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Abstract

Background: The Stochastic Process Model (SPM) represents a general framework for modeling the joint evolution
of repeatedly measured variables and time-to-event outcomes observed in longitudinal studies, i.e., SPM relates the
stochastic dynamics of variables (e.g., physiological or biological measures) with the probabilities of end points (e.g.,
death or system failure). SPM is applicable for analyses of longitudinal data in many research areas; however, there are
no publicly available software tools that implement this methodology.

Results: We developed an R package stpm for the SPM-methodology. The package estimates several versions of
SPM currently available in the literature including discrete- and continuous-time multidimensional models and a
one-dimensional model with time-dependent parameters. Also, the package provides tools for simulation and
projection of individual trajectories and hazard functions.

Conclusion: In this paper, we present the first software implementation of the SPM-methodology by providing an
R package stpm, which was verified through extensive simulation and validation studies. Future work includes further
improvements of the model. Clinical and academic researchers will benefit from using the presented model and
software. The R package stpm is available as open source software from the following links: https://cran.r-project.org/
package=stpm (stable version) or https://github.com/izhbannikov/spm (developer version).
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Background
A plethora of approaches to the joint analysis of longitudi-
nal and time-to-event (survival) data have been developed
the in last few decades, see ([1], Ch. 11) and [2, 3]. For
example, joint longitudinal-survival models analyze the
joint behavior of the process describing physiological vari-
ables (i.e. “longitudinal” process) and time-to-event (“sur-
vival”) process, see [4–7] and R package JM[8], lcmm[9].
These models usually represent the hazard in the form of
the Cox proportional hazards model [10] and dynamics of
longitudinal variable as a mixed-effects model [11]. Also,
random processes (e.g., Ornstein-Uhlenbeck or Gaussian
processes) can be used in order to handle random fluctu-
ations of individual measurements around the population
average [12, 13].
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There are also extensions, such as accelerated failure
time or additive hazard models [14, 15] (see, e.g. R - pack-
age JM), which can be applied if the Cox proportional
hazards assumption is violated.
However, an important challenge to consider in the con-

text of bioinformatic studies is integration of biological
knowledge and theories with statistical and computational
methods and algorithms. One of possible approaches
to integrate biological concepts and statistical models is
based on the quadratic hazard models (also known alter-
natively as Stochastic Process Models, SPM) which were
first introduced several decades ago [16–18]. Such mod-
els were recently modified [19, 20] to incorporate several
conceptual mechanisms with clear biological interpreta-
tion (such as homeostatic regulation, allostatic adapta-
tion, stress resistance, adaptive capacity and physiological
norms) relevant in the context of research on aging.
Incorporation of available knowledge about regularities
of aging-related changes developing in the human body
into the model structure allows for addressing fundamen-
tal problems of aging dealing with age-related declines
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in stress resistance and adaptive capacity, changes in
resilience and physiological norm, accumulation of allo-
static load, etc. [20]. Importantly, these models permit
evaluating all these mechanisms indirectly from longitu-
dinal trajectories of biomarkers and data on mortality or
onset of diseases when measurements of relevant vari-
ables representing the respective biological processes are
not available in the data. Thus SPM provides an exam-
ple of a successful attempt to analytically link biological
knowledge about aging-related processes developing in
the human body with changes in mortality risk using a
compact and convenient mathematical framework.
The idea of SPM was first described in [16]. The theo-

retical background of the models with survival functions
affected by stochastic covariates was also presented in
[17, 21–23]. Later the methodology was extended in sev-
eral publications, e.g. [19, 24–29]. The SPM links the
dynamics of stochastic variables represented by multi-
variable autoregressive or stochastic differential equations
with hazard rates described as quadratic functions of the
state variables. The choice of the quadratic hazard func-
tion (also known as U- or J- shaped hazard function)
is justified empirically based on many epidemiological
observations for various biomarkers (see, e.g., [30–35]).
The minimum of a quadratic function (or paraboloid in
the multivariable case) is a point (or domain) in the vari-
able state space, which corresponds to the optimal system
status (e.g., the “normal” health status) with the mini-
mal value of mortality risk at a specific time (or age). An
important component of the SPM is the observational
plan which characterizes how dynamic variables affecting
mortality risk were measured in a longitudinal study.
We note also that such models have a much broader

range of applications in many areas beyond research on
aging capitalizing on their strength of using the stochastic
dynamics of variables which may better describe the real-
ity in many applications. Many publications demonstrated
the high relevance of using the SPM in joint analyses of
longitudinal measurements of various variables and time-
to-event outcomes. However, until now, there were no
publicly available software tools that implement this kind
of analysis.
In this paper we present the R package, stpm, the

first publicly available set of utilities which implements
the SPM methodology in three specific cases covering
analyses most frequently used in practice and, there-
fore, constituting a general framework for studying and
modeling survival (censored) traits depending on random
trajectories (stochastic paths) of variables.

Implementation
Model forms
There are two forms of the SPM that have been developed
recently stemming from the original works by Woodbury,

Manton, Yashin, Stallard and colleagues in 1970–1980’s:
(i) discrete-time stochastic process model, assuming fixed
time intervals between subsequent observations, initially
developed by Woodbury, Manton et al. [16, 23] and
further developed by Akushevich et al. [24]; (ii) and
continuous-time model, proposed in Yashin et al. [17, 22]
(and later extended in [19]), which can handle arbitrary
time intervals. The 2007 version [19] specifies the com-
ponents of the model tailored to applications in aging
research which can still be used in a more general context.
In the R package stpm we implemented the mod-

els of type i and ii with time-independent coefficients,
which can handle one or more variables (dimensions). In
addition, we implemented a one-dimensional case (when
one physiological variable/covariate is used) with time-
dependent coefficients of the model in [19]. Below we
briefly describe the types of stochastic process models
implemented in stpm.

Discrete-time SPM
The model [23, 24] assumes fixed time intervals between
consecutive observations. In this model, Y(t) (a k × 1
matrix of the values of covariates, where k is the number
of covariates considered) and μ(t,Y(t)) (the hazard rate)
have the following form:

Y(t + 1) = u + RY(t) + ε

μ(t,Y(t)) =[μ0 + bY(t) + Y(t)∗QY(t)] eθ t
(1)

Coefficients u (a k × 1 matrix, where k is a number of
covariates), R (a k × k matrix), μ0, b (a 1 × k matrix), Q
(a k × k matrix) are assumed to be constant in the partic-
ular implementation of this model in the R package stpm.
ε contains normally-distributed random residuals, a k × 1
matrix. The symbol “*” denotes transpose operation. θ is
a parameter to be estimated along with other parameters
(u, R, μ0, b,Q).
These coefficients are then estimated directly from (i)

linear auto-regression (Y(t + 1) = u + RY(t) + ε), where
Y(t) is empirically-observed for those subjects that are
alive at time t and Y(t+1) is the value of Y(t) at time t+1;
(ii) using a generalized linear model with family Binomial
and link Log.

Continuous-time SPM
In the specification of the SPM described in the 2007
paper by Yashin and collegaues [19] the stochastic differ-
ential equation describing the age dynamics of a covariate
is:

dY(t) = a(t)(Y(t)−f1(t))dt+b(t)dW(t),Y(t = t0) (2)

In this equation, Y(t) (a k × 1 matrix) is the value of a
particular covariate at time (age) t. f1(t) (a k × 1 matrix)
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corresponds to the long-term mean value of the stochas-
tic process Y(t) which describes a trajectory of individual
covariates influenced by different factors represented by
a random Wiener process W(t). Coefficient a(t) (a k × k
matrix) is a negative feedback coefficient which character-
izes the rate at which the process reverts to itsmean. In the
area of research on aging, f1(t) represents the mean allo-
static trajectory and a(t) represents the adaptive capacity
of the organism. Coefficient b(t) (a k × 1 matrix) charac-
terizes the strength of the random disturbances from the
Wiener processW(t).
The following function μ(t,Y(t)) represents the hazard

rate:

μ(t,Y(t)) = μ0(t)+(Y(t)− f(t))∗Q(t)(Y(t)− f(t)) (3)

here μ0(t) is the baseline hazard, which corresponds to
the risk whenY(t) follows its optimal trajectory; f(t) (a k×
1matrix) represents the optimal trajectory that minimizes
the risk andQ(t) (a k × k matrix) models the sensitivity of
the risk function to deviations from the norm.
In general, model coefficients a(t), f1(t), Q(t), f(t), b(t)

andμ0(t) are time(age)-dependent. For example, the coef-
ficient a can be assumed as (i) -0.05 (a constant, time-
independent) or (ii) a(t) = a0 + b0t (time-dependent),
in which a0 and b0 are unknown parameters to be esti-
mated. The model can handle, in theory, any number of
covariates.
In the implementation of the continuous-time SPMpro-

vided by the R package stpm, coefficients a, f1, f, b, μ0,
Q are assumed to be time-independent. However, μ0 and
Q from (3) can be multiplied by eθ t (by user’s choice) and
therefore are time-dependent: μ0(t) = μ0eθ t , Q(t) =
Qeθ t . If not, they are assumed to be time-independent
along with the other coefficients. Then themaximum like-
lihood method is used to estimate parameters a, f1, Q, f,
b, μ0, θ as described further.

Parameter estimation procedure
The parameter estimation procedure can be found, e.g., in
[19] and here we briefly summarize it. As shown in [19],
the likelihood function is:

L =
N∏
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μ̄(u) =μ0(u) + (m(u) − f(u))∗ × Q(u) × (m(u) − f(u))

+ Tr(Q(u) × γ (u))

(5)

dm(t)
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= a(t)(m(t)−f1(t))−2γ (t)Q(t)(m(t)−f(t)),m(0)

(6)
dγ (t)
dt

=a(t)γ (t) + γ (t)a(t)∗ + b(t)b(t)∗

− 2γ (t)Q(t)γ (t), γ (0)
(7)

Here L is the likelihood; i denotes individual, j denotes
observation for respective variable. In Eq. (5), (6), (7) we
suppressed i and j for brevity. μ̄(u) is the marginal haz-
ard, presented in the survival function associated with the
lifespan distribution P(T > t) = exp(− ∫ t

0 μ̄i(u)du);m(0)
and γ (0) are themean and the variance/covariance matrix
of the normal distribution of initial vector Y0 = Y(t = t0)
and the mean and the variance/covariance matrix of this
distribution at age t are given by m(t) and γ (t), respec-
tively; Tr denotes the trace of a matrix; yiti0

, yiti1
, ..., yitini

denote the measurements of the process Y (t); τi is the
lifespan (or age at censoring); δi is a censoring indica-
tor, mi(t) and γ i(t) satisfy (6),(7) at the intervals [ ti0, t

i
1),

[ ti1, t
i
2), ..., [ t

i
ni−1, tini), [ t

i
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i(t), and γ i(tij−) =
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i(t).
We use available optimization methods from package

nloptr to estimate the parameters of this model. By
default we use the Nelder–Mead method [36].
The coefficient conversion between continuous- and

discrete-time models is as follows (“c” and “d” denote
continuous- and discrete-time models respectively; note:
these equations can be used if the intervals between con-
secutive observations of discrete- and continuous-time
models are equal; it is also required that matrices ac and
Qc,d be full-rank matrices):

Qc = Qd

ac = Rd − I(k)
bc = �

f1c = −a−1
c × ud

fc = −0.5bd × Q−1
d

μ0c = μ0d − fc × Qc × f∗c
θc = θd

(8)

where k is the number of covariates, which is equal to
the model’s dimension and “*” denotes transpose opera-
tion; � is a k × 1 matrix which contains the s.d.s of the
corresponding residuals (residuals of a linear regression
Y(t+1) = u+RY(t)+ε; s.d. is a standard deviation), I(k)
is an identity k × k matrix.

Model with time-dependent coefficients
The two types of models described above assumes time-
independent coefficients, i.e. coefficients are constant and
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one-dimensional through the lifetime. We also imple-
mented a model in which the coefficients are time-
dependent functions.

Description of the R package stpm
The general workflow of parameter estimation in the
stpm R package consists of (i) data preparation and
(ii) model parameter estimation. A user can poten-
tially avoid the data preparation stage but should main-
tain an appropriate data format as described below
and in the package user manual. The package is
available as open source software from the following
link: https://cran.r-project.org/package=stpm (stable ver-
sion) or https://github.com/izhbannikov/spm (developer
version).

Input data
The input data consists of longitudinal follow-up data that
needs to be presented in the form of a dataset in comma-
separated or SAS formats. The dataset is a longitudinal
data file in a long format (i.e. each record represents a
single observation for a subject, therefore there are mul-
tiple rows per individual). An example is presented in
Table 1.

Data preparation
At the data preparation stage, the longitudinal dataset is
preprocessed with the following command:

d.prep <- prepare_data(x="longdat.csv")

Here longdat.csv is a path to the longitudinal
dataset (i.e., can be csv or SAS data file). Names of specific
covariates can be explicitly mentioned:

Table 1 Example of longitudinal dataset

IDa IndicatorDeathb Age AgeNext DBPc BMI

1 0 30 32 80 25.00

1 0 32 34 80 26.61

1 1 34 35.34 NA NA

2 0 30 38 77 32.40

2 0 38 40 94 31.92

2 0 40 40.56 88 32.89

... ... ... ... ... ...

2 0 80 80.55 83 26.71

...

aA subject identification number
bIndicatorDeath shows that death occurred (IndicatorDeath=1) or did
not occur (IndicatorDeath=0) between Age and AgeNext. Age for the next
observation of the same individual must coincide with AgeNext of the current
observation. AgeNext is a censoring age for the last observation.
cDBP and BMI are measured at age Age and are diastolic blood pressure and body
mass index. They are covariates. If some values of covariates are missing (but the
subject is alive), they are imputed during the data preparation stage (see section
“Data preparation”)

d.prep <- prepare_data(x="longdat.csv"

covariates=c("DBP", "BMI"))

In this case we mentioned two covariates: DBP, which
is diastolic blood pressure, and BMI - body mass index.
Therefore, only these covariates will be “prepared” for
downstream analysis. By default the first three columns of
data give individual id, censoring status, times of measure-
ments, and the values of measured covariates are provided
in the rest (see Tables 1, 2 and 3).
The output of prepare_data(...) function

includes a list of two datasets for modeling data with
arbitrary or fixed intervals. A dataset with fixed intervals
is used in the package function spm_discrete(...)
which implements discrete-time model; a dataset with
arbitrary time intervals is used in the package function
spm_continuous(...) for continuous-time model
(theoretically, there might be missing values in this
data set and the algorithm can impute them). Linear
interpolation is used for the former case to provide
values of covariates between predetermined (empirically-
observed) time points. Tables 2 and 3 are examples
of such data sets. Those tables contain no missing
values.

Model parameter estimation
At the parameter estimation stage, the stpm R-
package offers three SPM specifications: (a) discrete-time,
multi-dimensional SPM [23, 24]; (b) continuous-time,
multi-dimensional SPM [19]; (c) continuous-time, one-
dimensional SPMwith time-dependent user-defined coef-
ficients [25]. The package’s central function spm(...) is
used to estimate parameters from the model with differ-
ent specifications and can be executed with the following
command:

Table 2 Preprocessed table for discrete-time optimization. This
table is used in the function spm_discrete(...)

id case t1 t2 DBP DBP.next

1 0 78 80.00 74.70 75.37

1 0 80 82.00 75.37 72.14

1 0 82 84.00 72.14 67.03

1 1 84 85.34 67.03 71.22

2 0 30 32.00 80.00 80.49

2 0 32 34.00 80.49 88.20

2 0 34 36.00 88.20 89.36

....

2 0 82 83.55 74.01 78.18

3 0 30 32.00 80.00 83.67

3 0 32 34.00 83.67 93.03

...

https://cran.r-project.org/package=stpm
https://github.com/izhbannikov/spm
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Table 3 Preprocessed table for continuous-time optimization.
This table goes into function spm_continuous(...)

id case t1 t2 DBP DBP.next

1 0 76 77.03 73.68 71.70

1 0 77.03 78.11 71.70 73.20

....

1 0 83.14 84.00 72.14 69.58

1 1 84.00 85.34 69.58 67.03

2 0 30.72 32.00 80.03 80.40

2 0 32 33.23 80.40 80.24

....

2 0 79.80 81.57 69.84 74.01

2 0 81.57 83.55 74.01 78.18

3 0 31.42 32.91 79.48 80.50

3 0 32.91 33.79 80.50 81.83

....

model.par <- spm(d.prep, model="continuous")

In this command: d.prep is a dataset (preprocessed
data from function prepare_data(...)); model is
a model type, the choices are: “discrete”, “continuous”,
and “time-dependent.” For discrete and continuous model
types, the output is a list with two subsets (parameters of
these subsets are unambiguously related): (i) a set of esti-
mated parameters [u, R, b, Sigma, Q, mu0, theta], see
Eqs. (1); (ii) a set of estimated parameters [a, f1, Q, f, b,
mu0, theta], see Eqs. (2, 3).
Output for SPM with time-dependent parameters gives

estimates for parameters provided in formulas, which is
a list of formulas that define the time-dependent param-
eters. If some parameter’s formulas were not explicitly
indicated by a user in formulas then their defaults will
be used and estimates will be given. The corresponding
R-function to call this type of model is:

model.par <- spm(d.prep,

model="time-dependent",

formulas=list(at="a1*t+a2"))

In this case the parameter formulas re-defines a. The
model parameters not mentioned in the list formulas
are constants (default). Initial values of parameters in for-
mulas remaining for t=0 are estimated from the discrete-
time model and initial values of parameters that define
time dependence (e.g., a1 in the above example) are set to
zero.
In the toy example below we summarize the data prepa-

ration and parameter estimation stages in a typical work-
flow. Datasets stored in longdat.csv are simulated
data of two covariates (diastolic blood pressure, DBP, and
body-mass index, BMI) estimated for 100 subjects. After
this example we provide descriptions of the results.

library(stpm)

#Prepare data for optimization

data <- prepare_data(x="longdat.csv"

covariates=c("DBP", "BMI"))

#Parameter estimation

#(default model: discrete-time):

p.discr.model <- spm(data)

p.discr.model

# Continuous-time model:

p.cont.model <- spm(data,model="continuous")

p.cont.model

#Model with time-dependent coefficients:

data <- prepare_data(x="longdat.csv",

covariates="BMI")

p.td.model <- spm(data,

model="time-dependent")

p.td.model

p.discr.model, p.cont.model contain param-
eters estimated for discrete-time and continuous-time
models. p.td.model contains parameters estimated for
the SPM with time-dependent coefficients.

Projection and simulation studies
The R package stpm also allows projection and data
simulation with previously estimated or user-defined
parameters. Projections are constructed for a cohort with
normally distributed initial covariates. The results of the
projections are (i) a dataset with individual projected val-
ues and (ii) a dataset with survival probabilities and age-
specific means of state variables (covariates). An example
of projection is:

data.proj <- spm_projection(model.par,

N=5000,

ystart=80)

The model.par here is a list of estimated model
parameters from spm(...) function, 5000 is the number
of individuals to simulate, 80 is the mean value of a covari-
ate (in this case we have one-dimensional simulation). We
present an example of simulation of 5,000 individuals: a
data table and survival probabilities.

library(stpm)

# Starting parameters:

model.par <- list(a=-0.05, f1=90, Q=2e-8,

f=80, b=5,

mu0=1e-5, theta=0.11)

# Data simulation:

data <- spm_projection(model.par, N=100,

tstart=30, ystart=80,

model="discrete")

# Print some data:

head(data$data)

# Mean of covariates by age:
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data$stat$mean.by.age

# Plot survival probabilities:

plot(data$stat$srv.prob,

xlab="Age",

ylab="Percent survival",

xlim=c(30,105))

Here we first set the model parameters:

model.par <- list(a=-0.05, f1=90, Q=2e-8,

f=80, b=5,

mu0=1e-5,theta=0.11)

Then we call a simulation function spm_projection
(...) in order to simulate data (we specify a starting
age of 30 (tstart=30)). We also can see mean val-
ues of covariates for each age group (with a command
data$stat$mean.by.age) and plot survival curves
(see Fig. 1).

Simulation strategies
Simulation is needed for verification of the estima-
tion procedure. Below we describe simulation strategies
implemented in the R package stpm. All three models
described above were verified through simulation studies.
To begin, a cohort of individuals at an initial time t0 is

constructed. We construct individual trajectories as the
solution of Eqs. (1), (2) for discrete- and continuous-time
models using initial values of covariates, and random stop-
ping (death) times. The initial values of covariates for all
individuals in the cohort are simulated through sampling
from the Gaussian distribution: Y(t = t0) ∼ N(f1(t =
t0), σ 2

0 ), where f1(t = t0) is a value of function f1 at starting

Fig. 1 The Kaplan-Meier estimate (along with confidence intervals) of
the survival function of one simulated dataset generated by the
procedure described in “Simulation strategies” section

time t0 (both user-defined) and σ0 a standard deviation,
user-defined (by default σ0 = 1 for any covariate).
Once we have the initial distribution of values of covari-

ates for individuals, we then model trajectories in the
multidimensional state space as follows:

• First, the conditional probability of survival for each
individual is computed using the mortality rate
μ(t,Y(t)) for the interval (t, t + 
t):
S(t|Y(t)) = e−

∫ t+
t
t μ(s,Y(s))ds (for continuous-time

model) and S(t|Y(t)) = e−μ(t,Y(t))
t for discrete-time
model.

• Each individual in the simulated cohort is deemed to
survive or not, according to the probability S(t|Y(t)).
To do that, a uniformly distributed random number r
from the interval [0, 1] is generated. If r > S(t|Y(t)),
the individual is assumed to have died, and the
simulation of the corresponding individual trajectory
stops at time t + 
t (the time of death).

• Next, the covariate Y(t + 
t) for a surviving
individual is modeled using Eqs. (1) for discrete-time
model or (2) for continuous-time model. The next
observation time is modeled by adding 
t, which is
fixed for discrete-time model and arbitrary
(
t = step + unif (−0.1step, 0.1step) where
parameter step is fixed and user-defined; by default
step = 1) for continuous-time model, to the current
time t.

• If the age of a particular individual exceeded a
maximum age tmax (user-defined, 105 by default),
the individual is censored and trajectory simulation is
stopped at time t + 
t (a time of censoring). We also
provided the possibility of censoring after
achievement of n observations for a particular
individual.

The whole process is repeated until all individuals have
died or are censored.

Validation
We conducted simulations of 100 follow-up datasets with
discrete intervals (1 year) between the observations, with
5,000 of subjects in each dataset separately for one and
two covariates. Separately, we simulated another set of
100 follow-up datasets with arbitrary intervals between
observation (for continuous-time model, for one and
two covariates). Trajectory projections were performed
according to the methodologies described above. Finally,
we performed simulation of 100 follow-up datasets for the
model with time-dependent parameters and one covari-
ate. For this model we set the parameter f1 = f1a +
f1bt; other parameters were left as constants. Then we
estimated all the parameters for discrete-, continuous-
time and the model with time-dependent coefficients,
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for one and two covariates. The results are described
in Discussion.

Case study: application to the FraminghamHeart
Study Data
Biological reasoning for the components of SPM [19]
In this case study we illustrate the application of SPM [19]
in the context of biological questions in studies of aging.
As we noted, one of the challenges in the context of bioin-
formatic studies is to incorporate biological concepts into
statistical models. Understandably, representing biologi-
cal mechanisms relevant to functioning of such compli-
cated systems as the human organism in the framework of
a mathematical or statistical model is a tremendous task.
Nevetheless, one can try to represent in the model some
basic components of the system under study. The SPM (its
2007 version, [19]) represents such an attempt to incorpo-
rate basic concepts in the field of research on aging in the
framework of mathematical equations.
The first equation of the SPM (see eq. 2) represents the

stochastic dynamics of biomarkers. The stochastic com-
ponent of the model is an important part of the aging
process [37], therefore, it is natural to use stochastic pro-
cesses in the models of aging. One type of process which
is relevant for describing biological processes in a living
organism is the so-called mean-reverting stochastic pro-
cess [38]. Such a process has a tendency to move to its
equilibrium state (also called a long-termmean) and it can
represent homeostatic regulation in the structure of the
model (which is a critical property of the living organism).
In reality, organisms function in a non-optimal environ-
ment, therefore the regulatory systems push it to a dif-
ferent sub-optimal state, which is known as the allostatic
state [39]. Representation of the mean allostatic state in
the SPM is another important illustration of inclusion of
biological reasoning in statistical models for research on
aging. The statistical concept of a negative feedback coef-
ficient a(t) provides one more way to include biological
concepts in the model. The coefficient a(t) controls how
quickly the physiological trajectory reverts to its average
and modulates the adaptive response rate of an organism
to the stress factors. Such factors impact the biomarker
trajectories so they deviate from their normal (optimal)
states. For example, one research question could be to
look at the age dynamics of adaptive capacity. The phe-
nomenon of worsening adaptive capacity with age implies
that more time is required for the values of biomarkers to
return to the average allostatic state for older people in
comparison to the time needed for younger people.
The second equation of the SPM describes the hazard

rate μ(t,Y(t)) (i.e., mortality/incidence rate) as a function
of the stochastic covariates (see Eq. 3) [16, 21, 22]. The
SPM represents the hazard as a quadtratic form: (Y(t) −
f(t))∗Q(t)(Y(t)− f(t)); hence it is also called the quadratic

hazard model. Such a hazard form is a convenient and
useful choice with acceptable statistical properties [17, 22]
based on evidence that it is a quadratic function (J- or U-
shape) of different covariates, see, e.g., [31–33, 35]. The
hazard rate used in the model is also a function of time
(age) and it also includes a baseline hazard μ0 which can
be also time (age)-dependent (for example, Gompertz).
The parameter Q(t) controls how wide the U-shape (or

a J-shape) is and can be formulated in terms of stress
resistance [20, 40] or “vulnerability” [41]. As discussed
in these works, robustness or vulnerability are character-
ized by the width of the U-shape, and, therefore, if the
U-shape shrinks, the organism becomes more and more
susceptible to deviations of biomarkers from their “nor-
mal” states. Such decreases of stress resistance can be
indirectly captured from longitudinal data by the SPM.
SPM estimates physiological or biological norms of

biomarker values which correspond to minimal hazard
rates at some particular time (age) [42]: f(t). This is esti-
mated explicitly since the quadratic term contains the
difference between the biomarker value and some func-
tion denoting the normal (optimal) state: if a biomarker
value Y equals the function f then the quadratic part is
nullified. Any other values of Y not equal to f result in
larger hazard rates. The difference Y− f also indicates that
it was impossible for the organism to return to the optimal
state and, therefore, the organism is deregulated.

Application to blood glucose
Blood glucose (BG) has a tendency to increase with age
and therefore to significantly differentiate from the nor-
mal level of BG determined among young adults. This can
potentially contribute to increasing risks of death with age.
To study effects of BG on respective risks, researchers

usually apply the Cox proportional hazards model. This
gives one the estimates of coefficients β from which
one can calculate the respective hazard ratios. Hazard
ratios tell nothing about hidden and biologically inter-
pretable components of aging processes, such as allo-
static load, mean allostatic trajectory, stress resistance,
adaptive capacity, and physiological norm. To see the
effects of these components on mortality, which can not
be captured by the Cox model, we performed analy-
ses of repeated measurements of BG using SPM. This
allows splitting the negative effects of external forces
from the normal deterioration arising from the senescence
process.
In this case study, we show that the level of BG

which corresponds to the lowest mortality risk has a ten-
dency to increase with age. The age-related changes in
mortality-risk shape indicate the respective declines in
stress-resistance which influence the level of BG. The case
study results indicate that analyzing time-to-event data
with SPM can substantially improve our knowledge of
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various factors and mechanisms which have an effect on
aging-related changes in human organisms.

Data description
The Framingham Heart Study (FHS) Original Cohort was
established in 1948 and has continued to the present [43].
In this study, we used the FHS data provided by the
National Heart, Lung, and Blood Institute’s (NHLBI) Bio-
logic Specimen and Data Repositories Information Coor-
dinating Center (BioLINCC) resource (https://biolincc.

nhlbi.nih.gov/home/). Version 2014a was used in the anal-
yses. The dataset of N = 5,079 individuals (2,785 females,
2,294 males; almost all subjects are White/Caucasians).
The minimum individual age is 28 years and the max-
imum is 104 years; the average age is 60.18 years. The
average observational time was 12 years (6 exams) and
the average time between consecutive observations was 2
years. Missing BG observations were removed from the
analysis. A histogram of BG levels is given in Additional
file 1: Figure S6.

Fig. 2Model parameters a(t) (adaptive capacity of the organism), f1(t) (mean allostatic trajectory), f (t) (physiological norm - an optimal trajectory
with minimum risk) μ0(t) (baseline hazard) and Q(t) (represents stress resistance)

https://biolincc.nhlbi.nih.gov/home/
https://biolincc.nhlbi.nih.gov/home/
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Analysis methodology
We analyzed the data with R package stpm using
a one-dimensional continuous-time model with time-
dependent coefficients. Model parameters were in the
form of linear functions and are presented below:

a(t) = ay + by · t
f1(t) = af1 + bf1 · t
Q(t) = aq + bq · t
f (t) = af + bf · t
b = const
μ(t) = μ0 · eθ ·t

(9)

Therefore, parameters ay, by, af1 , bf1 , aq, bq, af , bf , b, μ0, θ
were estimated.

Results
The plots of a(t), f1(t), f (t) ,Q(t) andμ(t) are presented in
Fig. 2. Numerical values of parameter estimates along with
their statistical characteristics such as s.d. and confidence
intervals are presented in Additional file 1: Table S3.
From Fig. 2 we can see that the value of BG changes

with age as shown in [42]. The function f1 shows that the
organism is not usually functioning in normal environ-
ment and therefore the trajectory of BG does not revert to
the “norm” but rather to a different function. The increase
with age inQ(t) indicates that the same deviation from the
“norm” at older ages results in a larger increase in mortal-
ity risk. This means that the organism is more vulnerable
to deviations of the level of BG from the normal value.
We also see that the normal value is age-dependent. This
indicates that the this optimal level of BG for younger indi-
viduals can actually increase the risk of death at older ages.
Also, the age-dependence in a(t) shows that it takes more
time for the trajectory of BG to go back to the allostati-
cally prescribed value at older ages than it takes at younger
ages. This means that the adaptive capacity of the organ-
ism (as related to adaptation to deviation of BG levels)
declines with age.
As we show in this example, SPM [19] can estimate dif-

ferent aging-related components which eventually affect
mortality though the longitudinal dynamics of physio-
logical variables (such as BG). This provides a way to
get additional insights into the processes of aging and
serves as a background for further investigations using, for
example, genetic analyses [26].

Results
Tables 4, 5 and 6 show simulation results for one- and
two-dimensional discrete-time SPM models with time-
independent coefficients. Results for continuous-time
SPM for both one- and two dimensions are provided in

Table 4 Results of simulation studies for one-dimensional
discrete-time model (5,000 individuals, 100 replications),
estimated mean, standard deviation, lower and upper
boundaries of empirical confidence interval (95th percentile) of
estimated coefficients

Parameter True Est.mean SD LW UP

a -5.0000e-02 -5.0051e-02 1.1178e-03 -5.1884e-02 -4.8210e-02

f1 8.0000e+01 7.9966e+01 2.7216e-01 7.9619e+01 8.0390e+01

Q 1.0000e-06 1.0200e-06 8.4057e-08 8.8716e-07 1.1781e-06

f 8.0000e+01 7.9996e+01 9.4074e-02 7.9855e+01 8.0152e+01

b 5.0000e+00 4.9997e+00 1.0189e-02 4.9827e+00 5.0151e+00

mu0 1.0000e-05 1.0131e-05 1.5194e-06 8.3345e-06 1.2294e-05

theta 1.0000e-01 9.9750e-02 1.4026e-03 9.7000e-02 1.0200e-01

Additional file 1: Tables S1 and S2. All of the results
show concordance with the parameter values used in
simulation.
We also provide histograms of estimated parameters for

all model types. Figures S1-S5 from Additional file 1 show
histograms of estimated parameter for one- and two-
dimentional discrete-time models and the model with
time-dependent coefficients.

Discussion
The Stochastic Process Model allows researchers to uti-
lize the full potential of longitudinal data by evaluating

Table 5 Results of simulation studies for two-dimensional
discrete-time model (5,000 individuals, 100 replications),
estimated mean, standard deviation, lower and upper
boundaries of empirical confidence interval (95th percentile) of
estimated coefficients

Parameter True Est.mean SD LW UP

a11 -5.0000e-02 -4.9908e-02 8.4712e-04 -5.0074e-02 -4.9742e-02

a12 1.0000e-03 9.3123e-04 4.2772e-04 8.4740e-04 1.0151e-03

a21 1.0000e-03 1.1607e-03 2.2296e-03 7.2369e-04 1.5977e-03

a22 -5.0000e-02 -5.0140e-02 9.9902e-04 -5.0336e-02 -4.9945e-02

f1 1 1.0000e+02 1.0071e+02 9.0962e+00 9.8931e+01 1.0250e+02

f1 2 2.0000e+02 1.9951e+02 4.4247e+00 1.9864e+02 2.0038e+02

Q11 1.0000e-06 1.0207e-06 1.2101e-07 9.9703e-07 1.0445e-06

Q12 1.0000e-07 1.0382e-07 3.7846e-08 9.6407e-08 1.1124e-07

Q21 1.0000e-07 1.0382e-07 3.7846e-08 9.6407e-08 1.1124e-07

Q22 1.0000e-06 1.0121e-06 7.8420e-08 9.9672e-07 1.0275e-06

f 1 1.0000e+02 1.0005e+02 3.6333e-01 9.9974e+01 1.0012e+02

f 2 2.0000e+02 2.0000e+02 1.8756e-01 1.9997e+02 2.0004e+02

b 1 2.0000e+00 2.0007e+00 3.7442e-03 2.0000e+00 2.0014e+00

b 2 5.0000e+00 4.9989e+00 8.4494e-03 4.9972e+00 5.0005e+00

mu0 1.0000e-04 1.0034e-04 8.5791e-06 9.8661e-05 1.0202e-04

theta 8.0000e-02 7.9900e-02 1.1237e-03 7.9680e-02 8.0120e-02
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Table 6 Results of simulation studies for one-dimensional
continuous-time model (5,000 individuals, 100 replications), with
assuming time-dependent model coefficient f1 = f1a + f1bt,
estimated mean, standard deviation, lower and upper
boundaries of empirical confidence interval (95th percentile) of
estimated coefficients

Parameter True Est.mean SD LW UP

a -5.0000e-02 -4.9620e-02 2.5252e-03 -5.3315e-02 -4.5373e-02

f1a 8.0000e+01 7.9899e+01 7.5520e-01 7.8839e+01 8.1205e+01

f1b 1.0000e-01 1.0196e-01 1.0402e-02 8.4886e-02 1.1978e-01

Q 1.0000e-05 1.0280e-05 5.1640e-06 1.3449e-06 1.8183e-05

f 8.0000e+01 7.7017e+01 2.4743e+01 3.0810e+01 1.1497e+02

b 2.5000e+00 2.4999e+00 2.1137e-02 2.4676e+00 2.5336e+00

mu0 1.0000e-01 9.6731e-02 4.6173e-03 8.4344e-02 1.0169e-01

dynamic mechanisms of changing physiological variables
with time (age), allowing the study of differences, for
example, in genotype-specific hazards. Applying the
Stochastic Process Model to analysis of longitudinal data
can uncover influences of hidden components (adaptive
capacity, allostatic load, resistance to stresses, physiologi-
cal norm) of aging-related changes, which play important
roles in aging-related processes but cannot be measured
directly with common statistical methods. This provides
researchers with a new way of analyzing longitudinal data.
The specific form of the hazard of risk function should

be taken into account where conducting analyses of longi-
tudinal data using SPM. In our approach, we assume that
the hazard rate (incidence rate related to changing phys-
iological variable with age) has a U- or J- shape, which
is biologically justified by empirical observations. In real-
ity, the true form of this function is not known and, since
it is impossible to estimate the true form from the data,
an incorrectly assumed hazard may introduce additional
bias. Additional investigation is needed in order to eval-
uate the effects of different forms of hazard functions on
results.

Conclusion
We presented stpm - an R package that implements the
Stochastic Process Model methodology. SPM can be used
not only for stochastic modeling of probabilities of end-
points but in many other applied areas, e.g., life science
applications including biologically based modeling. In this
work, the package was validated through simulation stud-
ies. The stpm R package can be extended by including: (i)
SPM with several health states [29]; (ii) SPM with hidden
heterogeneity [28]; (iii) SPM with competing risks [27];
and (iv) SPM for partially observed covariates [26].

Availability and requirements
Project name: stpm
Projecthomepage: https://github.com/izhbannikov/spm/

Operating systems: Platform independent
Programming language: R
Other requirements: R 3.2.2 or higher + Rcpp, RcppAr-
madillo, mice, sas7bdat, stats, nloptr, survival, tools, knitr
packages
Licence: GPL licence

Additional file

Additional file 1: Supplementary materials. Table S1 Results of
simulation studies for one-dimensional continuous-time model (5,000
subjects, 100 replications); Est.mean: estimated mean, SD: standard
deviation, LW, UP: lower and upper boundaries of empirical confidence
interval (95th percentile) of estimated coefficients. Table S2 Results of
simulation studies for two-dimensional continuous-time simulation (Var1
and Var2, 5,000 individuals, 100 replications); Est.mean: estimated mean;
SD: standard deviation; LW, UP: lower and upper boundaries of empirical
confidence interval (95th percentile) of estimated coefficients. Figure S1
Histograms of estimated parameters of one-dimensional discrete-time
model. Vertical red lines show the estimated means. Blue vertical lines
indicate true parameters. Figure S2 Histograms of estimated parameters
of one-dimensional continuous-time model. Vertical red lines show the
estimated means. Blue vertical lines indicate true parameters. Figure S3
Histograms of estimated parameters of one-dimensional continuous-time
model with time-dependent parameter f1 = f1a + f1bt; other parameters
remained constant. Blue vertical lines indicate true parameters. Red vertical
lines indicate estimated mean values of estimated parameters. Figure S4
Histograms of estimated parameters for discrete-time two-dimensional
model. Blue vertical lines indicate true parameters, red lines indicate
estimated parameters. Figure S5 Histograms of estimated parameters for
continuous two-dimensional model. Blue vertical lines indicate true
parameters, red lines indicate estimated parameters. Table S3 Results of
analysis Framingham Heart Study Data, Variable: blood glucose (BG);
Est.mean: estimated mean; SD: standard deviation; LW, UP: lower and
upper boundaries of empirical confidence interval (95th percentile) of
estimated coefficients. There were 30 runs with different starting values of
the model parameters. Figure S6 Histograms of Blood Glucose (BG) level
extracted from FHS original cohort. (760 KB DOCX)
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