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Abstract

Background: Membrane proteins are underrepresented in structural databases, which has led to a lack of computational
tools and the corresponding inappropriate use of tools designed for soluble proteins. For membrane proteins,
lipid accessibility is an essential property. Although programs are available for sequence-based prediction of
lipid accessibility and structure-based identification of solvent-accessible surface area, the latter does not
distinguish between water accessible and lipid accessible residues in membrane proteins.

Results: Here we present mp_lipid_acc, the first method to identify lipid accessible residues from the protein
structure, implemented in the RosettaMP framework and available as a webserver. Our method uses protein
structures transformed in membrane coordinates, for instance from PDBTM or OPM databases, and a defined
membrane thickness to classify lipid accessibility of residues. mp_lipid_acc is applicable to both α-helical and
β-barrel membrane proteins of diverse architectures with or without water-filled pores and uses a concave
hull algorithm for surface-residue classification. We further provide a manually curated benchmark dataset that
can be used for further method development.

Conclusions: We present a novel tool to classify lipid accessibility from the protein structure, which is
applicable to proteins of diverse architectures and achieves prediction accuracies of 90% on a manually
curated database. mp_lipid_acc is part of the Rosetta software suite, available at www.rosettacommons.org.
The webserver is available at http://rosie.graylab.jhu.edu/mp_lipid_acc/submit and the benchmark dataset is available
at http://tinyurl.com/mp-lipid-acc-dataset.
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Background
Membrane proteins carry out a variety of essential func-
tions and are targeted by over half of drugs in use [1], yet
only make up ~2% of proteins in the Protein Data Bank
due to difficulties in structure elucidation. The dearth of
structures has in turn led to a lack of prediction tools,
which have typically focused on either α-helical or β-
barrel membrane proteins [2], or on specific features like
the prediction of membrane pores [3]. One important
characteristic of membrane proteins is accessibility to the

lipid environment of the bilayer. Knowledge of lipid acces-
sibility is important for our understanding of membrane
protein structure, stability [4], interactions inside the
bilayer, the development of membrane protein energy
functions, the development of sequence-based predictors,
and as an indicator of binding interfaces. While sequence
motifs for helix-helix interactions in the membrane have
been well-studied [5], the broader picture of large protein-
protein interfaces in the membrane is still developing.
Prediction of lipid accessibility is not trivial: the protein

‘interior’ can either be water accessible, in the case of pores,
or buried hydrophobic residues. For the latter, the hydro-
phobicity profile of buried residues is similar to lipid-facing
residues, hence hydrophobicity as a solitary feature would
be insufficient for classification. Solvent accessible surface
area (SASA) is useful to identify accessibility of the residue
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to the solvent, yet it does not distinguish between
lipid or water accessibility. Further, geometric consid-
erations might be useful for the structures of β-
barrels, as sidechains typically either face into the
barrel or away from it, but this distinction is typically
less clear for α-helical proteins. Therefore, a combination
of different features is required for accurate prediction of
lipid accessible residues.
The problem is further complicated by the fact that ac-

cessibility to lipid relies on protein embedding in the
membrane and experimental measurements of membrane
embedding features (like depth, angle and membrane
thickness) are challenging. Lipid molecules are only
present in a few crystal structures, and the model mem-
brane used for crystallization or structure determination is
very different from a native membrane environment be-
cause it lacks the exact lipid composition [6], membrane
thickness, asymmetry [7], lateral pressure [8] and shape
[9] (compare micelles, bicelles, nanodiscs, lipidic cubic
phases vs. a flat or curved bilayer). Protein embedding in
the membrane is therefore predicted using computational
approaches that rely on different score functions, such as
TMDET [10], PPM [11], and iMembrane [12]. However,
benchmarking of these tools is difficult without high-
resolution experimental data. Similarly, for lipid ac-
cessibility there are no compiled structural databases
to test the performance of a predictor from the pro-
tein structure, hence expert manual curation of such
a database is required.
A range of sequence-based predictors is available

that specialize in transmembrane span or topology pre-
diction for α-helical bundles or β-barrels, SASA or lipid
accessibility. Transmembrane span predictors classify
residues as in the membrane vs. in solution and are able
to achieve prediction accuracies >90% in the two-state
scenario [13], [14]. Topology predictors [15], [16] classify
residues as inside/outside the cell or organelle and in the
membrane (for definitions for the OPM (Orientations of
Proteins in Membranes) database [11], see http://opm.-
phar.umich.edu/about.php?subject=topology). SASA pre-
dictors classify residues as buried or exposed to the
solvent without specifying whether the solvent is water
or lipid. They typically use machine learning (for ex-
ample, support vector machine) approaches and report
prediction accuracies in the range of 70-75%: the ASAP
tool can be used for both α-helical and β-barrel mem-
brane proteins [17], the MPRAP method is optimized
for SASA prediction of both soluble and transmembrane
regions of membrane proteins [18], and the TMExpo
tool predicts embedding angles in addition to SASA
[19]. Further, pore-lining residues and channels can be
predicted from the protein sequence using the recently
developed tool PRIMSIPLR [3], which achieves a pre-
diction accuracy around 86%. Lipid accessibility (lipid

exposed versus lipid buried) can be predicted from
the protein sequence with the LIPS server [20], which
uses contact maps between helical faces and residue
conservation for classification. It achieves a prediction
accuracy of 88%, according to the authors.
SASA prediction directly from protein structure

can be obtained with a few early predictors (Naccess
[21], MSMS [22], GetArea: http://curie.utmb.edu/getar-
ea.html [23]); unfortunately, some of these methods lack
benchmarking results, were only tested on a few low-
resolution crystal structures or lack availability as a web
server and/or lack documentation. The recently devel-
oped, well-documented 3V web interface for volume, solv-
ent exclusion and channel prediction does not compute
SASA values per residue [24].
Here, we present a method to identify lipid accessible

residues from a protein structure that is already trans-
formed into membrane coordinates. Our method uses a
2D concave hull algorithm on a point cloud, which is
generated by projecting Cα coordinates from horizontal
slices of the protein within the bilayer, onto the plane of
the membrane. For each slice, the convex hull, the con-
cave hull and a ‘concave shell’ are computed, through
which lipid accessible residues are identified (see Imple-
mentation and Fig. 2). The classification of the concave
shell is output as adjusted B-factors in the PDB file,
which can be easily visualized or extracted for further ana-
lysis. We compute prediction accuracies on a manually cu-
rated benchmark dataset available for download at http://
tinyurl.com/mp-lipid-acc-dataset. Our method mp_lipi-
d_acc is also publicly available as a webserver on ROSIE
[25] at http://rosie.graylab.jhu.edu/mp_lipid_acc/submit.
To our knowledge, this is the first tool to classify lipid ex-
posure of residues from a protein structure. Our method is
applicable to both α-helical and β-barrel membrane pro-
teins of any architecture and will be useful for a variety of
problems from score function derivation, development of
sequence-based predictors and structural modeling.

Implementation
Curation of training and benchmark datasets
We created a small dataset of 14 proteins for the devel-
opment of the algorithm (Additional file 1: Table S1)
and to find an optimal parameter set. These proteins
cover a wide range of protein folds from one or two
transmembrane helices, helical bundles with and without
smaller pores (for instance GPCRs, aquaporins), small
and large helical pores, transporters (ABC transporter),
ion channels with voltage sensor domains, oblong helical
channels (for instance chloride channel), β-barrels with
and without internal domains, β-barrel monomers and
trimers and cigar shaped β-barrels and pore-forming
toxins. The PDBIDs for this dataset were 1afo, 1ek9,
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1fep, 1kpk, 1qd6, 2kix, 2r9r, 2rh1, 2wcd, 3emn, 3ne2,
3wmf, 4tnw, 7ahl.
We curated a benchmark dataset for testing our method

(Additional file 1: Table S2): all membrane protein chains
were downloaded from the PDBTM database [26], which
were then culled with the PISCES server [27] with the fol-
lowing parameters: sequence identity ≤ 25%, resolution ≤
3.0 Å, R-factor cutoff 0.3, sequence length 40–10,000,
include non-Xray entries, exclude Cα-only entries, cull by
chain. We then excluded all EM structures with resolu-
tions > 3 Å and removed all XFEL structures with reso-
lution “0.0” or proteins for which no method was
specified. Further, we removed photosynthetic reaction
centers and photosystems I and II as they have very
loosely packed helices complexed with a large number of
interstitial chlorophyll molecules. We also removed the
proteins present in the training dataset.
The structures in each set were downloaded from the

PDBTM database [26], for which the proteins are
already transformed into the membrane coordinate
frame: the membrane center is defined as the origin at
(x, y, z) = (0, 0, 0) and the membrane normal vector lies
along the z-axis with (0, 0, 1). To compute the

membrane embedding of a protein structure, PDBTM
uses the TMDET algorithm [10, 28] that fits the mem-
brane embedding according to an objective function that
contains measures of hydrophobicity and structural in-
formation regarding the Cα-trace within a protein slice,
such as straightness, turns and termini. Initially, we
downloaded structures from the OPM database [11], but
through visual inspection of the entire database we real-
ized that the protein embedding seems generally better
in PDBTM. The structures were then cleaned from
additional atoms (such as ligands and co-factors),
renumbered and the span files were computed as de-
scribed previously [29] with a fixed membrane thickness
of 30 Å. We used a fixed membrane thickness to avoid a
potentially circular influence of the thickness prediction
from PDBTM onto our benchmark dataset.
We ran our algorithm over the benchmark dataset

(204 proteins), which outputs the lipid accessibility as a
modified B-factor column in the PDB file. We then
manually corrected classification errors by visualizing
each protein in PyMOL [30], coloring it according to
B-factors, and then manually adjusting the B-factors
for each incorrectly classified residue. Our benchmark

Fig. 1 Algorithm. In our algorithm mp_lipid_acc, the protein is cut into horizontal slices (a). In each slice, the coordinates of the Cα atoms are
projected onto the xy-plane, from which points first the convex hull, then the concave hull and then the ‘concave shell’ are computed ((b) and
see implementation). For β-barrels, the center-of-mass in each slice is computed from the coordinates of the Cα atoms and only residues which
are part of the concave shell and have a Cα-Cβ-COM angle larger than a cutoff value of 65° are classified as lipid accessible (c). For instance, the
residue with a sidechain orientation represented by the yellow vector in (c) would be lipid accessible, whereas the sidechain in blue would be
lipid inaccessible
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dataset is described in Additional file 1: Table S2 and
is available for download at http://tinyurl.com/mp-
lipid-acc-dataset.

Algorithm overview
To identify lipid exposed residues on the outer perimeter
of the protein, we approximate the membrane protein as a
stack of 2D slices and then within each slice, use a 2D
concave hull algorithm to determine water and lipid
accessible boundaries. For this, the protein was cut into
10 Å thick horizontal slices along the membrane normal
(Fig. 1a). For each slice, the Cα atoms were projected onto
the xy plane (Fig. 1b), from which points the convex hull

was computed (see below and Fig. 2). The convex hull is
the smallest set of points on the outer perimeter of the 2D
point cloud that encloses the entire point cloud; it is com-
puted by a QuickHull algorithm [31, 32] (see below). From
the convex hull (Fig. 2c), we computed the concave hull
[33] (Fig. 2d/e), which defines the set of points on the
outer perimeter of the point cloud and encloses the point
cloud within each slice by potentially concave surfaces
(see below). We then computed the concave shell that in-
cludes points (Cα atoms) whose xy coordinates are within
a radius of the original boundary points (Fig. 2f). Concave
shells were computed for each stacked horizontal slice in
the membrane region.

Fig. 2 Convex and concave hull algorithms. Illustration of the convex hull, concave hull and ‘concave shell’ from a 2D point cloud that was
projected onto the xy plane from the 3D structure. The example protein is the sodium channel with PDBID 4DXW and the points in blue are
outside the hull, the points in black are inside the hull and the points in red are part of the hull. The convex hull algorithm starts by connecting
the points with smallest and largest x and y values in counter-clockwise direction and identifying the points inside the hull (a). The hull is
extended to a convex hull by connecting two points on the boundary, finding the point in the outside list that is farthest away from the two
boundary points and that is in clockwise direction, and adding this point to the boundary (b). The points within the triangle between the old
two boundary points and the added one are then classified as inside the hull. These steps are repeated until all points are inside the convex hull
(c). The concave hull is then computed by finding the longest distance between two connected points on the boundary, finding the point inside
the hull that has the smallest enclosing angles with respect to the two original boundary points, and adding this new point to the hull boundary.
The distance cutoff defines the ‘resolution’ of the hull with a distance cutoff of 15 Å in (d) and 5 Å in (e). This process is repeated until all
distances between connecting points are smaller than the cutoff distance. Lastly, a concave shell is computed by including points within an xy
distance radius from the original boundary points (from e to f). All boundary points in F are now part of the concave shell and classified as
lipid exposed
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Residues with Cα atoms in the concave shell are classi-
fied as lipid exposed with the following exceptions: (1) if
the number of TM spans is smaller or equal 2, all
residues in the membrane region are classified as lipid
exposed; (2) for β-barrels, we make the distinction of
whether the sidechain faces into the interior of the
barrel or not. For each slice, we therefore compute the
center-of-mass (COM) of the Cα atoms and only classify
residues with the Cβ-Cα-COM angle larger than 65° as
lipid accessible (for Glycine, we used 2HA to represent
‘Cβ’ – Fig. 1c). (3) For smaller helical bundles with 7 or
less TM spans, the concave shell algorithm over-predicted
lipid accessible residues in the interior of the protein. To
counter balance this over-prediction, we took into account
an angle cutoff of 45° as described above.

Convex and concave hulls
A convex hull is a subset of points in a point cloud that
engulfs all points in the cloud via convex surfaces
(Fig. 2c). The convex hull algorithm starts with a classifi-
cation of a 2D point cloud into three lists: inside the hull
(black points in Fig. 2a), outside the hull (blue points in
Fig. 2a), and part of the hull (i.e. on the boundary – red
points in Fig. 2a). The Quickhull algorithm starts by
classifying all points as outside the hull [31], [32]. Then,
the points with the smallest x value, smallest y, largest x
and largest y are connected and moved to the list of
points on the boundary. The points inside the rectangle
are moved to the inside list (Fig. 2a). Then, two neigh-
boring points in the boundary list are connected by a
line and the point outside with the largest distance in
clockwise direction is moved to the boundary (Fig. 2b),
while the points inside this triangle are added to the
point list inside the hull. This last step is repeated until
all points are either inside the hull or on the boundary
and the outside list is empty. The convex hull algorithm
identifies the points on the hull that make up a convex
shape (Fig. 2c). However, it fails to identify points on the
hull that encompass the smallest surface area.
The concave hull on the other hand (Fig. 2d), engulfs

all points with the smallest surface area, which requires
‘cutting into’ the boundaries of the convex hull to create
concave surfaces. Starting from the convex hull, two
neighboring points on the boundary are connected by a
line [33]. If the distance of the line segment is larger
than a pre-defined distance cutoff (see Fig. 2d), the point
inside the hull (counter-clockwise) is identified that has
the smallest sum of angles to the two original boundary
points. This point is added to the boundary and this last
step is repeated until all the distances between neighbor-
ing points in the boundary list are smaller than the pre-
defined cutoff. The distance cutoff is required because
there is no unique solution to the classification problem
as to which points are part of the concave hull. The

distance cutoff is therefore a measure similar to a ‘reso-
lution’ that defines how rugged the concave surfaces are
(compare Fig. 2d and e).
To extend the information of the concave hull back

into three dimensions, we classified points (i.e. Cα
atoms) within a certain xy-distance (‘shell radius’) from
the points on the boundary as part of the boundary—we
call this the concave shell (moving from Fig. 2e to f ).

Adjustable parameters in the algorithm
Optionally adjustable parameters for this application are:
(1) the slice width (Fig. 1a) as the width of the horizon-
tal slices for which the concave shells are computed. As
only Cα atoms are considered and to avoid overfitting of
the convex shell due to data sparsity, the default slice
width is set to 10 Å, corresponding to approximately 1/3
of the thickness of a physical membrane bilayer. The
three slices therefore extend over the inner and outer
leaflets and the space in between. Further, the membrane
thickness should be an integer multiple of the slice
width to avoid data sparsity in the last slice. The current
membrane thickness is fixed at 30 Å. (2) Distance cut-
off (compare Fig. 2d and e): The ‘resolution’ of the con-
cave hull is defined by the distance cutoff between
points on the hull boundary. 2D line segments between
neighboring points on the hull are ‘cut in’ if their dis-
tance is longer than the distance cutoff. The default
value for the distance cutoff is 10 Å, which is approxi-
mately the distance between two Cα atoms on the same
side of neighboring helices. (3) Shell radius (Fig. 2e to
f ): To map the 2D concave hull back into three dimen-
sions, Cα atoms with xy coordinates within a certain ra-
dius (shell radius) of the original boundary points are
added to the hull, which we call the concave shell. The
default shell radius is 6 Å, which is about half the diam-
eter of an α-helix. (4) Angle cutoff (Fig. 1c): To dis-
tinguish between sidechains facing water-filled
interiors in β-barrels from sidechains facing the lipid
environment, we defined a cutoff for the Cβ-Cα-
COM angle. The default value for the angle cutoff is

Table 1 Prediction accuracies in percent for the benchmark set.
The first row indicates a prediction using relative accessible surface
area in the membrane (cutoff 0.2) without lipid accessibility
classification. The second row shows results for predicted lipid
accessibility with our concave hull algorithm. Note that
mp_lipid_acc is able to identify lipid exposed residues, giving rise
to an almost 20% increase in sensitivity over a standard rASA
algorithm

TP TN FP FN acc sens spec

rASA 26526 119406 7727 10602 88.8 71.4 93.9

hull 33191 116548 10585 3937 91.2 89.4 91.7

TP number of residues predicted as true positives, TN true negatives, FP false
positives, FN false negatives, acc accuracy = (TP + TN)/(TP + TN + FP + FN);
sens = TP/(TP + FN); spec = TN/(TN + FP)
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65°, which is empirically determined and smaller than
90° to account for the curvature of β-barrels. (5) To clas-
sify lipid accessibility we distinguish between an α-helical
bundle (for which we don’t use an angle cutoff) or β-
barrel membrane protein (for which we use an angle cut-
off), which refers to the secondary structure facing the
lipid (i.e. barrel interior secondary structure is not consid-
ered). The type is auto-detected based on the prevalent
secondary structure in the membrane, as computed by
DSSP [34]. In the rare scenario that auto-detection fails,
the secondary structure type can be set by the user.
If a residue is classified as lipid accessible, its B-factor

is set to 50, otherwise it is set to 0. The PDB structure
with the adjusted B-factor is output and can be visual-
ized in PyMOL (The PyMOL Molecular Graphics
System, Version 1.8 Schrödinger, LLC) with the provided
script color_b-factor.pml.

Results and Discussion
We present an algorithm that classifies lipid exposed
residues in membrane protein structures. It is applicable
to monomeric and oligomeric α-helical and β-barrel
membrane proteins with and without pores. Our algo-
rithm uses protein structures transformed into mem-
brane coordinates and a fixed membrane thickness and

is applicable to a wide range of protein architectures.
Classification is achieved through a 2D concave hull
algorithm applied to the point cloud of membrane em-
bedded Cα atoms projected onto the membrane plane.
mp_lipid_acc then creates a PDB structure file with
modified B-factors that can then be visualized by a
provided PyMOL script. We further provide a publicly
accessible webserver to run the classification, which
is implemented in the ROSIE environment [25],
accessible at http://rosie.graylab.jhu.edu/mp_lipid_acc/

Table 2 Proteins for which predictions are shown in Fig. 3. A/B
denotes α-helical vs. β-barrel membrane proteins. The complete
benchmark dataset is shown in Additional file 1: Table S2

PDBID A/B Feature Family Subfigure

3D9S A aquaporin aquaporin A

4DXW A ion channel sodium channel B

3CSL B filled barrel heme binding C

3W9T B pore-forming toxin lectin D

2J7A A 1-2TM nitrite reductase E

1U19 A GPCR bovine rhodopsin F

3TUI A ABC transporter methionine transporter G

4ENE A ClC channel chloride channel H

Fig. 3 Classifications on selected examples from the benchmark dataset with diverse architectures. Details about the individual proteins are
provided in Table 2. In panel d, the pore of the protein (framed) is shown on the right, where the residues that protrude into solution, are
clipped to show the prediction for the pore residues
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submit. Additionally, we make our manually curated
benchmark dataset available to the public (http://
tinyurl.com/mp-lipid-acc-dataset), which will be use-
ful for the development of sequence-based predictors
and membrane protein scoring functions.
The prediction accuracies for our benchmark set are

shown in Table 1 with counts for true positives, true
negatives, false positives and false negatives. Accuracy,
sensitivity and specificity are also computed. As a base-
line for comparison, we used the prediction of rASA
with a cutoff of 0.2. Table 1 shows that while rASA
achieves almost as high prediction accuracies as our pre-
dictor, it is unable to distinguish between lipid accessible
and water accessible residues, as demonstrated by the
low sensitivity. In contrast, our simple algorithm
correctly identifies lipid exposed residues, achieving a
prediction accuracy of 91.2% (Table 1, Fig. 3, Table 2 and
Additional file 1: Table S2), with consistently high sensi-
tivity and specificity (~90%).
We aimed to classify residues in well-packed α-helical

proteins, helical pores, plain β-barrels, β-barrels with
plug domains, monomeric and multimeric membrane
proteins with and without pores, and multimeric ion
channels with a large lipid exposed surface area due to
their voltage sensor domains (Fig. 3). Because we are
using a concave hull algorithm, mp_lipid_acc is applic-
able to a wide range of protein architectures that have
perimeters of different shapes, for instance oblong pro-
tein structures (such as the chloride channel in Fig. 3h),
‘winged’ structures (such as ion channels with voltage
sensor domains in Fig. 3b), and multimeric proteins.
We explored alternate parameterizations of our algo-

rithm to evaluate our default choices for these parameters.
The results in Table 3 demonstrate that the classification
of lipid accessibility by our algorithm is quite stable with
varying parameter sets. The default parameter set we used
for benchmarking was a slice width of 10 Å, a distance

cutoff of 10 Å, a shell radius of 6 Å and an angle cutoff of
65°. In addition to the default parameter set, we tested
additional values for each parameter. Even with different
parameter sets, our algorithm consistently achieves accur-
acies, sensitivities and specificities around 90%, with two
exceptions. If the distance cutoff (i.e. ‘resolution’ of the
concave hull) is increased to 15 Å or greater, the algorithm
under-predicts lipid accessibility: the number of true
positives decreases while the number of false negatives
increases. A similar situation occurs when the shell radius
is decreased to 4 Å, as fewer residues are classified as lipid
exposed.
Runtimes for mp_lipid_acc are consistently short, typ-

ically under 1 min for proteins up to 2000 residues,
using default parameters (Fig. 4). The algorithm only
takes into account Cα atoms in the protein. We tested
using all atoms for the calculation of the hulls and the
concave shell, which increased the runtimes considerably

Table 3 Prediction accuracies for different parameter sets, showing the stability of the algorithm

Slice width Dist cutoff Shell radius Angle cutoff acc sens spec

Default 10 10 6 65 91.2 89.4 91.7

5 10 6 65 89.5 91.4 88.9

7.5 10 6 65 90.5 90.3 90.6

10 5 6 65 87.4 92.3 86.0

10 15 6 65 91.5 81.3 94.5

10 10 4 65 91.9 82.0 94.8

10 10 8 65 90.0 91.1 89.7

10 10 6 50 90.9 89.5 91.4

10 10 6 80 91.1 87.8 92.1

acc accuracy = (TP + TN)/(TP + TN + FP + FN); sens = TP/(TP + FN); spec = TN/(TN + FP) with TP number of residues predicted as true positives, TN true negatives,
FP false positives, FN false negatives
The meaning of the parameters is explained in the Methods section. Our algorithm is stable with respect to smaller slice widths (Fig. 1a) and different angle
cutoffs (Fig. 1b). For larger distance cutoffs (Fig. 2d and e) and smaller shell radii (from Fig. 2e to f) the number of predicted true positives decreases while the
number of false negatives increases, resulting in a substantial drop in sensitivity (numbers in bold)

Fig. 4 Runtimes of mp_lipid_acc in seconds for proteins of varying
sizes. Runtimes are obtained when using the default parameters of a
slice width of 10 Å, a distance cutoff of 10 Å, and a shell radius
of 6 Å
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(over 1 h), especially for large proteins, while achieving
similar results. We therefore only make the option avail-
able to use Cα atoms.
While improvements to the algorithm might lead to a

smaller number of false positives, our algorithm is the
first to classify lipid exposed residues from the protein
structure, yielding prediction accuracies around 90%. It
will be useful for molecular modeling and developing
score functions and more sophisticated sequence-based
approaches for the prediction of lipid accessibility.
Classification of lipid accessibility from the structure is
also useful to advance our understanding of membrane
protein folding, stability and their interactions in the
membrane bilayer [4].

Conclusion
Here we present a novel method to classify lipid accessi-
bility in membrane protein structures. Our algorithm is
applicable to α-helical and β-barrel membrane proteins
with and without pores and for diverse protein architec-
tures. mp_lipid_acc is implemented in RosettaMP and
uses membrane embedded structures (from PDBTM or
OPM) and a fixed membrane thickness to classify resi-
dues based on a concave hull algorithm. To test our
method, we manually curated a benchmark dataset, on
which mp_lipid_acc achieves accuracies, specificities and
sensitivities around 90%. We believe that mp_lipid_acc
and our benchmark set are an important first step for
sequence- and structure-based prediction of lipid acces-
sibility, score function optimization and membrane pro-
tein modeling in general.

Additional file

Additional file 1: Table S1. Dataset for developing the algorithm:
The table contains details about each protein in the training dataset.
Table S2. Test database: The table contains accuracies for each
protein in the benchmark dataset. (PDF 453 kb)
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