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Abstract

Background: High throughput metabolomics makes it possible to measure the relative abundances of numerous
metabolites in biological samples, which is useful to many areas of biomedical research. However, missing values
(MVs) in metabolomics datasets are common and can arise due to both technical and biological reasons. Typically,
such MVs are substituted by a minimum value, which may lead to different results in downstream analyses.

Results: Here we present a modified version of the K-nearest neighbor (KNN) approach which accounts for
truncation at the minimum value, i.e,, KNN truncation (KNN-TN). We compare imputation results based on KNN-TN
with results from other KNN approaches such as KNN based on correlation (KNN-CR) and KNN based on Euclidean
distance (KNN-EU). Our approach assumes that the data follow a truncated normal distribution with the truncation
point at the detection limit (LOD). The effectiveness of each approach was analyzed by the root mean square error
(RMSE) measure as well as the metabolite list concordance index (MLCI) for influence on downstream statistical
testing. Through extensive simulation studies and application to three real data sets, we show that KNN-TN has
lower RMSE values compared to the other two KNN procedures as well as simpler imputation methods based on
substituting missing values with the metabolite mean, zero values, or the LOD. MLCI values between KNN-TN and
KNN-EU were roughly equivalent, and superior to the other four methods in most cases.

Conclusion: Our findings demonstrate that KNN-TN generally has improved performance in imputing the missing
values of the different datasets compared to KNN-CR and KNN-EU when there is missingness due to missing at
random combined with an LOD. The results shown in this study are in the field of metabolomics but this method
could be applicable with any high throughput technology which has missing due to LOD.
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Background

High throughput technology makes it possible to gener-
ate high dimensional data in many areas of biochemical
research. Mass spectrometry (MS) is one of the import-
ant high-throughput analytical techniques used for pro-
filing small molecular compounds, such as metabolites,
in biological samples. Raw data from a metabolomics ex-
periment usually consist of the retention time (if liquid
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or gas chromatography is used for separation), the ob-
served mass to charge ratio, and a measure of ion inten-
sity [1]. The ion intensity represents the measure of each
metabolite’s relative abundance whereas the mass-to-
charge ratios and the retention times assist in identifying
unique metabolites. A detailed pre-processing of the raw
data, including baseline correction, noise reduction,
smoothing, peak detection and alignment and peak inte-
gration, is necessary before analysis [2]. The end product
of this processing step is a data matrix consisting of the
unique features and its intensity measures in each sam-
ple. Commonly, data generated from MS have many
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missing values. Missing values (MVs) in MS can occur
from various sources both technical and biological. There
are three common sources of missingness: [1] i) a metab-
olite could be truly missing from a sample due to bio-
logical reasons, ii) a metabolite can be present in a sample
but at a concentration below the detection limit of the
MS, and iii) a metabolite can be present in a sample at a
level above the detection limit but fail to be detected due
to technical issues related to sample processing.

The limit of detection (LOD) is the smallest sample
quantity that yields a signal that can be differentiated
from the background noise. Shrivastava et al. [3] give
different guidelines for the detection limit and describe
different methods for calculating the detection limit.
Some common methods [3] for the estimation of detec-
tion limits are visual definition, calculation from signal
to noise ratio, calculation from standard deviation (SD)
of the blanks and calculation from the calibration line at
low concentrations. Armbruster et al. [4] compare the
empirical and statistical methods based on gas chroma-
tography MS assays for drugs. They explain the calcula-
tion from SD where a series of blank (negative) samples
(a sample containing no analyte but with a matrix iden-
tical to that of the average sample analyzed) are tested
and the mean blank value and the SD are calculated,
where the LOD is the mean blank value plus two or
three SDs [4]. The signal-to-noise ratio method is com-
monly applied to analytical methods that exhibit baseline
noise [3, 5]. In this method, the peak-to-peak noise
around the analyte retention time is measured, and sub-
sequently, the concentration of the analyte that would
yield a signal equal to a signal-to-noise ratio (S/N) of
three is generally accepted for estimating the LOD [3].

Missing data can be classified into three categories
based on the properties of the causality of the missing-
ness [6]: “missing completely at random (MCAR)”,
“missing at random (MAR)” and “missing not at random
(MNAR)”. The missing values are considered MCAR if
the probability of an observation being missing does not
depend on observed or unobserved measurements. If
the probability of an observation being missing depends
only on observed measurements then the values are
considered as MAR. MNAR is when the probability of
an observation being missing depends on unobserved
measurements. In metabolomics studies, we assume that
the missing values occurs either as MNAR (metabolites
occur at low abundances, below the detection limit) or
MAR, e.g., metabolites are truly not present or are above
the detection limit but missing due to technical errors.
The majority of imputation algorithms for high-
throughput data exploit the MAR mechanism and use
observed values from other genes/proteins/metabolites
to impute the MVs. However, imputation for MNAR
values is fraught with difficulty [1, 7]. Using the
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imputation methods for microarray studies in MS omics
studies could lead to biased results because most of the
imputation techniques produce unbiased results only if
the missing data are MCAR or MAR [8]. Karpievitch
et al. [7] discuss several approaches in dealing with miss-
ing values, considering MNAR as censored in proteomic
studies.

Many statistical analyses require a complete dataset
and therefore missing values are commonly substituted
with a reliable value. Many MV imputation methods
have been developed in the literature in other -omic
studies. For example the significance of appropriate
handling of MVs has been acknowledged in the analysis
of DNA microarray [9] and gel based proteomics data
[10, 11]. Brock et al. [12] evaluated a variety of imput-
ation algorithms with expression data such as KNN,
singular value decomposition, partial least squares,
Bayesian principal component analysis, local least
squares and least squares adaptive. In MS data analysis,
a common approach is to drop individual metabolites
with a large proportion of subjects with missing values
from the analysis or to drop the entire subject with a
large number of missing metabolites. Other standard
methods of substitution include using a minimum value,
mean, or median value. Gromski et al. [13] analyzed
different MV imputation methods and their influence on
multivariate analysis. The choice of imputation method
can significantly affect the results and interpretation of
analyses of metabolomics data [14].

Since missingness may be due to a metabolite being
below the detection limit of the mass spectrometer
(MNAR) or other technical issues unrelated to the abun-
dance of the metabolite (MAR), we develop a method
that accounts for both of these mechanisms. To demon-
strate missing patterns, Fig. 1 summarizes the distribu-
tion of two different metabolites taken from Sansbury
et al. [15], both of which had missing values. The top
graph shows that the distribution of the metabolite is far
above the detection limit and therefore replacing the
MV in that metabolite with a LOD value would be in-
appropriate. Similarly, the bottom graph shows that the
distribution of the metabolite is near the detection limit
and therefore replacing the MV with a mean or median
value might be inappropriate.

In this work, we develop an imputation algorithm
based on nearest neighbors that considers MNAR and
MAR together based on a truncated distribution, with
the detection limit considered as the truncation point.
The proposed truncation-based KNN method is com-
pared to standard KNN imputation based on Euclidean
and correlation based distance metrics. We show that
this method is effective and generally outperforms the
other two KNN procedures through extensive simulation
studies and application to three real data sets [15, 16].
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Fig. 1 Two examples of metabolite distributions which have
missing values (MVs), from the myocardial infarction data [15].
The black vertical line on each graph shows the minimum value
of the data, considered as the lower limit of detection (LOD).
The small vertical lines below the x-axis in each case indicate the
observed values of the metabolites. The figure on the top shows
the distribution of 1,2 dipalmitoylglycerol, where the observed
values are all around three standard deviations above the LOD.
In this case, the MVs are likely to be MAR or MCAR. In contrast,
the figure on the bottom shows the distribution of 7-
ketodeoxycholate, which is close to the LOD. Here, the MVs

are likely to be below the LOD and hence MNAR

Methods

K-Nearest Neighbors (NN)

KNN is a non-parametric machine learning algorithm.
NN imputation approaches are neighbor based
methods where the imputed value is either a value
that was measured for the neighbor or the average of
measured values for multiple neighbors. It is a very
simple and powerful method. The motivation behind
the NN algorithm is that samples with similar fea-
tures have similar output values. The algorithm works
on the premise that the imputation of the unknown
samples can be done by relating the unknown to the
known according to some distance or similarity func-
tion. Essentially, two vectors that are far apart based
on the distance function are less likely than two
closely situated vectors to have a similar output value.
The most frequently used distance metrics are the
Euclidean distance metric or the Pearson correlation

metric. Let X;, i=1, ..., n be independent and identi-
cally distributed (iid) with mean gy and standard de-
viation oy, and Y, i=1, ..., n be iid with mean uy

and standard deviation oy. The two sets of measure-
ments are assumed to be taken on the same set of
observations. Then the Euclidean distance between
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the two sample vectors x = x3, ..., x,, and y =y, ..
is defined as follows:

ZLI (xi_yi)z

It is the ordinary distance between two points in the
Euclidean space. The correlation between vectors x and
y is defined as follows:

ox0y

o Yn

dE(xﬂy) =

r(xy) =

where fiy, fi,, 6x, and 0y are the sample estimates of
the corresponding population parameters. If ¥ and y are
standardized (denoted as #° and y°, respectively) to each
have a mean of zero and a standard deviation of one, the
formula reduces to:

1 n
r(x’,y’) = ;inyi
i=1

When using the Euclidean distance, normalization/re-
scaling process is not required for KNN imputation
because neighbors with similar magnitude to the metab-
olite with MV are used for imputation. In the correlation
based distance, since metabolites can be highly corre-
lated but different in magnitude, the metabolites are first
standardized to mean zero and standard deviation one
before the neighbor selection and then re-scaled back to
the original scale after imputation [12, 17]. The distance
used to select the neighbors is dc= 1 - |r|, where r is the
Pearson correlation. This distance allows for information
to be incorporated from both positively correlated and
negatively correlated neighbors. During the distance cal-
culation MVs are omitted, so that it is based only on the
complete pairwise observations between two metabolites.

The KNN based on the Euclidean (KNN-EU) or
Correlation (KNN-CR) distance metrics do not account
for the truncation at the minimum value or the limit of
detection. In our method, we propose a modified version
of the KNN approach which accounts for the truncation
at the minimum value called KNN Truncation (KNN-
TN). A truncated distribution occurs when there is no
ability to know about data that falls below a set thresh-
old or outside a certain set range. Often the general idea
is to make inference back to the original population and
not on the truncated population and therefore inference
is made on the population mean and not the truncated
sample mean. In the regular KNN-CR, the metabolites
are standardized based on the sample mean and sample
standard deviation. In KNN-TN, we first estimate the
means and standard deviation, and use the estimated
values for standardizing. Maximum likelihood Estima-
tors (MLE) are estimated for the truncated normal
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distribution. The likelihood for the truncated normal
distribution is

2000 = 1] v () =

Here a is the truncation point and presumed to be
known in our case. Also note that MVs are ignored and
the likelihood is based only on the observed data (in es-
sence a partial likelihood akin to a Cox regression model
([18, 19])). The log likelihood is then

[ = InL(p,0?)

— aln((re(a, =) nin (Vo) - 20

The P(Y € (a, )|, 0°) is the part of the likelihood that
is specific to the truncated normal distribution.

We use the Newton—Raphson (NR) optimization pro-
cedure to find the MLEs for p and o [20, 21] (for details
see the Additional file 1). The sample means and stand-
ard deviations are used as the initial values for the NR
optimization. To accelerate the run-time of the algo-
rithm, truncation-based estimation of the mean and
standard deviation was done only on metabolites that
had a sample mean within three standard deviations of
the LOD. For the other metabolites, we simply used the
sample means and standard deviations. The runtime for
one dataset with 50 samples and 400 metabolites and
the three missing mechanisms was about 1.20 min on
average, which included truncation-based estimation of
the mean and standard deviation and the three imput-
ation methods. In particular for one individual run on
50 samples and 400 metabolites with 15% missingness,
the runtime was about 1.81 s for the KNN-EU method,
341 s for the KNN-CR method and 19.95 s for the
KNN-TN method. The KNN-TN method runtime was a
little longer due to the estimation of the means and
standard deviations.

Let y;,, be the intensity of metabolite m (1 <m < M) in
sample i (1<i<N). The following steps outline the
KNN imputation algorithms (KNN-TN, KNN-CR, and
KNN-EU) in our paper:

1. Choose a K to use for the number of nearest
neighbors.

2. Select the distance metric: Euclidean (KNN-EU) or
correlation (KNN-CR and KNN-TN)

3. If using correlation metric, decide whether to
standardize the data based on sample mean and
sample standard deviation (KNN-CR) or the
truncation-based estimate of the mean and standard
deviation (KNN-TN).

4. Based on the distance metric and (possibly)
standardization, for each metabolite with a missing
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value in sample i find the K closest neighboring
metabolites which have an observed value in sample i.

5. For metabolite 7 with missing value in sample i,
calculated the imputed value 7, by taking the
weighted average of the K nearest neighbors for
each missing value in the metabolite. The weights
are calculated as wy = sign(rx)d;'/ Sk, d;', where
dy, ..., dg are the distances between metabolite m
and each of the K neighbors and ry, ..., i are the
corresponding Pearson correlations. The
multiplication by sign(ry) allows for incorporation of
negatively correlated metabolites. The imputed value
is then §;,, = % Yy Wi

6. If using the KNN-CR or KNN-TN approaches,
back-transform into the original space of the
metabolites.

The steps for the KNN-TN procedure are outlined
graphically in Fig. 2 (see figure caption for detailed
explanation). The graph illustrates the algorithms
success at imputing both MAR and MNAR values.

Assessment of performance

We evaluated the performance of the imputation
methods by using the root mean squared error
(RMSE) as the metric. It measures the difference be-
tween the estimated values and the original true
values, when the original true values are known. The
following simulation procedure from a complete data-
set with no MVs is performed. MVs are generated by
removing a proportion p of values from the complete
data to generate data with MVs. The MVs are then
imputed as j,,; using the given imputation method.
Finally, the root mean squared error (RMSE) is used
to assess the performance by comparing the values of
the imputed entries with the true values:

1 - 2
RMSE = \/H(M) Zyim e T Yim)
where M is the set of missing values and n(M) is the
cardinality or number of elements in M. Statistical
significance of differences in RMSE values between
methods was determined using multi-factor ANOVA
models (with pre-defined contrasts for differences be-
tween the methods), with main effects for each factor in
the simulation study. We further evaluate the biological
impact of MV imputation on downstream analysis,
specifically analyzing differences in mean log intensity
between groups via the t-test. We evaluate the perfor-
mances of the MV imputation using the metabolite list
concordance index (MLCI) [22]. By applying a selected
MYV imputation method, one metabolite list is obtained
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Fig. 2 Steps in the KNN-TN imputation algorithm. Step 1 (top left panel): The first step in the KNN-TN procedure is to estimate the mean and
standard deviation of each metabolite. Here, the distribution and simulated values for five metabolites (M1-M5) and 20 samples are given. For
each metabolite, observed values are given by black stars. Additionally, M2 has three values that are MAR (blue stars), while M3 has five points that
are MNAR (below the LOD, red stars) and M4 has two points below the LOD (red stars). The estimate mean for each metabolite is indicated by
the underlying green vertical dash, while the green horizontal dashed line represents the estimated standard deviation (the line extends out +/—
two standard deviations). Step 2 (top right panel): The second step in the procedure is to transform all the values to a common scale, with mean
zero and standard deviation of one for each metabolite. The original points are represented in this transformed scale with black stars, with MNAR
values in red and MAR values in blue. Step 3 (bottom left panel): The next step is to find metabolites with a similar profile on this common scale. In this
case, metabolites M1-M3 are highly correlated and M4-MS5 are also highly correlated. The two groups of metabolites are also negatively correlated with
each other, and this information can also be used to aid the imputation process. The missing values are imputed in the transformed space, with
weights based on the inverse of the distances 1 — 1] (ris the Pearson correlation between the two metabolites). Contributions from negatively
correlated metabolites are multiplied by negative one. The region below the LOD is shaded light red. Step 4 (bottom right panel): The values are then
back-transformed to the original space based on the estimated means and standard deviations from Step 1. Here, we show the three metabolites with
missing values M2, M3, and M4. Solid circles represent imputed values for MAR (blue circles) and MNAR (red circles). The region below the LOD is again
shaded in light red, while the slightly darker shaded regions connect the imputed value with its underlying true value. The imputed values are fairly
close to the true values for metabolites M2 and M3, while for metabolite M4 the values are further away due to under-estimation of the true variance
for M4 (cf. top left panel)

from the complete data and another is obtained from
the imputed data. The MLCI is defined as:

Simulation study

We carried out a simulation study to compare the per-
formance of the three different KNN based imputation
methods. The simulations were conducted with 100
replications and are similar in spirit to those used in
Tutz and Ramzan, 2015 [17]. For each replication we

n(McpnM n(MEpnM§;
MLCT (Mep, Mip) = ™ 351 w) , Lo ’D)—l,
n(Mcp) n(Mép)

where Mcp is the list of statistically significant metabo-
lites in the complete data, Mp is the list of statistically
significant metabolites in the imputed data, and MEp
and M}, represent their complements, respectively. The
metabolite list taken from the complete dataset is con-
sidered as the gold standard and a high value in MLCI
indicates that the metabolite list from the imputed data
is similar to that from the complete data.

generated data with different combinations of sample
sizes n and number of metabolites 7. Each set of metab-
olites for a given sample were drawn from a m dimen-
sional multivariate normal distribution with a mean
vector 4 and a correlation matrix X. We consider, in
particular, three structures of the correlation matrix:
blockwise positive correlation, autoregressive (AR) type
correlation and blockwise mixed correlation.
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Blockwise correlation

Let the columns of the data matrix Y{» x m) be divided
into B blocks, where each block contains M/B metabo-
lites. The partitioned correlation matrix has the form

le oo ZIB
231 ZBB

The matrices ¥,; are determined by the pairwise corre-
lations p,,, such that all the components have a within
block correlation of p,,. The matrices X, i #j, are deter-
mined by the pairwise correlations p.g that is, all the
components have a between block correlation p.g The
two types of blockwise correlation matrices used in this
study are one with all positive correlations where the p,,
is positive only and the other is mixed where ¥; contains
both positive and negative correlations. The mixed
correlation has the form which is blockwise split in half
where the diagonal blocks are positively correlated and
the off-diagonal blocks are negatively correlated. For

example, if ¥; contained six metabolites for any i, the
matrix X;; would be:

I e
I 4+ = +
L+t
[N
[
I

I
I
I

+ + =

Zii:

+ =+
—_ 4 4+ 1

where the + is the positive p,, and - is the negative p,,

Autoregressive-type correlation

The other correlation structure used is the autoregres-
sive type correlation. An AR correlation matrix of order
one is defined by pairwise correlations p!’ /|, for metab-
olites i,j=1, ..., M.

The combinations used were (N [Samples] X M [Metabo-
lites]) = 20 X 400, 50 X 400, and 100 X 900. The means
of the metabolites are assumed to be different and are
generated from a Uniform(-5,5) distribution. The me-
tabolites within each block were strongly correlated with
pw=0.7, but nearly uncorrelated with metabolites in
other blocks, pog=0.2. In the AR type correlation p =
0.9. For the degree of missing, three levels were studied:
9% missing, 15% missing and 30% missing. Missing data
were created based on the two kinds of missingness,
MNAR and MAR (technically the latter are generated by
MCAR, though a MAR mechanism can be exploited for
imputation since the metabolite values are highly corre-
lated). Within each level of missing, a one-third and
two-third combination was used to create both MNAR
and MAR. We looked at the scenario where MNAR is
greater than MAR and vice versa. For example in 9%
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missing, we considered 6% as MNAR and 3% as MAR
and then considered 6% as MAR and 3% as MNAR.
Data below the given MNAR percent was considered as
missing and the MAR percent was randomly generated
in the non-missing data. The datasets with missing
values were passed through a cleaning process where
metabolites with more than 75% missing observations
were eliminated individually. Throughout, the number
of neighbors K used for imputation was set to 10. We
evaluated three Ks (K=5, 10 and 20) and found
consistency in K= 10 as it gave the best RMSE values.

Real data studies

Myocardial infarction data We use the in vivo metabo-
lomics data on myocardial infarction (MI). The data
consists of two groups, MI vs control, five samples in
each group and 288 metabolites. Adult mice were sub-
jected to permanent coronary occlusion (myocardial in-
farction; MI) or Sham surgery. Adult C57BL/6 ] mice
from The Jackson Laboratory (Bar Harbor, ME) were
used in this study and were anesthetized with ketamine
(50 mg/kg, intra-peritoneal) and pentobarbital (50 mg/
kg, intra-peritoneal), orally intubated with polyethylene-
60 tubing, and ventilated (Harvard Apparatus Rodent
Ventilator, model 845) with oxygen supplementation
prior to the myocardial infarction. The study was aimed
to examine the metabolic changes that occur in the
heart in vivo during heart failure using mouse models of
permanent coronary ligation. A combination of liquid
chromatography (LC) MS/MS and gas chromatography
(GC) MS techniques was used to measure the 288 me-
tabolites in these hearts. The MS was based on a Waters
ACQUITY UPLC and a Thermo-Finnigan LTQ mass
spectrometer, which consisted of an electrospray
ionization source and linear ion trap mass analyzer. The
cases had 220 metabolites with complete values, six me-
tabolites with complete missing and 62 metabolites had
4.8% missing values whereas the controls had 241 me-
tabolites with complete values, seven metabolites with
complete missing and 40 metabolites had 7.8% missing
values. The LOD for this dataset is considered as the
minimum value of the dataset as commonly used in
untargeted metabolomics. Details of the experiments are
described in Sansbury et al. [15].

Atherothrombotic data We use the human athero-
thrombotic myocardial infarction (MI) metabolomics
data. The data was identified between two groups, those
with acute MI and those with stable coronary artery dis-
ease (CAD). Acute MI was further stratified into throm-
botic (Typel) and non-thrombotic (Type2) MI. The data
was collected across four time points and for the context
of this research we used the baseline data only. The
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three groups, sCAD, Typel and Type2 had 15, 11, and
12 patients with 1032 metabolites. The sCAD had 685
metabolites with complete values, 39 metabolites with
complete missing, and 308 metabolites had 10.2% miss-
ing, the Typel group had 689 metabolites with complete
values, 43 metabolites with complete missing and 300
metabolites had 9.8% missing whereas the Type2 group
had 610 metabolites with complete values, 66 metabo-
lites with complete missing and 356 metabolites had
12.3% missing. The LOD for this dataset is considered as
the minimum value of the dataset as commonly used
in untargeted metabolomics. Plasma samples collected
from the patients were used and 1032 metabolites
were detected and quantified by GC-MS and ultra-
performance (UP) LC-MS in both positive and nega-
tive ionization modes. Details of the experiment are
described in DeFilippis et al. [23].

African race data We used the African Studies data
which is publicly available on The Metabolomics Work-
Bench. This data is available at the NIH Common Fund’s
Data Repository and Coordinating Center (supported by
NIH grant, U01-DK097430) website (http://www.meta
bolomicsworkbench.org), where it has been assigned a
Metabolomics Workbench Project ID: PR000010. The
data is directly accessible from The Metabolomics
WorkBench database [16]. The data was collected to
compare metabolomics, phenotypic and genetic diversity
across various groups of Africans. The data consisted of
40 samples; 25 samples from Ethiopia and 15 samples
from Tanzania and 5126 metabolites. For the purpose of
this study we made sure we had a complete dataset in
order to compare the methods. The complete datasets
created were two datasets based on the country; Ethiopia
dataset (25 samples by 1251 metabolites) and Tanzania
dataset (15 samples by 2250 metabolites).

Due to small sample sizes in metabolomics datasets, we
used a simulation approach originally designed to resem-
ble the multivariate distribution of gene expression in
the original microarray data [24]. Since our Myocardial
Infarction and Atherothrombotic data had missing
values we first imputed missing values based on the
KKNN-CR method and then used the simulation method
to simulate 100 datasets. For the African Race data we
started with a complete dataset. The different groups
were considered as independent datasets and the imput-
ation was done on them separately. We used the similar
mechanism for missingness and screening as used in the
simulation studies, with sample sizes of 25 and 50 for
the myocardial infarction dataset, 50 and 100 for the
human atherothrombotic dataset and 15 and 25 for the
Tanzania and Ethiopia data sets, respectively, from the
African race study.
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Results

Simulation results

In this section, we present the results of the simulation
studies comparing the performance measures of KNN-
TN, KNN-CR and KNN-EU. Figures 3, 4 and 5 plot the
distribution of the RMSE values for KNN-TN, KNN-CR
and KNN-EU by correlation type and percent missing
for sample sizes 20, 50, and 100, respectively. Since the
pattern of results was similar regardless of whether the
percent MNAR was less than the percent MAR, results
are shown for percent MNAR > percent MAR only. As
can be seen from the figures, the results consistently show
that the KNN-TN method outperforms both the KNN-CR
and KNN-EU methods. ANOVA modeling of the RMSE
values shows statistically significant differences between
the KNN-TN method and KNN-CR/KNN-EU methods
for all three cases, and significant effects for the other two
factors (percent missing and correlation type) as well
(Additional file 2: Tables S1-S3). To visualize how our
method works we selected a simulated dataset from N =
50 and M =400 with 15% missing (10% below the LOD
and 5% MAR) and compared the true missing values
with KNN-TN, KNN-CR and KNN-EU. Figure 6 dem-
onstrates that our imputation method imputes values
below the limit of detection whereas the Euclidean or
correlation based metrics are less accurate for these
values. The figure is reproducible with our included
example script in Additional file 3. We further com-
pared the three methods with standard imputation
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Fig. 3 Boxplots of root mean squared error for KNN-TN, KNN-CR and
KNN-EU for 100 datasets, 20 samples by 400 metabolites. Total
missing was considered at 9%, 15% and 30% and within each
missing MNAR is greater than MAR. The three correlation structure
used was i) only positive correlation 0.7, ii) AR(1) correlation 0.9
and iii) mixed correlation 0.7
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methods in metabolomics (zero, minimum and mean
imputation methods) and all three KNN imputation
algorithms outperformed the standard methods. The
results for the simulation studies are shown in
Additional file 2: Tables S4-S6 where we see the
average RMSE range was from 4.0 to 5.8.
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Fig. 5 Boxplots of root mean squared error for KNN-TN, KNN-CR and
KNN-EU for 100 datasets, 100 samples by 900 metabolites. Total missing
was considered at 9%, 15% and 30% and within each missing MNAR is
greater than MAR. The three correlation structure used was i) only positive
correlation 0.7, i) AR(1) correlation 0.9 and iii) mixed correlation 0.7

Fig. 6 Comparison of the true missing values with missing values
imputed from the three methods based on a single simulated dataset
(N=50 X M =400). The values for the first 20 metabolites are shown.
The x-axis represents the metabolites, and the y-axis represents the
intensity values. The open black circles represent observed values, while
the black stars represent missing observations. Blue triangles, red
squares, and green diamonds represent missing values imputed by
KNN-TN, KNN-CR and KNN-EU, respectively. The region below the LOD
is shaded in light red. In most cases, the KNN-TN algorithm is able to
impute missing values below the LOD better than the other two
methods (e.g., metabolites 1, 3,4, 7,8, 12, and 13). In other cases, the
KNN-TN imputations are similar to KNN-CR (e.g., for metabolite 5, for
which the missing below the LOD was too high and the NR algorithm
was unable to converge)

Real data simulations results

We conducted a simulation study based on the real
datasets to further validate our results. Tables 1, 2, and 3
show the results of the in vivo myocardial infarction
data, human atherothrombotic data, and publicly avail-
able African Race data. In all cases the KNN-TN and
KNN-CR results are substantially better than the KNN-
EU results, with RMSE means more than two standard
deviations below the means for KNN-EU (p-value <
0.05 for KNN-TN vs. KNN-EU contrast, Additional
file 2: Tables S7-S9). The difference between KNN-
TN and KNN-CR is much smaller by comparison,
with statistically significant differences only for the
Atherothrombotic and African Race data sets. How-
ever, in every case the mean RMSE for KNN-TN is below
that for KNN-CR. Additional file 2: Tables S7-S9 show
that significant differences in RMSE values exist according
to the other factors in the simulation study (percent miss-
ing, group, and sample size) as well. We further compared
the three methods the standard imputation methods in
metabolomics (zero, minimum and mean imputation
methods) and all three KNN imputation algorithms out-
performed the standard methods. The results for the real
data are shown in Additional file 2: Tables S10—S12 where
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Table 1 Average RMSE of 100 simulations using the in vivo myocardial infarction dataset for KNN-TN, KNN-CR and KNN-EU

MNAR/MAR Sample size Group KNN-TN KNN-CR KNN-EU
6%/3% 25 Cases 0613 (0.072) 0.619 (0.071) 0.786 (0.075)
25 Controls 0436 (0.054) 0441 (0.054) 0.607 (0.047)
50 Cases 0.597 (0.045) 0.602 (0.046) 0.776 (0.048)
50 Controls 5(0.032) 0420 (0.031) 0.600 (0.028)
10%/5% 25 Cases 0.632 (0.099) 0637 (0.101) 0.810 (0.087)
25 Controls 0416 (0.052) 419 (0.050) 0.555 (0.044)
50 Cases 0.607 (0.073) 610 (0.073) 0.809 (0.069)
50 Controls 0409 (0.034) 412 (0.034) 0.556 (0.029)
20%/10% 25 Cases 0.610 (0.108) 612 (0.107) 0.701 (0.091)
25 Controls 0.381 (0.059) 0.389 (0.058) 0498 (0.048)
50 Cases 0.586 (0.083) 0.586 (0.081) 0.699 (0.071)
50 Controls 0.370 (0.053) 0.381 (0.053) 0499 (0.041)

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was greater than MAR

we see the average RMSE range was from 2.2 to 7.2. The
t-test analysis and the MLCI values are shown in Table 4.
A higher value of MLCI indicates that the metabolite list
from the imputed data is similar to that from the complete
data and from the tables KNN-TN and KNN-CR have the
highest values, whereas the KNN-EU, Zero, Minimum
and Mean imputation methods have lower MLCI indexes.
Differences in mean MLCI values between KNN-TN and
KNN-CR were not statistically significant (Additional
file 2: Tables S13-S15), whereas KNN-TN was signifi-
cantly better than the other four methods in all cases

except for the African Race data (where mean imputation
and all KNN imputation methods were roughly equivalent
and better than zero and minimum value imputation).

Discussion

The objective of this study was to develop an approach
for imputing missing values in data generated by mass
spectrometry. When metabolites occur at low abun-
dance, below the detection limit of the instrumentation,
we can consider it as missing not at random. In contrast,
missing values resulting from technical errors are

Table 2 Average RMSE of 100 simulations using the human atherothrombotic dataset for KNN-TN, KNN-CR and KNN-EU

MNAR/MAR Sample size Group KNN-TN KNN-CR KNN-EU
6%/3% 50 sCAD 1.145 (0.047) 1.171 (0.046) 0 (0.052)
50 TYPE1 1.255 (0.054) 1.273 (0.053) 1.555 (0.057)
50 TYPE2 1.266 (0.051) 1.279 (0.050) 1.567 (0.055)
100 sCAD 1.083 (0.048) 9 (0.041) 1403 (0.053)
100 TYPE1 1.183 (0.048) 9 (0.041) 1.531 (0.053)
100 TYPE2 1.183 (0.048) 1(0.041) 1.531 (0.053)
10%/5% 50 sCAD 1.146 (0.045) 8 (0.045) 1.337 (0.050)
50 TYPE1 1.262 (0.059) 1.280 (0.057) 1.490 (0.059)
50 TYPE2 1.296 (0.048) 5 (0.047) 1.531 (0.051)
100 sCAD 1.075 (0.031) 1.095 (0.031) 1.330 (0.034)
100 TYPE1 1.171 (0.039) 9 (0.038) 1460 (0.041)
100 TYPE2 1.189 (0.040) 1.207 (0.038) 1.490 (0.040)
20%/10% 50 sCAD 1.120 (0.049) 0 (0.049) 0 (0.047)
50 TYPE1 1.261 (0.061) 1.282 (0.061) 1.398 (0.059)
50 TYPE2 1.354 (0.058) 1.373 (0.058) 1484 (0.054)
100 sCAD 1.033 (0.035) 1.053 (0.035) 8 (0.034)
100 TYPE1 1.153 (0.041) 6 (0.041) 1.372 (0.041)
100 TYPE2 1.246 (0.037) 1.266 (0.037) 1451 (0.036)

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was greater than MAR
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Table 3 Average RMSE of 100 simulations using the African Race dataset for KNN-TN, KNN-CR and KNN-EU

MNAR/MAR Sample size Group KNN-TN KNN-CR KNN-EU
6%/3% 15 Tanzania 0.695 (0.050) 0.711 (0.051) 0.772 (0.049)
25 Ethiopia 0.575 (0.029) 0.592 (0.029) 0.701 (0.033)
10%/5% 15 Tanzania 0.659 (0.052) 0.674 (0.053) 0.728 (0.050)
25 Ethiopia 0.556 (0.029) 0.574 (0.029) 0.665 (0.031)
20%/10% 15 Tanzania 0.577 (0.049) 0.588 (0.049) 0.627 (0.051)
25 Ethiopia 0.507 (0.026) 0.520 (0.027) 0.599 (0.028)

Total missing was considered at 9%,

considered missing at random. To this end, we introduce
an extension to the KNN imputation algorithm which
handles truncated data, termed KNN-TN. To our know-
ledge, this is the first paper to propose a hybrid KNN
imputation approach which can simultaneously handle
missing data generated by both MNAR (falling below
the LOD) and MAR mechanisms. Since MNAR is in-
volved and is due to the detection limit, we consider the
detection limit as a truncation point and assume that
the metabolite follows a truncated normal distribution.
Therefore the mean and standard deviation are esti-
mated from the truncated normal distribution and used
to standardize the metabolites in the KNN imputation
algorithm. The simulation results show that the pro-
posed method performs better than KNN based on
correlation or Euclidean measures when there is missing
data due to a threshold LOD.

In our simulations we evaluated three different data
set sizes: small (20 samples by 400 metabolites), medium
(50 samples by 400 metabolites) and large (100 samples
by 900 metabolites). As the sample size increased, the
RMSE was lower for the different missing percentages.
The LOD was calculated based on the missing percent-
age. For instance in 9% missing (where 6% was consid-
ered as MNAR) the 6% quantile for the complete data
was considered as the LOD where we considered every-
thing below that value as missing. For the simulation
studies, the results shown in the tables are based on
when the MNAR percentage is greater than the MAR
percentage (e.g., for 9% total missing, 6% is MNAR and

15% and 30%, and within each missing, MNAR was greater than MAR

3% is MAR). However the results were similar when the
MAR percentage was greater than the MNAR percent-
age, with KNN-TN outperforming both KNN-CR and
KNN-EU. In our results, when MNAR is greater than
MAR we typically observed the RMSE was greatest at
15% MVs whereas it was lowest at 30% MVs. This
counter-intuitive result is likely due to the fact that in the
cleaning process (which removes metabolites with >75%
MVs) we are removing more metabolites whose values are
concentrated near the LOD. For example in the case of 50
samples by 400 metabolites, after screening we reduced
the metabolites to an average of about 387 metabolites for
15% missing and 345 metabolites for 30% missing. When
the MAR was greater than MNAR, the RMSE increased
with the increase in MV percentage.

Troyanskaya et al. [9] evaluated a number of different
missing value imputation methods and suggested the
KNN method to be more robust and sensitive compared
to the other methods. In another study by Brock et al.
[12], they compared the KNN based on two different
neighbor selection metrics, Euclidean and Correlation
and concluded that the correlation based neighbor selec-
tion performed better than the Euclidean neighbor selec-
tion in most of the cases. In this study we focused on
enhancing the KNN method specifically for imputing
values when there is missing due to an LOD. Future
studies will evaluate how these methods compare to
other imputation algorithms in this setting.

Recently, several studies have investigated imputation
for MS data [13, 14, 25]. Taylor et al. [25] evaluated

Table 4 Average MLCI of 100 simulations using the Myocardial, Atherothrombotic and African Race dataset with 15% missingness

Imputation Myocardial Dataset Atherothrombotic Dataset African Race Dataset
Method MLCI MLCI MLCI

Zero 0.061 (0.054) 0.086 (0.026) 0.028 (0.026)

Min 0.396 (0.061) 0.248 (0.069) 0.135 (0.078)

Mean 0.440 (0.089) 0.368 (0.103) 0.266 (0.134)
KNN-TR 0.510 (0.097) 0.392 (0.110) 0.274 (0.140)
KNN-CR 0.504 (0.094) 0.391 (0.110) 0.274 (0.139)
KNN-EU 0474 (0.091) 0.380 (0.110) 0.272 (0.139)

The Myocardial dataset was comparing cases and controls of sample size 25 in each group, Atherothrombotic dataset was comparing sCAD and Type 2 MI of
sample size 50 in each group and the African Race dataset was comparing Tanzania and Ethiopia of sample size 15 and 25 respectively
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seven different imputation methods (half minimum,
mean, KNN, local least squares regression, Bayesian prin-
cipal components analysis, singular value decomposition
and random forest) and its effects on multiple biological
matrix analyses, more specifically on the within-subject
correlation of compounds between biological matrices
and its consequences on MANOVA results. They con-
cluded that no imputation method was superior but the
mean and half minimum performed poorly. Gromski et al.
[13] looked at five different imputation methods (zero,
mean, median, KNN and random forest) and its influence
on unsupervised and supervised learning. Their results
recommended that random forest is better than the other
imputation methods and it provided better results in
terms of classification rates for both principal
components-linear discriminant analysis and partial least
squares-discriminant analysis. Hrydziuszko et al. [14]
suggested the need of missing value imputation as an im-
portant step in the processing pipeline. They used meta-
bolomics datasets based on infusion Fourier transform ion
cyclotron resonance mass spectrometry and compared
eight different imputation methods (predefined value, half
minimum, mean, median, KNN, Bayesian Principal
Component Analysis, Multivariate Imputation, and REP).
Based on their findings, KNN performed better than the
other methods.

We included a preliminary investigation of the impact
of MV imputation on downstream statistical analysis of
metabolomics data. While the KNN-TN method was sig-
nificantly better than four other imputation algorithms
(zero imputation, minimum value imputation, and
KNN-EU imputation) in two of three data sets, it was no
better than KNN-EU imputation. Further, on the African
Race data set there was no significant difference between
any of the KNN imputation algorithms and mean imput-
ation, though all were better than zero and minimum
value imputation. Although this result is somewhat dis-
appointing, a more comprehensive study of all potential
downstream analyses is needed to fully determine,
whether the improved imputation accuracy of the KNN-
TN method translates into better downstream statistical
analysis, and the characteristics of data sets for which
more advanced imputation algorithms offer a decided
advantage [22].

In some cases (high percent missing or small sample
size) the variability of the RMSE for KNN-TN is higher
than or similar to that for KNN-CR. This is directly re-
lated to the estimation of the mean and variance for the
truncated normal distribution, which can be difficult
when there are excessive amounts of missing data. In
fact, for sample sizes less than 20 there is little to no
gain in using KNN-TN over KNN-CR, unless the miss-
ing percentage is below the values evaluated in this
study (data not shown). To stabilize the estimation of
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these parameters, one possibility is to again borrow in-
formation from metabolites having similar intensity pro-
files. This is akin to the empirical Bayes approach used
to fit linear models and generalized linear models in
microarray and RNA-seq studies [26-29]. Our future
research will explore this possibility for improving the
KNN-TN algorithm.

A related limitation is the reliance on the normality
assumption for estimating the truncated mean and
standard deviation. In our simulation study we inves-
tigated data from a normal distribution, whereas in
many cases metabolite data will be non-normally dis-
tributed. In these cases we suggest to first transform
the data to normality, then impute the values and
lastly transform back. As seen in our real datasets,
the metabolites are not normally distributed and we
log transform them to approximately achieve normality
prior to imputation.

The likelihood used in our KNN-TN method is based
solely on the observed metabolite data. The full data
likelihood would include missing data as well. This is
difficult to specify in the current situation as the mech-
anism by which the MVs were generated (e.g., MNAR,
MAR, or MCAR) is unknown. It is possible to improve
the algorithm by incorporating these MVs directly into
the likelihood function, but ancillary information (e.g.,
from metabolites determined to be neighbors) is neces-
sary to inform the system regarding the missingness
mechanism (e.g., via the EM-algorithm).

Conclusion

In conclusion, the experimental results reveal that com-
pared with KNN based on correlation and Euclidean
metrics, KNN based on truncation estimation is a com-
petitive approach for imputing high dimensional data
where there is potential missingness due to a truncation
(detection) threshold. Results based on both real and
simulated experimental data show that the proposed
method (KNN-TN) generally has lower RMSE values
compared to the other two KNN methods and simpler
imputation algorithms (zero, mean, and minimum value
imputation) when there is both missing at random and
missing due to a threshold value. Assessment based on
concordance in statistical significance testing demon-
strate that KNN-TN and KNN-CR are roughly equiva-
lent and generally outperform the other four methods.
However, the approach has limitations with smaller sam-
ple sizes, unless the missing percentage is also small.
Lastly, even though this study is based on metabolomic
datasets our findings are more generally applicable to
high-dimensional data that contains missing values asso-
ciated with an LOD, for instance proteomics data and
delta-CT values from qRT-PCR array cards [30].
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