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Abstract

Background: Investigating and understanding drug-drug interactions (DDIs) is important in improving the
effectiveness of clinical care. DDIs can occur when two or more drugs are administered together. Experimentally
based DDI detection methods require a large cost and time. Hence, there is a great interest in developing efficient and
useful computational methods for inferring potential DDIs. Standard binary classifiers require both positives and
negatives for training. In a DDI context, drug pairs that are known to interact can serve as positives for predictive
methods. But, the negatives or drug pairs that have been confirmed to have no interaction are scarce. To address this
lack of negatives, we introduce a Positive-Unlabeled Learning method for inferring potential DDIs.

Results: The proposed method consists of three steps: i) application of Growing Self Organizing Maps to infer
negatives from the unlabeled dataset; ii) using a pairwise similarity function to quantify the overlap between
individual features of drugs and iii) using support vector machine classifier for inferring DDIs. We obtained 6036 DDls
from DrugBank database. Using the proposed approach, we inferred 589 drug pairs that are likely to not interact with
each other; these drug pairs are used as representative data for the negative class in binary classification for DDI
prediction. Moreover, we classify the predicted DDIs as Cytochrome P450 (CYP) enzyme-Dependent and
CYP-Independent interactions invoking their locations on the Growing Self Organizing Map, due to the particular
importance of these enzymes in clinically significant interaction effects. Further, we provide a case study on three
predicted CYP-Dependent DDIs to evaluate the clinical relevance of this study.

Conclusion: Our proposed approach showed an absolute improvement in F1-score of 14 and 38% in comparison to
the method that randomly selects unlabeled data points as likely negatives, depending on the choice of similarity
function. We inferred 5300 possible CYP-Dependent DDIs and 592 CYP-Independent DDIs with the highest posterior
probabilities. Our discoveries can be used to improve clinical care as well as the research outcomes of drug
development.

Keywords: Drug-drug interaction, Growing self organizing map (GSOM), Pairwise drug similarity, CYP isoforms,
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Background

Drug interactions refer to the modification of action
of one drug caused by the action of another drug.
Thus, drug-drug interactions (DDIs) occur when two or
more drugs are administered together. DDIs may abolish,
diminish or potentiate the effect of the drugs involved.
Some DDIs can also lead to fatalities if an inappropriate
drug combination has been chosen [1]. Various factors
can affect drug interactions, including binding to plasma
proteins, binding to tissues and extravascular sites, activ-
ity of the liver enzyme system, and intake of certain food
groups [2, 3]. Investigating and understanding new DDIs
is crucial in improving health care and patient outcomes.

There are a large number of drugs available on the
market, but knowledge of DDIs is incomplete, trigger-
ing interest in investigating new DDIs. DrugBank is an
online database that provides biochemical and pharma-
cological information about drugs, their mechanisms and
their targets [4]. The most recent release (DrugBank
4.0) contains over 335 thousand biochemical and other
DDlIs, reflecting the great interest in investigating DDIs
in recent years. However, this represents only <1% of the
possible drug pairs for the 8206 drugs listed on Drug-
Bank [5], suggesting that many more DDIs have been
left undiscovered.

Performing experimental trials for a large number of
drug pairs is not realistic in terms of cost and time. Due
to animal welfare considerations, an animal-based test-
ing process is also problematic. During the last decade,
machine learning [6-11] and statistical models [12, 13]
including integration of text mining [14] have gained pop-
ularity for inferring DDIs. Even though initial approaches
focused on utilizing chemical space properties to com-
pare drug characteristics, heterogeneous data integra-
tion has been recognized to be significant in developing
reliable computational models to infer drug interactions
[1, 6, 9, 10]. Therefore, we consider a range of drug
characteristics in our study.

DrugBank can be considered as the gold standard
database for understanding and learning DDIs, there is no
gold standard database for non-interacting DDIs. To train
binary classifiers, such negatives are needed. Therefore,
in this research, we propose to address DDI prediction
with a Positive-Unlabeled Learning (PUL) approach and
to demonstrate a suitable method for identifying poten-
tial negatives to learn a standard binary classifier. The
objective is to identify potential non-interacting DDIs
from unlabeled data to allow them to be treated as neg-
atives. Learning from positives and unlabeled data has
seen successful application in the medical diagnosis con-
text, as well as for uncertain data, streaming, text, and
Web [15]. In such applications, the available labeled items
are only positive examples while the negative class data is
unknown or unavailable and therefore may include both
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positives and negatives as a mixture; this characteristic
matches well to the situation with DDIs.

Our investigation makes three primary contributions: i)
we propose a PUL approach based on Growing Self Orga-
nizing Map (GSOM) [16] clustering to infer DDIs; ii) we
propose a new pairwise similarity function to quantify
the overlap of drug features along several dimensions; and
iii) we classify the predicted DDIs as Cytochrome P450
(CYP)-Dependent and CYP-Independent interactions by
invoking their locations in GSOM.

Positive-unlabeled learning

In some applications, only positive examples are known
and labeled while the unlabeled data may contain both
negatives as well as unlabeled positives. Extracting posi-
tives from the unlabeled data is a useful task, and this is
more challenging compared to traditional supervised clas-
sification problems where clear negatives exist. Figure 1
illustrates the main idea behind Positive-Unlabeled Learn-
ing (PUL) scenario, where only positive examples are
labeled while the unlabeled data contain both negatives
and unlabeled positives. The ultimate goal is to identify
useful positive examples from the unlabeled data.

Computational methods such as one class learning
and semi-supervised approaches have been proposed to
address PUL problems [17, 18]. Semi-supervised learn-
ing involves a two step learning strategy where the initial
step employs random initialization of negatives from the
unlabeled data the subsequent step applies iterative learn-
ing to refine the predictions. An integrated Naive Bayes
and iterative Support Vector Machine (SVM) approach
has been considered as the baseline approach in PUL. The
Naive Bayes classifier is used in the initial classification
to identify a possible negative set and then the itera-
tive learning uses the SVM. However, Rocchio algorithm
may outperform Naive Bayes [17]. Rocchio algorithm is
a linear classifier based on cosine similarity. However,
it is difficult to extend for a multi class environment.
Also, it may extract false negatives if the decision bound-
ary is non-linear. Further purification of Rocchio output
using k-means clustering is recommended to identify false
positives and false negatives [17].

One Class Support Vector Machine (OCSVM) [19] clas-
sifier has been utilized in order to extract the positive
class instances from the unlabeled data. In contrast to
binary/multi class SVM, OCSVM defines a hypersphere
on higher dimensional space. One Class Logistic Regres-
sion has been proposed as a strategy to overcome the
limitations of the traditional OCSVM [20]. Revealing the
poor performance of the trained classifiers using uncer-
tain data, they estimate probabilities for the final predic-
tions using One Class Logistic Regression. However, not
using a negative set limits the analysis and evaluation. On
the other hand, Ren et al. [21] suggested the importance
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Fig. 1 This diagram illustrates the main idea behind Positive-Unlabeled Learning. a Available data. b Goal

of using binary classification over OCSVM to achieve bet-
ter predictive performance. They suggest weighted SVM
to identify likely negatives from the unlabeled data. Their
results reveal Recall of 71% though Precision and F-Score
are relatively low.

In the PUL context, clustering is used as an approach to
logically separate unlabeled data [17]. It is used as a pre-
step for binary classification to identifying likely negatives
from the unlabeled data. Then, the binary classification
can be employed to further refine the identified posi-
tives using initially known positives and identified likely
negatives. Unlike classification, clustering is applied on
the inputs concealing their labels and may identify new
patterns based on the input characteristics. Clustering
algorithms like K-means, and Self Organizing Map (SOM)
require the number of possible clusters to be specified
in advance. In medical and clinical applications, separat-
ing the unlabeled data into two groups is not appropriate
as they can be divided into more than two groups based
on finer characteristics. Similarly, there are different and
various types of DDIs and knowing them is important
when performing unsupervised learning using K-means
and SOM. Therefore, clustering DDIs is a challenging
task. In this paper, we propose GSOM [16] as a suit-
able clustering approach to cluster drug pairs to enable
inferring negatives from the unlabeled dataset. The main
advantage of GSOM is automatic detection of the num-
ber of subgroups/nodes. Its high dimensionality feature
reduction and topology preserving nature are also useful
characteristics.

In the related work, randomly selected instances from
the unlabeled data has been used as neutral DDIs (neg-
atives) [1, 6-8, 22—-24]. We treat this existing method as
our ‘Baseline’ This approach may introduce noisy data,
resulting in a lack of distinction between positives and
negatives. However, the overall performance of the final
prediction relies on the feature representation and the
training sample as well. We believe that the clinical rele-
vance of the predicted DDIs can be improved employing

a representative training sample with comprehensive het-
erogeneous properties.

Similarity based DDI prediction
Computational approaches to DDI prediction [1, 6, 8-10,
22, 25] assume that drug pairs sharing similar character-
istics (chemical, phenotype, biological, therapeutic, etc.)
are more likely to share the same drug interactions. Cheng
et al. [7] and Vilar et al. [8] employed chemical properties
in predicting new DDIs. However, their methods showed
poor sensitivity. Drug interactions like physiological prop-
erties cannot be predicted by chemical properties alone,
since drugs undergo complicated metabolic transforma-
tions and other pharmacokinetic transformations as they
are metabolized and physiologically distributed [26, 27].
Recent studies have emphasized the relevance of inte-
gration of heterogeneous characteristics, including chem-
ical, phenotype, biological, and therapeutic features,
for establishing pairwise drug similarity [1, 6, 9, 10].
Vilar et al. [8] investigated the impact of molecular struc-
tural similarities for DDI predictions and obtained per-
formance values of 0.68, 0.96, and 0.26 of sensitivity,
specificity, and precision, respectively. Later, Vilar et al.
[9] published a new protocol for inferring DDIs integrat-
ing 2D and 3D molecular structural, target, and side-
effect similarities. In their study, the drug profiles were
combined by means of linear algebraic concepts through
matrix manipulations. Moreover, they observed higher
DDI predictive performance when heterogeneous fea-
tures were integrated using Principal Component Anal-
ysis and the highest individual predictive performance
was observed when using Interaction Profile Fingerprints.
Similarly, Zitnik and Zupan [13] proposed a probabilis-
tic model using collective matrix factorization to depict
the pairwise relations in pharmacological networks. They
demonstrated Area Under ROC Curve (AUC) of 0.924
using 10-fold cross validation for predicting DDIs which
were found in DrugBank. But, their method can focus on
only one particular data type at a time.
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Cheng et al. [7] used chemical sub-structural prop-
erties in predicting five major CYP isoforms integrat-
ing various base classifiers. They constructed combined
classifiers for each of the isoforms of interest, obtain-
ing overall predictive accuracy between 72.3 and 83.7%.
However, this single-isoform modeling approach does not
scale well to large numbers of drugs. Realizing the value
of heterogeneity for achieving useful DDI prediction,
Gottlieb et al. [6] employed seven heterogeneous char-
acteristics based on chemical, ligand, side effect, annota-
tion, sequence, closeness in a protein-protein interaction
network, and Gene Ontology through which they con-
structed 49 classification features. As a result of deep
analysis of CYP-based DDIs, they observed AUC of 0.93
and 0.96 for CYP-Related DDIs and non-CYP-Related
DDlIs, respectively. They employed binary classification by
randomly selecting examples from the unlabeled data to
represent the negative class, which may introduce noise,
resulting in a lack of distinction between interacting and
non-interacting classes in the training set. In general,
the outcome of the final predictions rely on the charac-
teristics of the training sample. Thus, selecting a repre-
sentative training sample is also beneficial in improving
predictive performance.

Liu et al. [22] provides a comprehensive analysis
of overall contextual similarities to predict plausible
DDIs. They employed chemical interactions comprising
the overall structural activities and reaction-based sim-
ilarities. Overall pairwise target similarity is captured
analyzing the interactions of target proteins. Pathway
analysis was also carried out to capture the related path-
ways of drugs and their functions. Moreover, a minimum
redundancy maximum relevance approach and incremen-
tal feature selection were used for dimensionality reduc-
tion and to remove redundant features. They achieved
specificity ranging between 0.89 and 0.97, and sensitivity
ranging between 0.13 and 0.71. In DDI prediction, posi-
tives are more important than negatives due to physical
consequences of the effect. To emphasize positive inter-
action prediction, we believe that the measures like sen-
sitivity, precision, and f-score are more important than
specificity.

Tanimoto Coefficient is a variant of Jaccard Index which
is widely used in quantifying the overall context similar-
ity between drugs. Vilar et al. [9] proposed a similarity
metric to quantify the overall overlap between any two
drugs. Huang et al. [28] defined a metric to compute the
tightness/strength of target centric drugs, acknowledg-
ing the impact of protein-protein interaction networks in
identifying new DDIs. Similarly, other existing similarity
measures provide overall context similarity to compare
any two drugs. However, two drug pairs can share the
same overall similarity index though their individual fea-
tures are different. Hence, a detailed similarity metric is
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also beneficial to represent the pairwise drug similarities.
Our proposed similarity metric can be used to summa-
rize any type of drug data associations. Moreover, our
results demonstrate the importance of the proposed pair-
wise similarity measure in obtaining better performance
on DDI predictions.

Methods

Drug data

Drug characterization

We obtained four different independent sources of drug
associations following the work of Wang et al. [23]; drug-
chemical [29], drug-therapeutic [30], drug-protein [29],
and drug-phenotype [31] associations. These associa-
tions are represented as binary relationships where ‘1’
represents a known interaction (labeled) and ‘0’ repre-
sents an unknown interaction (unlabeled). Each of the
drugs has 881, 719, 775, and 1385 dimensions in chem-
ical, therapeutic, protein, and side effect characteristic
profiles, respectively. The four independent sources have
548 drugs in common. We calculate pairwise drug sim-
ilarities using Jaccard Index (JI) and a proposed pair-
wise similarity function (see “The proposed similarity
feature representation” section). JI-based pairwise sim-
ilarity measure was applied to produce four pairwise
drug similarity features (for each type of drug associa-
tion) while the proposed pairwise drug similarity func-
tion led to produce 3760 (881+719+775+1385) pairwise
drug similarity features (for each drug in each dimen-
sion). Further, we observed 69,600, 2284, 1902, and
41,008 associations between the 548 drugs and 881
chemical features, 719 diseases, 775 proteins, and 1385
side effects, respectively.

Drug-drug interactions

DrugBank is a comprehensive database containing exten-
sive biochemical and pharmacological information about
drugs, their mechanisms and their targets. It uses data
on drug-target, drug-enzyme and drug-transporter asso-
ciations to provide insight on DDIs [4]. Moreover, it
includes drug interaction information from several exter-
nal sources [32] such as Physician’s Desk Reference [33],
e-Therapeutics [34], Medicines Complete [35], Epocrates
RX [36], and Drugs.com [37].

We obtained 6036 unique DDIs for the 548 drugs of
interest via ‘DrugBank - Interax Drug Interaction Lookup’
[38] (Note: these known DDIs will be served as positives
for machine learning). Also, we noticed 994 Cytochrome
P450 (CYP)-Dependent DDIs out of 6036 DDIs. The 6036
DDIs span only 451 unique drugs out of the selected 548
drugs. There are 149,878 (548*548-548) possible unique
drug pairs for these selected 548 drugs. Hence, the known
(labeled) DDIs to unlabeled DDIs ratio is approximately 1
to 24 (1:24).
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Proposed methods

Posing the overall DDI prediction task as a PUL task,
we propose a two phase learning strategy integrating
GSOM and SVM. Moreover, we propose an ensemble
learning approach for DDI prediction based on two dif-
ferent pairwise similarity metrics; we build a classifier
using each metric separately and then combine their indi-
vidual predictions to obtain a final prediction. Figure 2
illustrates the main steps of the proposed approach
for inferring DDIs. We emphasize the importance of
quantifying the overlap of individual properties as well
as the overall context similarity for inferring potential
DDlIs.

First, we employ the GSOM clustering algorithm to
cluster drug pairs based on given chemical, disease, pro-
tein, and side effect (pairwise) similarities. We believe
that non interacting drug pairs are likely to contain
pairwise similarities that are different from the interact-
ing drug profiles. We therefore label GSOM nodes as
positives or negatives based on the scattered pattern of
known labeled positives on GSOM (see “GSOM-based
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positive-unlabeled learning approach” section). As a
result, likely negatives can be inferred from the unlabeled
data for training purposes. Second, SVM is employed for
binary classification. Finally, we perform a further anal-
ysis on the predicted DDIs considering CYP isoforms
(CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4).
Specifically we identify CYP isoforms for the predicted
CYP-Dependent DDIs by revisiting their node on the
GSOM, as explained in “Case study: clinical implications”
section.

For the 548 selected drugs (see “Drug characteriza-
tion” section), the 6036 known DDIs correspond to
approximately 4% of possible drug pairs (149,878). To the
best of our knowledge, there is no gold standard database
representing drug pairs that do not interact with each
other. Therefore, we pose this problem as a PUL problem.
We suggest and demonstrate our proposed GSOM-based
PUL approach as a suitable method for inferring DDIs.
We select GSOM over other clustering methods due to
its automatic detection of the number of relevant clusters;
this is not a fixed parameter that needs to be set.

Construction of pairwise similarities quantifying the
overall context similarity of drugs : SFR1

Construction of the proposed pairwise similarities
quantifying the overlap between individual features
of drugs: SFR2

Context: chemical, disease, protein, and side effect
Using Jaccard Index (see Equation 1)

Context: chemical, disease, protein, and side effect
Using proposed similarity function (see Equation 2)

1: Propose a detailed pairwise similarity function for ensemble learning

il

nl
v

v

Extract reliable positives

Obtain known DDIs from the Drugbank database

{1

4

/ Perform GSOM clustering and node profiling (see Figure 4)

Extract likely negatives from the unlabeled dataset

{

!

Filter the common negative DDIs I

U

J

Binary classification using SVM

* Ensemble Learning

* Using known (labeled) positives and extracted possible negatives
* Using multiple balanced training sets

\ 2: Proposed GSOM based PUL Approach J

]!

Invoke CYP isoforms and classify CYP-dependent and CYP-
independent DDIs

3: Case Study : Invoke CYP/s for predicted positive DDIs

Fig. 2 This diagram illustrates the proposed methodology and our three main contributions for inferring DDIs, integrating Similarity Feature

Representation1 (SFR1) and Similarity Feature Representation2 (SFR2)
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GSOM-based positive-unlabeled learning approach
Clustering enables grouping of drug pairs based on their
similarity, independently of any labels. It can be used to
distinguish drug pairs as interacting and non-interacting
DDlIs, by identifying pairs that have similar characteris-
tics to (cluster with) a known DDI, and pairs that do
not cluster with any known DDI, respectively. We pro-
pose GSOM [16] as a suitable approach to cluster drug
pairs. GSOM is an extended version of the conventional
SOM [39]. A GSOM consists of nodes where each node
contains at least one input. This clustering algorithm
assigns each of the instances to a node on GSOM map.
It uses the same weight adaptation and neighborhood
kernel learning as SOM. Further analysis can also be
inferred after a map is produced. GSOM’s topological pre-
serving nature is useful in grouping neighboring nodes
where necessary.

GSOM’s automatic detection of the number of clusters
is useful in this context as we have no prior knowledge
of the number of DDI types. GSOM can cluster drug
pairs based on their given characteristics and is capable
of handling high dimensional data. Since we are unaware
of the exact number of DDI types, GSOM enables sub-
grouping these drug pairs without any prior knowledge
of number of clusters. The size of the map can be con-
trolled by the growth threshold which is inversely pro-
portional to the Spread Factor and it is shown in the
equation below:

Growth Threshold = —D x In(Spread Factor)

where D is the dimensionality of the input data.

Accordingly, the number of growing nodes can be con-
trolled by its Spread Factor, ranging between 0 and 1
((0,1]). A higher Spread Factor can produce a larger
GSOM with a higher number of nodes. In this study, we
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employ the GSOM implementation of Chan et al. [40] as
it provides visual aids for cluster analysis.

In this study, GSOM is used to infer negatives from the
unlabeled data. We propose a node profiling algorithm
to profile each of the GSOM nodes as a ‘positive’ /‘nega-
tive’/‘ambiguous’ node, based on the positive proportion
of the inputs clustered within the node. We define Positive
Proportion as:

Positive Proportion
_ number of labeled positive instances in the GSOM node
B total number of instances in the GSOM node

(2)

The nodes with 100% unlabeled instances are consid-
ered as ‘negative nodes. The nodes with 100% positive
instances are considered as ‘positive nodes’ and the nodes
with both positives and unlabeled instances are consid-
ered as ‘ambiguous nodes. The instances at ‘negative
nodes’ are inferred as negatives. Hence, the DDIs col-
lected from DrugBank and the inferred negatives are
served as positives and negatives, respectively, for learn-
ing the binary classifier whereas the unlabeled instances
at ‘ambiguous nodes’ are considered for DDI prediction.
The algorithm in Fig. 3 also illustrates the process of
profiling GSOM nodes as positive/negative/ambiguous
for PUL.

Pairwise drug feature representation

Overall context similarity using jaccard index In
related DDI prediction tasks, pairwise drug similarities
have been derived by quantifying the overall similarity
of drug features such as chemical, disease, protein, and
side effect [1, 6, 8, 9]. Jaccard Index (JI) based similarity
representation is widely used in this context. JI performs

A A WN P

End If
End For

Cluster drug pairs using GSOM algorithm
Ignore nodes with only one instance
Compute positive proportion for each node
For all GSOM nodes
o1 If positive proportion =1
Then label the node as ‘positive node’
4.2: Else If positive proportion =0
Then label the node as ‘negative/neutral node’
4.3: Else If O < positive proportion < 1

Then label the node as ‘ambiguous node’

Fig. 3 Pseudo-code for profiling GSOM nodes as ‘positive/negative/ambiguous’ node
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a bitwise comparison and computes an overall similarity
value as explained in the following equation:

>_.fi(Drugy) N fi(Drugs)
> fi(Drugi) U fi(Drugy)

where i is the index of feature vector, f.

For instance, when drug-chemical associations are rep-
resented using 881 chemical sub-structures, the pairwise
drug chemical similarity can be mapped into a single sim-
ilarity value using JI (see Fig. 4). This, JI-based pairwise
drug similarity feature representation quantifies the over-
all similarity of any two drugs based on one set of features.
Here, we consider chemical, target-protein, disease and
side effect features separately, producing four JI similarity
values. This results in Similarity Feature Representationl
(SFR1), which concatenates the four individual JI values
into a single feature vector. Each training vector is asso-
ciated with a label indicating the DDI status of the drug
pair; the DDIs derived from DrugBank were considered as
positive examples.

JI(Drugy, Drugy) = (3)

The proposed similarity feature representation
Reflecting the importance of comparing two drug pairs
in terms of their overlap on individual features, we pro-
pose a new similarity representation (Similarity Feature
Representation2, SFR2), based on the following equation:

Individual Similarity;(Drug;, Drug,)
= Average(f;(Drug1), f;(Drugs))

where i is the index of the ith feature in the feature
vector, f.

This captures the shared properties of the drugs, and
leads to generate one similarity value per feature; for our
data means 881, 719, 775, and 1385 chemical similarity
values, disease similarity values, protein similarity values,
and side effect similarity values, respectively. Therefore,
the proposed SFR2 includes 3760 (881+719+775+1385)
similarity features.

As explained in “Drug characterization” section, the
initial drug features in our data are binary associations.

(4)
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Therefore, the values on SFR2 include only three values;
‘0; ‘0.5, and ‘1’ ‘0’ denotes when a particular feature is
absent in both of the drugs, ‘0.5" denotes when a partic-
ular feature is present in only one of the drugs, and ‘1’
denotes when a particular property is present in both of
the drugs. As for SFR1, each training vector is associated
with a label indicating the DDI status of the corresponding
drug pair, obtained from the DrugBank database. Figure 4
illustrates an example on deriving similarity metrics for
binary drug-feature representation. Because SFR1 pro-
duces a single summary similarity value, two pairs of drugs
can have same ]I similarity value although their underly-
ing characteristics are entirely distinct. In contrast, SFR2
measures similarity at a granular feature level. There-
fore, we suggest aggregating the final results of SFR1 and
SER2.

Application to DDI prediction

The Support Vector Machine (SVM) learning method is
frequently used in inferring DDIs as well as in the PUL
context [1, 17, 21]. Therefore, we employ SVM as the clas-
sifier for the supervised learning task. We consider iden-
tifying likely neutral DDIs as an important step towards
obtaining reliable prediction, as they can serve as neg-
atives for binary classifiers. For the proposed approach,
the DDIs obtained from DrugBank database are served
as the positives while the neutral DDIs inferred by the
GSOM step (see “GSOM-based positive-unlabeled learn-
ing approach” section) are served as negatives. We then
train a classifier with a training set of known positives and
these inferred negatives.

Ensemble Learning is the popular way of combin-
ing multiple base classifiers and aggregating outputs
to a single meta classifier. For the learning step, we
apply ensemble learning with two classifiers employ-
ing each of the two similarity functions; SFR1 and
SFR2.

We employ probabilistic outputs for Support Vector
Machines to compute the posterior probabilities of the
classification output following Platt [41]. Platt proposed
an approach to calculate the posterior probability by fit-

DrugA | 1 0 1 1 0 0

Jaccard Index (Drug A, Drug B) 0.4

Drug B 1 1 0 1 0 1
Individual Similarity
(Drug A, Drug B)

the proposed function

Fig. 4 Example of deriving similarity metrics for drug association. Jaccard Index is the frequently used approach while Individual Similarity function is
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ting a sigmoid function after building the SVM. It is shown
in the equations below:

1

PO=1) = 1 o h ©)

where the parameters A and B are fitted using maximum
likelihood estimation from a training set (f;, y;).

Consequently, we estimate posterior probabilities for all
SVM classifier outputs and we average the final probabili-
ties to make final predictions.

Balanced training sets are frequently used in machine
learning based DDI predictions [1, 6]. Here, we use mul-
tiple balanced training sets to strengthen the ensemble
learning approach, through which we obtain an average
final probability. This may aid to reduce the variance of
the final outputs.

Baseline method In computational DDI prediction,
researchers employ binary classification as a step towards
inferring drug interactions. Since there is no certain
dataset representing neutral DDIs, a baseline method
that randomly selects examples from the unlabeled data
has been used to identify negative cases [1, 68, 22—24].
In this Baseline approach, known positives and randomly
selected unlabeled data are used as inputs for the binary
classifier.

The explicit steps of this approach is shown below:

1. Initial Data: Generate unique drug pairs for the drugs
of interest

2. Collect known DDIs from reliable sources (ex:
DrugBank)

3. Label known DDIs (2) as positives in the initial data
(1)

4. Randomly select an equivalent number of examples
from the unlabeled data (not part of the positive set)
to the number of positive cases (3)

5. Label drug pairs (4) as negatives in the initial data (1)

6. Employ binary classification using positives (3) and
negatives (5) for DDI prediction

Evaluation metrics It is important to note that there is
no certain dataset for the neutral-DDIs (negatives). There-
fore, evaluating DDI prediction as a binary classification
is a challenging task. We use GSOM-based PUL approach
to infer DDIs. Then, F1-score is used to evaluate and com-
pare the performance of the proposed methods. Since our
ultimate goal is to predict plausible positives, F1-score is
selected to express the overall performance of classifying
positive and neutral DDIs [42]. F1-score combines both
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Precision and Recall metrics as shown in the following
equations:

. True Positives
Precision = — — (6)
True Positives + False Positives
True Positives
Recall = (7)

True Positives + False Negatives

2 % Precision * Recall
F1 — score = — (8)
Precision + Recall

Results

In the proposed PUL approach, we employed known
positives and negatives inferred by GSOM from the unla-
beled data. We compared the performance of the pro-
posed GSOM-based PUL approach against Baseline and
OCSVM [19]. We employed Baseline using known posi-
tives and randomly selected negatives from the unlabeled
data while OCSVM is employed using known positives
only.

In Additional file 1, we demonstrate the improved per-
formance of the proposed GSOM-based PUL approach
as compared to Baseline and OCSVM using adapted
benchmark data (breast cancer and iris data). The origi-
nal benchmark datasets are not directly compatible with
DDI data as they are fully described with labels where
clear negatives exist. Therefore, we modified the labels
of these two benchmark datasets to resemble the Posi-
tive Unlabeled Learning scenario. We assessed the impact
of the proportion of unreliable negatives (unlabeled posi-
tives) in the training data towards final prediction; and we
defined this proportion as Unlabeled Positive Proportion
(UPP). The results on the adapted benchmark datasets
(see Additional file 1) suggest that the proposed GSOM
clustering as a suitable approach for inferring negatives
from unlabeled data. The proposed GSOM-based PUL
approach outperforms Baseline and OCSVM. Moreover,
the results on the adapted benchmark datasets suggest
that the proposed method is most beneficial when the
UPP is below 50% (see Additional file 1 for further details).

In this section, we demonstrate the results for inferring
DDIs in relation to the proposed pairwise drug similarity
and the proposed PUL concept. The results on DDI clas-
sification also evidence that the proposed methods can be
generalized well to more complex DDI prediction task.

Inferring plausible DDIs

Pairwise drug similarity functions

SFR1 captures the similarity based on JI (see Eq. 3) which
is the quantification of four overall context similarities
for chemical, therapeutic, protein, and side effect fea-
tures. We employ SFR2 to quantify the overlap of indi-
vidual properties between drugs (see Eq. 4) which leads
to 3760 features: concatenating 881, 719, 775, and 1385
features in chemical, therapeutic, protein, and side effect
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characteristic profiles, respectively. It is possible that SFR2
is a sparse vector as some of the features are unique. We
therefore employed Principal Component Analysis (PCA)
for data compression. PCA is one of the popular methods
for dimensionality reduction. It produces a new feature
vector capturing maximum variance of the original data.
We obtained 228 PCs capturing 90% of maximum vari-
ance; these components were used in generating results
for SFR2.

GSOM-based PUL approach for DDI prediction

In our GSOM-based PUL approach, we employed GSOM
clustering to infer negatives from the unlabeled sam-
ple. (In Baseline, the known 6036 DDIs were considered
as positives while randomly selected 6036 drug pairs
from the unlabeled samples were considered as negatives.
OCSVM is employed using known 6036 DDIs only.)

GSOM clustering using SFR1: In GSOM, the number of
growing nodes can be controlled by altering Spread Factor
which varies between 0 and 1 ((0,1]). Higher Spread Fac-
tors generate larger maps with relatively higher number
of nodes. Also, larger GSOM produces higher coherence
within the nodes. We used Average Within Cluster Dis-
tance (AWCD) to study the effect of varying Spread Factor
within GSOMs; as shown in the Eq. (9).

?:1 Z;”il rij(fi — Ww;)?

n

AWCD = )

where w is the weight vector of the winning node, f is the
weight vector of the input, # is the number of nodes in the
GSOM, m is the number of inputs in each node and r;; is
lifinput i € node j while r; is 0 if input i ¢ node ;.

In Fig. 5 (a), we illustrate the AWCD for SFR1 when
Spread Factor is between 107! and 1071°, The lowest
AWCD is observed at Spread Factor=0.1 because of the
expected higher coherence within GSOM nodes. More-
over, it enables finer analysis on data particularly when
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there is no prior knowledge. We eliminated the nodes
having only one instance to minimize the false nega-
tives in the training sample. Accordingly, the number of
nodes varies between 300 and 920 when Spread Factor
is between 10710 and 10~! (Fig. 5 (b)). In SFR1 analysis,
we selected the GSOM map with Spread Factor=0.1 hav-
ing 919 nodes. Then, we profiled each of the nodes as
‘positive/negative/ambiguous’ according to the algorithm
described in Fig. 3. For instance, when a node has all
unlabeled instances then it is profiled as a ‘negative node’
Accordingly, we inferred 4066 negatives.

GSOM clustering using SFR2: Similarly, we observed
GSOM node variation for SFR2, employing 228 PCs. We
selected the GSOM map with 922 nodes when Spread
Factor=10"1°. After profiling each of the nodes as posi-
tive/negative/ambiguous, 20,099 negatives were inferred.
In order to construct a reliable negative set, we filtered
the common negatives captured in both approaches. As a
result, only 589 common negatives (see Additional file 2)
were identified. These 589 examples are the consensus
negatives identified by both SFR1 and SFR2 which demon-
strates a higher possibility to be served as negative exam-
ples when learning the binary classifier. (Figure 6 shows
the GSOM map for SFR1 and SFR2.)

Binary classification: In related work, use of balanced
training sets has been shown to be beneficial for SVM
classifiers [1, 6, 43]. Therefore, we propose an ensem-
ble learning approach that integrates multiple balanced
datasets for both SFRs (SFR1 and SFR2). The train-
ing sample for DDIs includes the 6036 known DDIs,
extracted from DrugBank and the aforementioned 589
inferred negatives. In order to perform an ensemble learn-
ing approach, we constructed multiple balanced training
sets using the training data for SFR1 and SFR2. For both
SFR1 and SFR2, we constructed 10 training sets using the

: .
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Fig. 6 GSOM maps for DDI data: (@) shows the GSOM map for Similarity Feature Representation 1 (SFR1) when Spread Factor=0.1 and it contains 919
nodes; (b) shows the GSOM map for Similarity Feature Representation 2 (SFR2) when Spread Factor=1 0~'% and it contains 922 nodes. The nodes
shown in blue are the proposed negative nodes having only unlabeled instances, the nodes shown in grey contains both initial positives and
unlabeled instances, and the nodes shown in red contains only initial positives

589 inferred negatives and randomly selected 589 known
DDIs (from the 6036 known DDIs).

We used a SVM classifier employing a polynomial ker-
nel with a polynomial order of 2. The SVM classifier
was trained using 5-fold cross validation and a suitable
Regularization Parameter (C) is selected accordingly. We
employed Matlab implementation for learning SVM clas-
sifier and for computing SVM posterior probability. For
SFR1 and SFR2, Regularization Parameter is selected to be
1072 and 1073 respectively.

Table 1 shows the cross validation performance of the
proposed GSOM-based PUL method, Baseline method
and OCSVM for SFR1 and SFR2 using the complete bal-
anced training dataset (589 positives + 589 negatives). It
summarizes the mean performance of the 10 balanced
training samples where the mean Precision, Recall, and
Fl-score from 5-fold cross validation are shown. There

Table 1 Performance assessment of the proposed GSOM-based
PUL approach, Baseline and OCSVM using Similarity Feature
Representation (SFR1) and Similarity Feature Representation2
(SFR2)

Baseline OCSVM  GSOM-based PUL

Cross validation SFR1  Precision 0.628 0.584 0951
Recall 0.448 0499 0861

Fl-score 0523 0.537 0904

SFR2  Precision 0.823 0.622 0.974

Recall 0.850 0436 0975

F1-score 0.836 0.511 0.974

is a significant improvement in DDI prediction on Base-
line and GSOM-based PUL approach when the proposed
SFR2 is used though there is no significant change on
OCSVM. For instance, F1-score has improved by 31.3 and
7% when using SFR2 for Baseline and GSOM-based PUL
approach, respectively. On the other hand, our proposed
GSOM-based PUL approach outperformed Baseline by
38.1 and 13.8% in F1-score for SFR1 and SFR2, respec-
tively. Moreover, there are notable improvement in Pre-
cision and Recall when our proposed GSOM-based PUL
approach is used.

Ensemble learning: The 10 classification models of SFR1
and SFR2 obtained using our GSOM-based PUL approach
are considered for DDI prediction. We employed ensem-
ble learning aggregating the classification results of each
classification model to minimize the variance of the final
output. Each prediction is made by invoking a posterior
probability. Finally, 20 predicted posterior probabilities
are averaged to derive the final predictions.

As explained in the above section, our training set con-
sist of 589 positives and 589 negatives. In order to assess
the ensemble model, 80% of this complete balanced train-
ing set are used for training while 20% of the complete
balanced training set are held out to test the overall pre-
dictive performance of the ensemble model. In Table 2,
we assess the performance of the ensemble model using
SFR1 and SFR2. It summarizes the mean performance of
the 10 balanced training and test samples. There is no sig-
nificant improvement in the ensemble model compared
to the model generated using SFR2. However, the results
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Table 2 Performance assessment of the ensemble model for
GSOM-based PUL approach for DDI prediction using Similarity
Feature Representation (SFR1) and Similarity Feature
Representation?2 (SFR2)

SFRT  SFR2  Ensemble model
Cross validation (80%)  Precision 0960 0.968
Recall 0841 0972
F-measure  0.896  0.970
Testing (20%) Precision 0.749 0973 0970
Recall 0648 0979 0975
F-measure 0692 0976 0.973

of the ensemble model is considered for further analysis
as ensemble learning has evidenced to minimize the vari-
ance of the final output [44]. We inferred 5892 potential
DDIs with the greatest probability (see Additional file 3).
In “Case study: clinical implications” section, we provide
a case study on these predicted positive DDIs associating
plausible CYPs.

Discussion

GSOM-based positive-unlabeled learning

Our results suggest the importance of using a represen-
tative training sample in achieving better performance,
as well as revealing the value of clustering methods to
infer negatives; clustering clearly outperforms a random
strategy for selecting negatives. Since there exists no gold
standard database to capture drug pairs that do not inter-
act with each other, the proposed GSOM-based method
can be used to identify representative negatives to train a
binary classifier. Moreover, GSOM is a direct approach to
group similar drug pairs with no prior knowledge about
the group labels. Since the number of possible drug inter-
action types is unknown, DDIs in GSOM nodes can be
considered as sub-groups of related DDIs. Hence, the neg-
atives can be identified in relation to the scattered pattern
of known positives.

In related work, randomly selected unlabeled data has
been considered as negatives or neutral DDIs. Impor-
tantly, we have shown using benchmark data, that the
increasing the number of unreliable negatives in the train-
ing sample reduces the predictive performance of the
binary classifier.

GSOM is capable of handling high dimensional fea-
tures, and therefore it is more useful when employing the
proposed pairwise drug similarity. The number of grow-
ing nodes can be controlled by its spread factor ranging
between 0 and 1. Higher spread factor results in producing
more coherence within nodes. However, higher coherence
GSOM nodes may result in generating nodes with a single
member. This approach may produce false negatives, if a
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node consists of only unlabeled positives. In this study, the
nodes with only one instance is not considered for node
profiling to minimize this error.

Selecting a suitable spread factor is challenging as we
are unaware of the number of DDI types. One approach
is to consider the properties of GSOM which clearly dis-
tinguish positives and negatives in choosing the most
appropriate map. This approach is used when deciding
the spread factor for the adapted Breast cancer data, and
Iris data (see Additional file 1). However, a method to
determine the spread factor is yet to be found, particularly
when there is no information about the clusters. Here,
we selected the GSOM maps for SFR1 and SFR2 with a
relatively similar number of nodes.

Because of various types of DDIs, we noticed the scat-
tered pattern of known positives in the GSOM map.
Thus the proposed node profiling method was useful in
identifying plausible negatives. The assigned positive pro-
portion of the GSOM node is considered when profiling
a node as ‘positive node/negative node/ambiguous node!
The inferred negatives were extracted from the proposed
negative nodes. The results on adapted Breast Cancer and
Iris data suggest the importance of the proposed approach
particularly when Unlabeled Positive Proportion (UPP) is
below 60% (see Additional file 1). Inferring negatives is
much accurate for the datasets with lower UPPs. Since
the UPP value is unknown for the DDI prediction task,
the negative set has been further refined by selecting the
common negatives of SFR1 and SFR2. These predicted
negatives could be verified from the PubMed articles and
other related resources using text mining. Text mining
approaches tend to identify the co-occurrence of drug
pairs in biomedical publications. But, there is no guaran-
tee that those drug pairs would interact with each other in
reality. Therefore, the drug pairs identified by text mining
approaches would also require further validation to verify
the prediction.

The proposed GSOM-based method can also be used in
identifying representative training samples in any dataset
when there is an uncertainty about the labeled data. For
instance, in Breast Cancer data, the proposed GSOM-
based method has extracted 236 (out of 286) more
representative negatives while eliminating redundant or
ambiguous instances (see UPP=0% in Additional file 1:
Figure 1). This may enable the construction of efficient
classification as well. Moreover, GSOM’s topology pre-
serving nature can be employed in selecting a represen-
tative training set, particularly to resolve the imbalanced
data issues if the GSOM clustering has clear separat-
ing boundaries between classes (as in Additional file 1:
Figure 2). The nodes that are closer to the separation
boundary may reflect close relationships to the other
class. Therefore, selecting training instances away from
the separation boundary can be a useful aspect to define
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a representative training sets. It may also improve the dis-
tinction between classes and efficient classification. Also,
GSOM can be used even when there are multiple classes.

SVM is frequently used as the binary classifier in PUL
and DDI prediction applications. Results on Breast Cancer
Data and Iris Data demonstrate better performance when
the UPP is below 50%. Since we used 6036 initial posi-
tives, predicting up to additional 6036 DDIs with higher
probability is feasible. In this study, we inferred 5892 DDIs
with the posterior probability above 0.995. Importantly,
the proposed GSOM-based PUL approach led to achieve
F1-score 0of 0.904 (SFR1) and 0.974 (SFR2) while in the fre-
quently used Baseline achieved F1-score of 0.522 (SFR1)
and 0.836 (SFR2). This represents approximately a 38 and
14% absolute improvement over Baseline approach using
SFR1 and SFR2, respectively. On the other hand, applica-
tion of OCSVM does not perform well on SFR1 and SFR2.
Since the drug pairs span a large variation of DDI types,
employing a representative training data for the oppos-
ing class enables the classifier to accurately distinguish
between positives and negatives. Our results reveal the
need for a reliable training set for achieving better perfor-
mance as well as inferring reliable DDIs. Even though Liu
et al. [22] achieved Specificity ranging between 0.89 and
0.97, and Sensitivity ranging between 0.13 and 0.71, our
proposed approach achieved 0.97, 0.98, and 0.97 as Pre-
cision, Sensitivity/Recall, and F1-score, respectively. We
attribute our performance to the strength of our method.
Another approach to consider would be active learn-
ing. But, it may require a large memory and time as we
are dealing with a large number of drug pairs on high
dimensional space.

Evaluation of the proposed GSOM-based PUL approach
employing INDI data
INDI is a DDI prediction tool which uses seven hetero-
geneous pairwise drug similarity scores based on chem-
ical, ligands, side effects, Anatomical Therapeutic and
Chemical classification, sequence similarity, distance on a
protein—protein interaction network, and Gene Ontology.
The proposed approach was further evaluated employing
the seven heterogeneous pairwise drug similarity scores
of 805 drugs used in INDI [6]. It provides the DDI labels
as binary scores which are categorized as CYP related
DDIs and non-CYP related DDIs for the corresponding
drug pairs generated using the 805 drugs. We merged
CYP related DDIs and non CYP related DDIs to con-
struct the corresponding DDI label of each drug pair
and we obtained 25103 positive DDIs. We constructed a
heterogeneous feature vector similar to SFR1 with seven
dimensions where the binary class labels indicate the DDI
status of the corresponding drug pair.

Employing the proposed GSOM node profiling algo-
rithm (see Fig. 3), we inferred 4352 neutral DDIs to serve
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as negatives for binary classifier. Table 3, summarizes the
cross-validation performance assessment of DDI predic-
tion using INDI dataset. We compared the performance
of the proposed method against Baseline method and
OCSVM. 1t is clear that the proposed GSOM-based PUL
approach outperforms the other two approaches for DDI
prediction using INDI data as well.

Pairwise drug similarity

The proposed pairwise drug similarity function (SFR2) is
simple yet more useful to capture finer-grained similar-
ities as compared to the similarity metrics like Jaccard
Index (JI). This is because two drug pairs with very differ-
ent underlying characteristics can have the same JI. The
proposed pairwise similarity function can capture the het-
erogeneous similarity properties between any two drugs
at a more fine-grained level of representation. It can be
extended to compare more than two drugs as well as in
other domains where pairwise similarities are required.

Both pairwise similarity representations used in this
paper demonstrate better performance when using our
GSOM-based PUL approach. Therefore, aggregating clas-
sification models obtained from JI inspired pairwise simi-
larity function (SFR1) and SFR2 enables obtaining reliable
predictions. Without restricting the similarity compari-
son for Jaccard variants, ensemble learning using multiple
distance measures like Euclidean, cosine, correlation, etc.
may also increase the predictive performance.

SFR1 and SFR2 pairwise drug similarity representations
used in this paper are employed separately. Concate-
nating SFR1 and SFR2 is another possible extension to
this approach. When using SFR2, we employed PCA for
dimensionality reduction. As a result, we obtained 228
PCs capturing 90% of maximum variance. Further reduc-
tion of the dimensions is not realistic as some of the pair-
wise drug similarity features may unique and some data
are truly high dimensional. Even though GSOM clustering
algorithm is capable of handling high dimensional data,
preprocessing using PCA can be beneficial in improving
memory and time efficiency.

In this work, we represented the pairwise drug sim-
ilarity in terms of their chemical structure, disease,
protein, and side effects characteristics and obtained
higher performance with these four types of features.

Table 3 Cross-Validation performance assessment of the
proposed GSOM-based PUL approach, Baseline and OCSVM for
DD prediction using INDI dataset

Baseline OCSYM GSOM-based PUL
Precision 0610 0.583 0.917
Recall 0.529 0.583 0916
F1-score 0.567 0.583 0.916
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Nevertheless, integration of other types of similarity fea-
tures like ligands based characteristics and 3D chem-
ical structures may further strengthen the predictive
performance and contribute to making our approach
more robust. Not all predicted drug pairs will be co-
administered in practice, but, deeper analysis of their
individual properties may lead to derive useful drug
repositioning opportunities.

Case study: clinical implications

Cytochrome P450 (CYP) is an enzyme system found
throughout many organs and tissues including the kid-
neys, lungs and gut however its highest concentration
is in the liver. Most drugs used clinically are metabo-
lized by the six main CYP enzymes: CYP1A2, CYP2C9,
CYP2C19, CYP2D6, CYP2E1, and CYP3A4 [45-47].
Interestingly, a single drug can act as an inducer, inhibitor
or a substrate of these enzymes. Knowledge in this
area has expanded rapidly in recent years and a num-
ber of emerging clinically relevant interactions have been
addressed [3]. Clinically significant effects usually arise
when drugs which either inhibit or induce particular CYP
enzyme are administered together. If one drug inhibits
the metabolism of another concurrently administered
drug, then this may lead to the accumulation of that
second drug and possible toxicity [3, 45, 47].

Classify CYP-dependent and CYP-independent DDIs

DDIs can be associated to cytochrome P450 (CYP)
enzyme system as well as molecular targets for drug action
including receptors, ion channels and transporters or car-
rier molecules [2]. Most of the drug metabolism occurs
via CYP enzyme system. Currently, there are over sev-
enty (70) CYP gene families, of which three main ones
(CYP1, CYP2, CYP3) are involved in drug metabolism
in human liver [46]. Therefore, identification of related
CYP enzymes for the predicted DDIs is considered to be
significant.

In particular, clustering algorithms can be employed
using features only, independently of the class labels.
Hence, we extended the DDI classification task to predict
plausible CYPs by revisiting the GSOM map/s (Fig. 6).
According to the algorithm explained in Fig. 3, an ambigu-
ous node contains known DDIs and unlabeled inputs. For
each of the ambiguous nodes (Fig. 3; Step 4.3), we assign
CYPs based on DrugBank description of already allocated
positives. Such node is considered as CYP-Independent if
it's known DDIs do not have any CYP-Dependent interac-
tions. If it has at least one known CYP-Dependent inter-
actions, then it is considered as a CYP-Dependent node
and the known CYP is also noted. In addition, the nega-
tive nodes are considered to be CYP-Independent (Fig 3;
Step 4.2) as they do not contain any known DDI inter-
actions. Accordingly, we assign CYPs for the predicted
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DDIs in relation to their allocated nodes on the GSOM
maps.

Consequently, we classify the predicted 5892 DDIs as
CYP-Dependent and CYP-Independent DDIs by revis-
iting the GSOM maps. We assigned CYP/s in relation
to their nodes on both GSOM maps. Accordingly, we
inferred 5300 CYP-Dependent DDIs (see Additional file 4)
and 592 CYP-Independent DDIs (see Additional file 5).
We further categorized the CYP dependent DDIs into
CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4
isoforms by analyzing DrugBank description of already
known DDIs at ‘ambiguous nodes’ It should also be
noted that 3311 CYP-Dependent DDIs were predicted
as to be associated with more than one CYP isoform.
Furthermore, out of the 5300 predicted CYP-Dependent
DDIs, 1083 DDIs overlap with the recently published
CYP related DDIs predicted using quantitative structure-
activity relationships models [48]. In the next section, we
provide the clinical relevance of three predicted CYP-
Dependent DDIs in relation to their predicted CYPs.

Clinical relevance

In this study, we inferred numerous predicted DDIs that
appear to have significant clinical relevance [49]. Car-
diovascular and mental health, diabetes mellitus, asthma
and infection control are some of the National Health
Priority Areas chosen by the Australian government due
to their significant contribution to the burden of ill-
ness in Australian community [50]. In this study, we
selected the predicted DDIs with a focus on medica-
tions frequently used in treating some of the common
diseases: Bosentan-Abacavir, Carvedilol-Metformin and
Cimetidine-Erythromycin. (It should be noted that these
predictions were made for initially on unlabeled data and
not mentioned in DrugBank.)

Bosentan, an endothelin receptor antagonist indicated
for pulmonary arterial hypertension, is an inducer of
CYP2C9 and a substrate for the same as well as inducer
and a substrate for CYP3A4. Abacavir, an antiretroviral
drug indicated for HIV infection, is mainly metabolised
by the liver [49]. When Abacavir is combined with Bosen-
tan, its efficacy can be significantly decreased because
Bosentan induces CYP enzyme system thus speeding up
Abacavir metabolism.

DDIs inferred in this study include an interaction
between Carvedilol and Metformin. Carvedilol, non-
selective beta and alphal receptor blocker, controls car-
diac contractility and blood pressure and is widely used
clinically in the management of hypertension and chronic
systolic heart failure. Metformin, an oral hypoglycaemic
agent used in the management of type II diabetes, tar-
gets the liver in order to reduce hepatic glucose pro-
duction [49]. Carvedilol is a substrate for CYP2D6 and
when combined with Metformin, the activity of CYP2D6
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may be altered thus leading to loss of its therapeutic
effectiveness.

Another clinically relevant DDI inferred in this study
relates to an interaction between Cimetidine and Ery-
thromycin. Cimetidine, a histamine H2 receptor antag-
onist that reduces gastric acid secretion, is used in the
management of peptic ulcer disease, dyspepsia and gastro-
oesophageal reflux disease while Erythromycin is an anti-
infective that inhibits bacterial protein synthesis and also
acts as an immuno-modulatory and anti-inflammatory
agent [49]. Both drugs inhibit CYP3A4 which in turn
leads to decrease in their metabolism and results in an
enhancement of the adverse effects and toxicity.

Conclusions

Identifying new drug-drug interactions is crucial in
improving clinical care. The number of already iden-
tified drug-drug interactions on DrugBank is signifi-
cantly low compared to the number of possible drug
combinations. On the other hand, there is no certain
database which represents the drugs that do not inter-
act with each other. In this paper, we propose a new
Positive-Unlabeled Learning approach based on Grow-
ing Self Organizing Map (GSOM) leading to identify
plausible drug-drug interactions. Particularly, the pro-
posed Positive-Unlabeled Learning approach is suitable
when the number of classes is unknown or unavailable in
advance. GSOM is useful in clustering drug-drug inter-
actions based on their pairwise similarities since there
are various types of drug-drug interactions. Moreover,
we propose a pairwise similarity function to quantify the
overlap of individual attributes of the drug feature vec-
tor. Our results reveal the importance of the proposed
Positive-Unlabeled Learning approach and the proposed
pairwise similarity function in identifying plausible drug-
drug interactions. In addition, the proposed GSOM node
labeling algorithm is used to associate cytochrome P450
isoforms for the predicted drug-drug interactions and we
provide the significant clinical relevance of three pairs
of the predicted drug-drug interactions. The proposed
approach is a promising strategy to identify plausible
drug-drug interactions and our discoveries can be used
to improve clinical care as well as the research outcomes
of drug development. Further, the proposed GSOM-based
Positive-Unlabeled Learning approach can be applied in
other applications where appropriate.
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Additional file 1: Adapting Labeled Data for Positive-Unlabeled Learning.
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Additional file 5: The inferred 592 CYP-Independent DDIs. This is
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