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Abstract

Background: Genome-wide association studies have enabled identification of thousands of loci for hundreds of
traits. Yet, for most human traits a substantial part of the estimated heritability is unexplained. This and recent
advances in technology to produce high-dimensional data cost-effectively have led to method development
beyond standard common variant analysis, including single-phenotype rare variant and multi-phenotype common
variant analysis, with the latter increasing power for locus discovery and providing suggestions of pleiotropic
effects. However, there are currently no optimal methods and tools for the combined analysis of rare variants and
multiple phenotypes.

Results: We propose a user-friendly software tool MARV for Multi-phenotype Analysis of Rare Variants. The tool is
based on a method that collapses rare variants within a genomic region and models the proportion of minor
alleles in the rare variants on a linear combination of multiple phenotypes. MARV provides analyses of all
phenotype combinations within one run and calculates the Bayesian Information Criterion to facilitate model
selection. The running time increases with the size of the genetic data while the number of phenotypes to analyse
has little effect both on running time and required memory. We illustrate the use of MARV with analysis of
triglycerides (TG), fasting insulin (FI) and waist-to-hip ratio (WHR) in 4,721 individuals from the Northern Finland
Birth Cohort 1966. The analysis suggests novel multi-phenotype effects for these metabolic traits at APOA5 and
ZNF259, and at ZNF259 provides stronger support for association (PTG+FI = 1.8 × 10−9) than observed in single
phenotype rare variant analyses (PTG = 6.5 × 10−8 and PFI = 0.27).

Conclusions: MARV is a computationally efficient, flexible and user-friendly software tool allowing rapid
identification of rare variant effects on multiple phenotypes, thus paving the way for novel discoveries and insights
into biology of complex traits.
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Background
In the past decade, genetic locus discovery for human
traits and diseases has been advanced via genome-wide
association studies (GWAS). Recent improvements in
technology to produce genotype data in a very cost- and
time-effective manner and powerful easy-to-use software
tools have played a major role in these advances, facili-
tating fast analysis of constantly increasing amounts of
data. Clearly, the next advances in the field of genomics
will be based on large-scale sequencing and other high-

dimensional omics data. A key challenge for successful
utilisation of these data lies, once again, in the availabil-
ity of powerful methods and user-friendly software tools,
thus enabling researchers to make rapid discoveries [1].
Large-scale sequencing efforts, such as the 1000 Ge-

nomes Project [2] or more recently the UK10K Project [3]
and the Haplotype Reference Consortium [4], have enabled
better characterization of variation in the human genome,
especially in the low-frequency and rare variant range.
Here, we denote all variants with minor allele frequency,
MAF < 5%, by RVs. Imputation based on variant density de-
tected by these projects yields high-quality genotype data
even down to 0.01% allele frequency [5]. Large scale se-
quencing data generation encourages method and software
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development for elucidating RV effects, since traditional
single-variant methods are underpowered to detect RV as-
sociations. Several methods and related software tools have
been proposed, including burden tests using collapsing
techniques, variance-component tests and combinations of
the two [6].
There has also been increasing interest in addressing

analysis of high-dimensional phenotypic and omic data,
such as metabolomics, in relation to human genome
variation. Multi-phenotype analysis (MPA), i.e. joint ana-
lysis of multiple phenotypes, is an example of recent de-
velopments in the field. Several methods and related
software for single-variant MPA, including Bayesian and
frequentist approaches, have recently been published [7].
The MPA approach is motivated by several factors: 1) it
boosts power for locus discovery [8–11]; 2) it provides
more precise parameter estimates [12]; and 3) it has bio-
logical advantages including the possibility to identify
multi-phenotype effects, including pleiotropy [13], when
one locus affects multiple phenotypes. The power im-
provement by the MPA approach is especially relevant
from a computational point of view, because to enable
the discovery of further loci for complex traits, the ana-
lyses will need to be based on hundreds of thousands of
individuals, such as those available from the UK Biobank
and other new large-scale efforts based on sequencing.
Storage and computational load for such amounts of
data will pose a challenge, and alternative strategies for
boosting power for locus discovery other than that of in-
creasing sample size, clearly bring an enormous
advantage.
We propose a novel tool MARV for RV MPA, which

enables joint analysis of both large-scale high-
dimensional genomic and phenotypic data. It extends
the burden test for RVs to high-dimensional phenotypic
data by applying the MPA approach. Recently, methods

designed for MPA of RVs have been proposed [14–16],
but these have several limitations regarding scalability
and ability to combine continuous and discrete pheno-
types, and more importantly, the associated software:
they either lack an easy user-interface or are computa-
tionally inefficient – key features to facilitate fast discov-
eries. Our software tool MARV enables analysis of both
continuous and binary phenotypes, as well as genotyped,
imputed or sequenced data. MARV is computationally
efficient for large-scale data. From a user point of view,
it enables standard formats of data as used in other
GWAS software, and the analyses are run using a com-
mand line interface, also familiar from widely used
GWAS software such as Plink [17] and SNPTEST [18],
thus enabling researchers quickly and effortlessly to
transit from the standard single variant, single pheno-
type GWAS to region-based analysis of multiple
phenotypes.

Implementation
The method on which MARV is based is briefly intro-
duced in Methods, and is extensively described, includ-
ing power simulations, elsewhere [19] (Methods).
MARV is written in C++ and has a command line user-
interface. A single run of MARV consists of just one step
and the required input files, commands and the resulting
output files are described below.

Data input and commands
MARV requires three files for a successful run: sample,
genotype and genomic region input files (Fig. 1). The
sample and the genotype input files should be in the
SNPTEST v2 [18] format. The genomic region file
should contain three columns: the name of the region,
and the start and the end positions for the region. It is
important that the positions in this file correspond to

Fig. 1 Workflow of a MARV run including required files, commands and resulting output files

Kaakinen et al. BMC Bioinformatics  (2017) 18:110 Page 2 of 8



the positions of the genotype file, i.e. the same genome
build for these two should be used (Fig. 2).
The user then needs to specify the phenotypes to be

analysed (–pheno_name), corresponsing to a column
name in the sample file, and the method to use for the
analysis, i.e. whether to analyse the genotype dosages de-
rived by the software from the imputation probabilities
(–method expected) or whether to use the thresholded
genotypes based on a pre-defined cut-off (–method
threshold, with a cut-off default 0.9 which can be chan-
ged with the –call_thres option) (Fig. 1). Additionally,
the user may specify several other options, such as indi-
viduals or SNPs to extract or exclude from the analysis.
It is important to specify the threshold used for the
minor allele frequency (–rare_thresh, by default 0.05,
which means that variants with minor alleles of fre-
quency < 5% only will be included in the analysis). All
the available options of the latest version of MARV can
be found from the online manual of MARV.

Data analysis
MARV works across the genome by going through the
specified gene regions one by one. Based on the gene
boundaries and desired rare variant cut-off, it calculates,
for each individual, the proportion of minor alleles at
rare variants within the region [20]. After this calcula-
tion is performed for all individuals, a linear regression
is fitted using the proportion as the outcome and the
listed phenotypes as its predictors. The likelihood

contribution of each individual is further weighted by
the number of successfully genotyped/imputed RVs in
the region of interest. For each genomic region,
weighted linear regression is performed for all different
phenotype combinations, i.e. if a user specifies pheno-
types pheno_a and pheno_b, three different models for
the proportion are fitted with the following predictor
combinations: 1) pheno_a + pheno_b, 2) pheno_a, 3) phe-
no_b. MARV calculates the Bayesian Information Criter-
ion (BIC) for each model to help the user in identifying
the best fitting phenotype combination.

Output files
MARV produces three files by default:.error file,.log file
and.result file (Fig. 1). The error file will be empty if the
run was completed successfully; otherwise details about
problems during the run are reported (Fig. 2). The log
file will give specific details of the analysis, including the
number of samples in the sample file and genotype file,
and the number of phenotypes used for the analysis. It
will also include the variants included for the analysis of
each genomic region, along with their MAFs. The results
file will include one row for results per each genomic re-
gion. If the user specifies printing of all the possible
model combinations (–print_all) there will be as many
rows per gene as there were different model combina-
tions fitted. This file will inform the log likelihood and
BIC of the model as well as the P-value for each model.
We note that the P-value is uncorrected for any multiple

Fig. 2 Examples of the required input file formats for MARV and the resulting output files
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testing. If the user is interested in the effect estimates
and their standard errors for each of the model mem-
bers, i.e. phenotypes included in the fitted model, a
separate.betas file can be requested (–betas) (Figs. 1 and
2). A complete list of the columns in the output file with
their meanings is provided in the online tutorial of
MARV.

Case study
To illustrate the use of MARV across the genome, we
have applied it to data from the Northern Finland Birth
Cohort 1966 (NFBC1966), which covers over 96% of all
births in the two northernmost provinces of Finland in
1966 (N = 12,068 live-born children) [21]. We included
data from 4,721 cohort members who had participated
in the 31 year clinical examination and had genetic data
as well as data on triglycerides (TG), fasting insulin (FI)
and waist-to-hip ratio (WHR). The Ethics Committees
of the University of Oulu and Northern Ostrobothnia
Hospital District have approved the study. Individuals
used for the analyses have provided written, informed
consent.
Motivation for the selection of the traits comes from a

common variant single-trait GWAS, which has shown
an enrichment of FI associations among SNPs prese-
lected on Metabochip for TG and waist phenotypes [22].
For the selected traits, we applied the following criteria:
1) FG: exclude non-fasting individuals and/or those hav-
ing type 1 or 2 diabetes mellitus or on diabetes treat-
ment or having fasting blood glucose ≥ 7 mmol/l and/or
being pregnant, 2) TG: exclude non-fasting and/or indi-
viduals known to be on lipid lowering medication. We
modelled each trait on sex, body mass index and the first
three principal components derived from the genetic
data to control for potential population structure. An in-
verse normal transformation was further applied to the
residuals of WHR and TG to reduce skewness.
DNA was extracted from blood samples drawn after

overnight fasting at the 31 year clinical examination. Geno-
typing was performed with the Illumina HumanCNV370-
DUO Analysis BeadChip platform at the Broad Institute,
USA, with Beadstudio algorithm being used for genotype
calling. Detailed genotyping and sample quality control
(QC) of the first set of data have been reported before [23].
Additional samples were genotyped afterwards, resulting in
5,402 subjects and 324,896 SNPs available for analysis. The
1,000 Genomes Project “all ancestries” reference panel
(March 2012) was used for imputation, resulting in ~38 M
SNPs for analysis.
We analysed the transformed residuals in MARV with

the method “threshold” (option -m threshold), i.e. geno-
types with probability of 0.95 or higher were considered
called, whilst all others were considered missing. The
gene list from the University of California Santa Cruz

(UCSC, NCBI genome sequence build 37, hg19) [24]
was used to define gene regions, and a level of signifi-
cance of 1.67 × 10−6 was adopted based on a Bonferroni
correction for 30,000 genes. We analysed all variants ir-
respective of their annotation across autosomal chromo-
somes using the following cut-offs: MAF < 5% and
imputation quality > 0.4.

Results and discussion
Case study
The three selected phenotypes, FI, TG and WHR, were
modestly correlated with each other (RFI_TG = 0.37,
RFI_WHR = 0.18, RTG_WHR = 0.19). The multi-phenotype
analysis of the three phenotypes revealed genome-wide
significant associations covering two gene regions on
chromosome 11: at APOA5 (apolipoprotein A-V) and at
ZNF259 (the zinc finger protein 259, also known as ZPR1)
genes (Table 1, Figs. 3 and 4). Besides the full model,
MARV also provides parameter estimates and tests of as-
sociations for each phenotype combination, including the
single phenotype models. Therefore, we were able to com-
pare the results from the joint analysis against traditional
single phenotype analyses. Additionally, the BIC provided
by MARV for each sub-model served for selection of the
phenotype combination providing the best fit. At APOA5,
the best fitting model according to BIC contained TG only
(P = 2.0 × 10−7), while at ZNF259, the model with FI and
TG provided the lowest BIC and hence support for the
best fit (P = 1.8 × 10−9) (Table 1). The model with FI and
TG provided a lower P-value compared to those obtained
from univariate models (PTG = 6.5 × 10−8 and PFI = 0.27),
suggesting that at least the association with FI would have
been missed in univariate analyses. The effects of TG and
FI on the rare allele load were in opposite directions: while
the increase in TG levels was associated with a greater
proportion of minor alleles within ZNF259, the opposite
was true for FI. This was true also for the univariate
models (Table 1). All results files outputted by MARV are
available as Additional files 1, 2, 3 and 4.
Common variants at these two identified genes have

previously been associated with TG, total cholesterol,
high-density lipoprotein, low-density lipoprotein, apoli-
poprotein A1 and B, coronary heart disease, coronary
artery disease, plasma viscosity, Lp-PLA2 activity, pros-
tate cancer, and circulating vitamin E levels [25–33]. A
recent large-scale GWAS also reported RV associations
at ZNF259 with triglyceride levels [34]. Our analysis
pointed to multi-phenotype effects with TG and FI. A
recent study in Japanese individuals showed evidence for
associations between variation in ZNF259 and type 2
diabetes [35], making this locus of interest for further in-
vestigation in the pathogenesis of the disease. Interest-
ingly though, in our MPA the effects of TG and FI on
the rare allele load at ZNF259 were in opposite
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directions, contrary to our expectations, since elevated
TG levels usually correlate with elevated rather than de-
creased FI levels.

Running time and memory
We measured running time and memory usage of
MARV by performing additional analyses on the
NFBC1966 data with different number of individuals,
phenotypes and on different sized chromosomes. For
these analyses, we used 2,405 and 4,809 (i.e. ~double the
first) individuals with complete data on eight continuous
phenotypes. We analysed a combination of two, four
and eight continuous phenotypes and used 1000 Ge-
nomes imputed chromosomes 1 and 22 data for the as-
sociation analyses. All analyses were run and their
performance data were collected using Imperial College
HPC Cluster. Compute nodes were equipped with
Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz machine.
The results are summarised in Table 2. We observe

that the size of the genomic region to be analysed not-
ably affects the running time. However, there is not a
linear relationship between the number of phenotypes
and the computation time required. For example, the in-
crease in time for chromosome 1 is just under 3 h (17%
from original time) even when the number of

Table 1 Results for loci reaching genome-wide significance in the multi-phenotype rare variant analysis of NFBC1966 (N = 4,721).
Regression coefficients with their standard errors (SE) are reported, followed by the P-value and the Bayesian Information Criterion
(BIC) for the analysed model. TG, triglycerides; ln(FI), natural logarithm transformed fasting insulin; WHR, waist-to-hip ratio

APOA5
(Chr 11: 116,660,086-116,663,136)

ZNF259
(Chr 11: 116,649,276-116,658,739)

Model β (SE) P-value; BIC β (SE) P-value; BIC

TG + ln(FI) + WHR, full model a 3.32 × 10−8; −19877.3 6.3 × 10−8; −25069.6

TG 0.011 (0.002) - 0.007 (0.001) -

ln(FI) −0.010 (0.004) - −0.008 (0.002) -

WHR 0.027 (0.019) - 0.010 (0.011) -

TG + ln(FI) 2.00 × 10−8; −19883.5 1.8 × 10−9; −25077.3

TG 0.011 (0.002) - 0.007 (0.001) -

ln(FI) −0.010 (0.004) - −0.007 (0.002) -

TG +WHR 3.34 × 10−7; −19877.9 4.1 × 10−7; −25066.5

TG 0.009 (0.002) - 0.005 (0.001) -

WHR 0.020 (0.019) - 0.005 (0.001) -

ln(FI) + WHR 0.08; −19853.1 0.10; −25427.6

ln(FI) −0.003 (0.004) - −0.003 (0.002) -

WHR 0.041 (0.019) - 0.019 (0.011) -

Univariate b

TG 0.009 (0.002) 9.15 × 10−8; −19885.1 0.005 (0.001) 6.5 × 10−8; −25074.7

ln(FI) −0.002 (0.003) 0.62; −19856.8 −0.002 (0.002) 0.27; −25046.7

WHR 0.038 (0.019) 0.04; −19860.7 0.016 (0.011) 0.16; −25047.5
a For a genome-wide joint analysis, the level of significance is P < 1.67 × 10−6 after Bonferroni correction for 30,000 genes
b For univariate analysis, the level of significance is P < 5.56 × 10−7 after Bonferroni correction for 30,000 genes and three phenotypes

Fig. 3 QQ-plot of MARV analysis results on triglycerides, fasting insulin
and waist-to-hip ratio in the NFBC1966
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phenotypes is doubled from four to eight and the num-
ber of models to be fitted is more than 20-fold. Doubling
the sample size roughly triples the runtime.
The memory usage of MARV is more related to the

size of the genetic data and number of individuals to
analyse rather than the number of phenotypes to ana-
lyse. In our example, the peak memory usage was almost
constant for all chromosome 1 and 22 analyses when the
sample size remained the same, independent of the
number of phenotypes in the model (Table 2). Consider-
ing the size differences of these two chromosomes
(Table 2), we note that the increase in memory usage is
not linear, however.

Conclusions
Our novel tool MARV allows for RV analysis of multiple
phenotypes in a computationally efficient and user-
friendly manner. The data input formats and the com-
mand line interface familiar from widely-used GWAS
software will offer researchers a quick setup for the ana-
lyses. Moreover, the feature of analysing all phenotype
combinations within one run and the calculation of BIC
to help in model selection will pave the way for rapid

discoveries and novel insights into biology of complex
traits.

Methods
Statistical model
MARV is based on a so-called “reverse regression” ap-
proach, i.e. as compared to the standard GWAS in
which the phenotype is the outcome and the genotype
the predictor, this scenario is reversed in MARV. By
using the genetic data as the outcome, we enable as-
sessment of associations with multiple phenotypes sim-
ultaneously through the use of simple linear regression.
While the “reverse regression” approach has been pro-
posed for single genetic variants with the risk allele
count or allele dosage being the outcome [36, 37],
MARV uses a mutational load (burden) of risk alleles at
RVS as the outcome. That is, the outcome is the pro-
portion of RVs at which minor alleles are carried by in-
dividuals within a genomic region. This proportion is
then modelled as a linear combination of K phenotypes.
Mathematically, if ri is the number of minor alleles at
RVs and ni is the total number of RVs, the model
becomes:

rini
‐1 ¼ αþ βyi þ εi;

where rini
−1 is the proportion of minor alleles for ith indi-

vidual, yi is a vector of phenotype data for individual i,
with corresponding regression coefficients β = [β1,…, βK],
and ɛi ~MVN(0,ơ2), ơ2 being a covariance matrix.
Weighted linear regression is applied to allow for weight-
ing by the number of successfully genotyped or imputed
RVs within the region of interest. The significance testing
is based on a likelihood ratio test which compares the
weighted likelihoods of the fitted model against a null
model where β = 0. The likelihood ratio test statistic has
an approximate χ2 distribution with K degrees of freedom.
The type I error rate and power of the method have been

tested under various scenarios with simulated phenotype

Fig. 4 Manhattan plot of MARV analysis results on triglycerides, fasting insulin and waist-to-hip ratio in the NFBC1966. Genes reaching genome-wide
significance (P < 1.67 × 10−6) are annotated

Table 2 Computational time and peak memory usage of MARV
by varying sample size, chromosomal size and number of
phenotypes

Number of phenotypes
(number of fitted models)

Chr 1 (249 Mbp) Chr 22 (35 Mbp)

N = 2,405 h:min:s (memory) h:min:s (memory)

2 (3) 4:06:54 (215 MB) 00:38:04 (260 MB)

4 (15) 3:51:23 (215 MB) 00:38:37 (260 MB)

8 (63) 5:07:11 (215 MB) 00:55:58 (260 MB)

N = 4,809 h:min:s (memory) h:min:s (memory)

2 (3) 14:47:34 (780 MB) 02:26:00 (500 MB)

4 (15) 13:40:11 (780 MB) 02:26:10 (600 MB)

8 (63) 17:26:08 (780 MB) 03:03:00 (600 MB)
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and genotype data, and the results from these analyses are
described in detail elsewhere [19].

Availability and requirements
Project name: MARV
Project home page: https://github.com/ImperialStat-
Gen/MARV
Operating system(s): UNIX
Programming language: C++
Other requirements: Standard Linux/UNIX build tools
to compile the program.
License: BSD 3-Clause License
Any restrictions to use by non-academics: None

Additional files

Additional file 1: marv_chr1-5.result. Original results files outputted
from MARV from the case study using NFBC1966 data. (RESULT 17825 kb)

Additional file 2: marv_chr6-10.result. Original results files outputted
from MARV from the case study using NFBC1966 data. (RESULT 12614 kb)

Additional file 3: marv_chr11-15.result. Original results files outputted
from MARV from the case study using NFBC1966 data. (RESULT 11495 kb)

Additional file 4: marv_chr16-22.result. Original results files outputted
from MARV from the case study using NFBC1966 data. (RESULT 14097 kb)
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