I is employed to compute

the SÊ (MER)B of an MER for segmenting a single GT
cell. From Step 2 to 8, Algorithm I is used to compute
SÊs of MERs for all N GT cells. Thus, at Step 9, an esti-
mated SÊ (ε)B of the TER ε for detecting all GT cells is
calculated using Eq. (7).
Such a process is executed in L times from Step 1 to

10. After L iterations, at Step 11, L estimated SÊ (ε)B i of
the TER ε are generated and constitute a distribution.

Thereafter, the estimated SÊB and the (1–α)100% CÎ (Q̂B

(α/2), Q̂B(1–α/2)) at the significance level α of the distri-
bution can be computed.
The estimated α/2 100% and (1–α/2) 100% quantiles

of the distribution are calculated using the Definition 2
of quantile in Ref. [27]. That is, the sample quantile is
obtained by inverting the empirical distribution function
with averaging at discontinuities. If 95% CÎ is of interest,
then α is set to be 0.05.
Finally, the number of the Monte Carlo iterations L

needs to be determined in order to guarantee the accur-
acy of the Monte Carlo computation. Based on our pre-
vious studies, to create a stable distribution, it is enough
that the repeated process described above be executed
500 times, i.e., L = 500 [17–20].

Significance testing
The two-algorithm hypothesis testing is carried out by
the Z test, since the TER can be assumed to be normally
distributed as pointed out above [4].

Two-algorithm hypothesis testing
Let TA and TB denote the TERs for CIS Algorithms A
and B, respectively. Then, the null and alternative hy-
potheses are

Ho : TA ¼ TB

Ha : TA≠TB
ð8Þ

Based on the normality assumption, the general Z stat-
istic for two-algorithm hypothesis testing is

Z ¼ T̂ A ‐ T̂ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2 T̂ A

� � þ SE2 T̂ B
� �

‐ 2 ρ SE T̂ A
� �

SE T̂ B
� �q

ð9Þ

where T̂ A and T̂ B are two estimated TERs, SE(T̂ A) and

SE(T̂ B) stand for their SEs, respectively, and ρ is the cor-

relation coefficient between T̂ A and T̂ B.

An algorithm for computing the correlation coefficient
This algorithm is based on the synchronized resampling
approach. The two algorithms segment the same set of
GT cells. The MERs of two CIS algorithms due to seg-
menting cells with the same ordinal number in the set of
GT cells co-vary. As a result, the two TERs of any two
CIS algorithms are correlated. The tendency of obtaining
higher or lower MERs for segmenting the same GT cell
could be different. Therefore, the correlation between
the TERs of any two CIS algorithms may be positive or
negative.
Using the notations in Eqs. (5) and (6), a score set that

an Algorithm A segments the i-th GT cell with size nG i

in the set of N GT cells and generates nAg i, n
A
A i, and nAa i

accordingly is denoted by

CA ¼ nG i; n
A
g i; n

A
A i; n

A
a iji ¼ 1; …;N

� �
; ð10Þ

from which a TER can be computed using Eqs. (2)
through (4). All CIS algorithms segment the same set of
N GT cells. Thus, the size of the i-th GT cell, i.e., nG i, is
the same for all CIS algorithms. This correlates TERs of
different algorithms.
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An algorithm for computing the correlation coefficient
of the TERs for CIS Algorithms A and B is as follows.

where sAk , γ
A
j , s

B
k , and γBj are members of the score sets

SA, ΓA, SB, and ΓB, respectively. Based on our bootstrap
variability studies, the number of iterations M is set to
be 2000 [17–20].
From Step 1 to 5, this algorithm runs M iterations. In

Step 2 of the i-th iteration, the synchronized WR ran-
dom resampling is carried out on the two score sets CA
Fig. 5 The histogram of the sizes of all 106 GT cells
and CB of Algorithms A and B to generate two new
score sets ΘA

i and ΘB
i .

From Step 1.1 to 1.7, during the resampling iterations,
if a member with index k in SA is WR randomly se-
lected, then the member with the same index k in SB is
also selected. That is, a GT cell with the same ordinal
number k in the set of N GT cells is selected. Thus, such
synchronized selections guarantee that all co-varying
members in score sets between the two CIS algorithms
are selected simultaneously. Hence, the correlation of
the TERs between the two algorithms is preserved.
After resampling, in Step 3 (4), the i-th estimated TER

ε̂Ai ( ε̂Bi ) of Algorithm A (B) is computed from the new
score set ΘA

i (ΘB
i ). Finally in Step 6 after M iterations,

the correlation coefficient ρAB of the TERs of Algorithms
A and B is computed from the two sets of correlated
TERs.
A synchronized random resampling is involved here.

Thus, this algorithm needs to run multiple times to re-
duce the computational fluctuation, if the p-value is not
considerably different from the critical values, such as
5%, 1%, etc. To be more conservative, in this article, the
average out of 10 runs was taken to be the resultant cor-
relation coefficient for significance testing.
Results
The dataset consisted of 106 cells with different sizes,
which were manually segmented as GT cells. Figure 5
shows the histogram of the cell size. The sizes ranged
from 647 up to 27,562 pixels with the mean size at
6062 pixels. The variation of cell sizes was quite large.
Thus, the cell sizes must be taken into account while
evaluating CIS algorithms.
The seven CIS algorithms in ImageJ were imple-

mented. As stated above, the estimated SÊs of MERs in



Table 2 The estimated TÊRs, SÊs (relative errors) and 95% CÎs of
TERs for the seven CIS algorithms, in which the weighted MERs
are employed

Alg. TÊR SÊ (relative error) 95% CÎ of TER

1 0.057524 0.000893 (3.04%) (0.055775, 0.059274)

2 0.066889 0.000093 (0.27%) (0.066707, 0.067071)

3 0.089363 0.000674 (1.48%) (0.088042, 0.090684)

4 0.105096 0.000061 (0.11%) (0.104976, 0.105215)

5 0.171153 0.001721 (1.97%) (0.167780, 0.174526)

6 0.173513 0.000868 (0.98%) (0.171812, 0.175213)

7 0.224444 0.000095 (0.08%) (0.224257, 0.224631)
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Cases 1 and 2 are zero, which can lower the estimate of
the SE of TER for detecting all GT cells. Only Algorithm
4 created one Case 1 and Algorithm 7 produced three;
and no algorithm generated Case 2.

Pairwise comparisons to support the TER
Two CIS algorithms generate two weighted MERs while
segmenting the same GT cell, and these two weighted
MERs are compared. Table 1 shows the relationship in
terms of the numbers of “less than” (<), “greater than”
(>), and “equal to” (=) between such two weighted MERs
while using two algorithms to segment all 106 GT cells.
For instance, comparing Algorithms 1 with 2, for 87 GT
cells, the weighted MERs generated using Algorithm 1
are less than those created using Algorithm 2; and for
only 19 GT cells, the “greater than” occurs otherwise.
This indicates that the performance of Algorithm 1 is
better than the performance of Algorithm 2.
Further, in Table 1, the relationship of “better than” is

transitive. For example, the performance of Algorithm 1
is also better than the performance of Algorithm 3, and
so on. Indeed, while comparing Algorithms 1 with 3,
there are 91 “<” and 15 “>”. As a result, the test of pair-
wise comparisons of MERs in this article was conducted
between any two out of seven CIS algorithms. Table 1
shows that the performance is degraded in the ascending
order of the CIS algorithms.
If the average MERs are employed, qualitatively speak-

ing, the relationship among these CIS algorithms in
terms of numbers of “<”, “>”, and “=” stays the same.

The TER and its SE and CI
Table 2 shows the estimated TÊRs, SÊs (relative errors)
and 95% CÎs of TERs for the seven CIS algorithms, when
the weighted MERs are employed. The smaller the esti-
mated TÊR ε is, the better the performance is. The order
of the algorithms in Table 2 is consistent with the one in
Table 1. It indicates that the TER constructed on all
MERs and using the cell sizes as weights is fully
Table 1 Comparisons of the weighted MERs generated using
two algorithms for all 106 cells in terms of the numbers of
inequalities and equalities

Algorithm the number of

< > =

1 2 87 19 0

2 3 57 49 0

3 4 68 38 0

4 5 59 47 0

5 6 101 5 0

6 7 79 27 0
supported by the results derived directly from the
pairwise-comparison test of MERs using 106 GT cells
with different sizes and seven CIS algorithms taken from
ImageJ.
Moreover, regarding Algorithms 1, 2, and 3, their esti-

mated TÊR ε shown in Table 2 are qualitatively consist-
ent with the observations in Fig. 4, where the histograms
of the weighted MERs for these three algorithms shift
gradually towards larger MER.
The relative error of the TER can be defined as “1.96 ×

SÊ / TÊR”, where 1.96 is the Z score corresponding to
95% CI. Thus, the ranges of relative errors are between
0.08% and 3.04%. Most importantly, Fig. 6 shows the
error bars of the TER displaying the 95% CÎs along with
estimated TÊRs for six CIS algorithms, when the
weighted MERs are employed. Algorithm 7 is not in-
cluded due to large TÊR.
If the average MERs are employed, the corresponding

estimated TÊRs are smaller, which is consistent with what
was discussed in sections “The MER for segmenting a
Fig. 6 The error bars of TER displaying 95% CIs along with estimated
TERs for six CIS algorithms, in which the weighted MERs are
employed, with two criteria set at 0.08 and 0.14 that statistically
classify CIS algorithms



Fig. 7 The histograms of the estimated SÊs of TÊRs for four CIS
Algorithms 1 (blue), 3 (red), 5 (green), and 6 (gray), in which the
weighted MERs are employed. The black circle stands for the
estimated mean of the distribution
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single cell” and “The TER for segmenting all cells” (see
section Discussion). But qualitatively speaking, except
that the 95% CÎ of TER of Algorithm 1 contains the
one of Algorithm 2, everything else stated here re-
mains the same.

The variation of the estimated SÊ of the TER
The nature of the bootstrap method is stochastic. Algo-
rithm II was used to deal with this issue. Table 3 shows
the means, SÊs (relative errors), and 95% CÎs of the esti-
mated SÊs of TÊRs for the seven CIS algorithms, when
the weighted MERs are employed. The relative error is
defined as “1.96 × SE / mean” to take account of all esti-
mates occurring in the estimated 95% CÎ. All 95% CÎs
are quite narrow. The largest relative error is 1.87%.
Figure 7 shows the histograms of the estimated SÊs of

TERs for CIS Algorithms 1 (blue), 3 (red), 5 (green), and
6 (gray), when the weighted MERs are employed. The
histograms of other three algorithms are too narrow to
draw. The widths of all distributions are very narrow,
demonstrating that the results are quite stable.
Taking Algorithm 1 as an example whose TÊR in

Table 2 is the smallest and relative error is the largest,
and using Algorithm 1’s estimated 95% CÎ of SÊs of
TERs in Table 3, it can be calculated that the relative er-
rors of TÊR may vary between 3.03% and 3.12%.
It is worth mentioning that in Table 2, all estimated

SÊs of TERs were calculated by a random execution
of the stochastic bootstrap method while computing
the SÊs of MERs. However, they all correspondingly
fall in the 95% CÎ of the estimated SÊs of TERs
shown in Table 3.
Again, if the average MERs are employed, qualitatively

speaking, nothing stated here is changed. For instance,
the relative errors of TÊR for Algorithm 1 varies be-
tween 5.31% and 5.56%, which is also very narrow.

Significance testing
CIS algorithms may be statistically classified into differ-
ent classes in terms of performance accuracies using
Table 3 The means, SÊs (relative errors), and 95% CÎs of the
estimated SÊs of TERs for the seven CIS algorithms, in which the
weighted MERs are employed

Alg. Mean SÊ (relative error) 95% CÎ of SÊ of TER

1 0.000903 0.000007 (1.47%) (0.000890, 0.000916)

2 0.000093 0.000000 (0.57%) (0.000092, 0.000093)

3 0.000668 0.000006 (1.87%) (0.000657, 0.000682)

4 0.000061 0.000000 (0.99%) (0.000060, 0.000061)

5 0.001712 0.000012 (1.36%) (0.001689, 0.001735)

6 0.000874 0.000006 (1.36%) (0.000863, 0.000886)

7 0.000096 0.000000 (0.97%) (0.000095, 0.000097)
the error bars. This provides a basis for identifying al-
gorithms that are quantitatively similar to one an-
other. For instance, as shown in Fig. 6, if the criteria
of performance accuracies are set to be at 0.08 and
0.14, respectively, then Algorithms 1 and 2 are classi-
fied to be in the first class, Algorithms 3 and 4 are in
the second class, and Algorithms 5 and 6 are in the
third class. This is because their error bars, i.e., the
95% CÎs of TER, do not cross the criteria. Otherwise,
the one-algorithm hypothesis testing needs to be
taken. Certainly, the criteria are set depending on the
circumstances being dealt with.
When two error bars do not overlap, for example, for

Algorithms 1 and 2 as depicted in Fig. 6, the performance
level of the CIS algorithm corresponding to the lower
error bar is better than the other one. When two error
bars overlap, for example, for Algorithms 5 and 6, the
two-algorithm hypothesis testing is necessary to deter-
mine the statistical significance of performance difference.
To demonstrate, the hypothesis testing is conducted

on Algorithms 1 and 2, as well as on Algorithms 5 and
6. The corresponding correlation coefficients of TERs
computed using Algorithm III are 0.215203, and
0.370554, respectively. Then, using the TERs and their
SEs shown in Table 2, the Z-test two-tailed p-values are
0%, and 14.4% accordingly.
Using 5% as a critical p-value, these p-values show that

the performance level of Algorithm 1 is better than the
performance level of Algorithm 2, even though they are
in the same first class. However, the difference in terms
of performance accuracy between Algorithms 5 and 6 is
not statistically significant.
If the average MERs are used, it is pointed out above

that the 95% CÎ of TER of Algorithm 1 contains the one



Wu et al. BMC Bioinformatics  (2017) 18:168 Page 11 of 13
of Algorithm 2. This is consistent with the result of con-
ducting the hypothesis testing. The p-value is 11.4%,
which shows that the performance difference between Al-
gorithms 1 and 2 is not statistically significant. This is the
only difference qualitatively speaking between using the
weighted MERs and the average MERs on our CIS
datasets. Nonetheless, as analyzed in section “The
MER for segmenting a single cell”, the weighted MER
is recommended.
Discussion
The MER for segmenting a single cell in the supervised
evaluation can be defined in several ways. It is hard to
find one without any disadvantages [22]. Simplicity, ease
of understanding, penalizing errors, conservativeness,
and dealing with special cases are the criteria of choos-
ing MER in this article. Based on our analyses, the
weighted MER rw is recommended. Certainly, those spe-
cial cases, in which either rfn = 0 and rfp→ 1 or rfp = 0
and rfn→ 1 presented in section “The MER for segment-
ing a single cell”, may occur quite rarely in practice.
For the seven CIS algorithms employed in section

“The TER and its SE and CI”, if the average MER ra is
used, the estimated TÊRs are 0.035842, 0.037330,
0.046528, 0.058023, 0.086210, 0.087080, and 0.127707.
As expected, they are correspondingly smaller than
those if the weighted MER rw is employed (see section
“The TER and its SE and CI”).
For the sake of discussion, if the MER is defined to be

“the proportion of objects which it misclassifies” [22],
r3 = (ng + na) / (nG + nA) = (nG x rfn + nA x rfp) / (nG + nA),
which is a function of three independent variables under
the constraint condition Eq. (1). Here are three observa-
tions. If nG = 4694, nA = 5276, ng = 16, and na = 598, then
rw = 0.110134, ra = 0.058376, and r3 = 0.061585, where r3 is
very close to ra but almost half of rw. If nG = 1420, nA =
3492, ng = 5, and na = 2077, then rw = 0.591308, ra =
0.299155, and r3 = 0.423860, where r3 is in the middle of
rw and ra. If nG = 6155, nA = 14, ng = 6141, and na = 0 (i.e.,
one of the above special cases), then rw = 0.997725, ra =
0.498863, and r3 = 0.995461, where r3 is close to rw but
about twice as large as ra. Hence, the MER r3 is not dis-
cussed further in this article.
The SE of the average MER ra may be estimated ana-

lytically, because the correlation coefficient between the
FN rate rfn and the FP rate rfp in the CIS application is 1
as proven in the following.
For a GT cell and its related AD cell, assuming they

are not disjoint, once the size of the FN region in-
creases or decreases by one pixel, the size of the FP
region will increase or decrease by one pixel accord-
ingly due to the constraint condition Eq. (1). Using
the notations in section “The MER for segmenting a
single cell”, the correlated pairs of the FN rate rfn
and the FP rate rfp are

rfn i; rfp i
� � ¼ ng þ i

nG
;
na þ i
nA

� 	
;

i ¼ −m;…; −1; 0; 1;…; n

ð11Þ

where the constraints are ng – m ≥ 0, na – m ≥ 0, ng +
n ≤ nG, na + n ≤ nA, and nG – ng = nA – na.
The averages of the FN rate and the FP rate are,

r−fn ¼ 1
mþ nþ 1

Xn
i ¼ −m

ng þ i

nG
¼ ng

nG
þ 1

nG
� n−m

2

r−fp ¼ 1
mþ nþ 1

Xn
i ¼ −m

na þ i
nA

¼ na
nA

þ 1
nA

� n−m
2

:

ð12Þ
Hence, the correlation coefficient is,

ρ ¼
Xn

i¼ −m
rfn i− r fnð Þ rfp i− r fp

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i ¼ −m
rfn i− r fnð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i ¼ −m
rfp i− r fpð Þ2

q

¼
Xn

i ¼ −m
i−

n−m
2


 �
i−

n−m
2


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i ¼ −m
i−

n−m
2


 �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i ¼ −m
i−

n−m
2


 �2
r ¼ 1 :

ð13Þ
Further, using the first formula of Eq. (3), the SE of the

average MER ra turns out to be SÊa = (SÊfn + SÊfp) / 2, in
which SÊfn and SÊfp may be estimated using SÊ = sqrt [r
(1 – r ) / n], where r = rfn and n = nG for SÊfn, and r =
rfp and n = nA for SÊfp.
However, such an analytical approach generally under-

estimates the SE of MER, and thus the SE of TER (see
Eq. (7)) as opposed to the bootstrap method. For the
seven CIS algorithms, if the bootstrap method is
employed, the estimated SÊs of TER, in which the aver-
age MER ra is used, are 0.001001, 0.000246, 0.000537,
0.000254, 0.001888, 0.000820, and 0.000292, respectively.
If the analytical approach is used, they are 0.000169,
0.000181, 0.000180, 0.000188, 0.000196, 0.000219, and
0.000208, respectively.

Conclusions
Our novel performance measure TER comes with SE
and 95% CI without restrictions on data size, and the
correlation coefficient of TERs between two CIS algo-
rithms is also solved. Thus, the well-established statis-
tical approach can be carried out to evaluate and
compare the performance levels of CIS algorithms with
statistical confidence. Significance values for differences
in CIS algorithm performance in combination with other
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factors such as computational execution time, etc. can
be used as a basis for selecting algorithms.
No matter which MER is chosen and no matter which

CIS algorithms and datasets are employed, the ap-
proaches of designing the TER using the total probability
in statistics based on MER, computing SE and 95% CI of
TER based on using the bootstrap method to estimate
the SE of MER, and conducting hypothesis testing, etc.
explored in this article remain intact. The TER ε aggre-
gates all MERs weighted by the size of a cell divided by
the total sizes of all cells so that the algorithm pays more
penalties if making errors while segmenting larger cells.
The TER ε is supported by the pairwise-comparison

test of MERs using 106 manually segmented GT cells
with different sizes and seven CIS algorithms taken
from ImageJ. It is also qualitatively consistent with
the observations from the MER histograms. The TER
approach is more effective than the bivariate approach
and the CDF approach.
The SE and 95% CI of the TER are computed using

Eq. (7), based on the SE of MER that is calculated using
the bootstrap method under a constraint condition for
CIS during bootstrap resampling. The nature of the
bootstrap method is stochastic. However, our studies re-
veal that the variation of the estimated SÊ of TER is
small. Moreover, in our studies, all estimated SÊs of
TERs obtained by a random execution of bootstrap
method while computing the SÊs of MERs fall in the
95% CÎ of the estimated SÊs of TERs correspondingly.
The error bars of the TERs can be used to evaluate the

performance level of a CIS algorithm against a hypothe-
sized value, and classify CIS algorithms into different
classes in terms of performance accuracies based on the
criteria of performance accuracies. While the error bars
overlap, the two-algorithm hypothesis testing can be
employed to compare two CIS algorithms and determine
the statistical significance of their performance differ-
ence. The Z test in Eq. (9) involves not only the SEs of
TERs but also the correlation coefficient between the
TERs of two CIS algorithms, which are all investigated
in this article.

Endnotes
1Certain commercial entities, equipment, or materials

may be identified in this document in order to describe
an experimental procedure or concept adequately. Such
identification is not intended to imply recommendation
or endorsement by the National Institute of Standards
and Technology, nor is it intended to imply that the en-
tities, materials, or equipment are necessarily the best
available for the purpose.
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