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Abstract

Background: Stochastic mapping is frequently used in comparative biology to simulate character evolution, enabling
the probabilistic computation of statistics such as number of state transitions along a tree and distribution of states in
its internal nodes. Common implementations rely on Continuous-time Markov Chain simulations whose parameters are
difficult to adjust and subjected to inherent inaccuracy. Thus, researchers must run a large number of simulations in
order to obtain adequate estimates. Although execution time tends to be relatively small when simulations are
performed on a single tree assumed to be the “true” topology, it may become an issue if analyses are conducted on
several trees, such as the ones that make up posterior distributions obtained via Bayesian phylogenetic inference.
Working with such distributions is preferable to working with a single tree, for they allow the integration of
phylogenetic uncertainty into parameter estimation. In such cases, detailed character mapping becomes less important
than parameter integration across topologies. Here, we present an R-based implementation (SFREEMAP) of an
analytical approach to obtain accurate, per-branch expectations of numbers of state transitions and dwelling times. We
also introduce an intuitive way of visualizing the results by integrating over the posterior distribution and summarizing
the parameters onto a target reference topology (such as a consensus or MAP tree) provided by the user.

Results: We benchmarked SFREEMAP’s performance against make.simmap, a popular R-based implementation of
stochastic mapping. SFREEMAP confirmed theoretical expectations outperforming make.simmap in every experiment
and reducing computation time of relatively modest datasets from hours to minutes. We have also demonstrated that
SFREEMAP returns estimates which were not only similar to the ones obtained by averaging across make.simmap
mappings, but also more accurate, according to simulated data. We illustrate our visualization strategy using previously
published data on the evolution of coloniality in scleractinian corals.

Conclusion: SFREEMAP is an accurate and fast alternative to ancestral state reconstruction via simulation-based
stochastic mapping.
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Background
“Because evolutionary patterns and processes unroll over
long time spans, their simulations has become an
important ingredient of evolutionary research” [1].
Stochastic mapping (SM) [2] is a simulation-based,

increasingly popular technique of ancestral-state recon-
struction (ASR). Unlike maximum parsimony (MP) or
maximum likelihood (ML) based reconstructions, stochas-
tic mapping allows for changes to occur along branches
(anagenesis) instead of assuming that they only occur

when lineages split (speciate), a strictly cladogenetic (or
punctuated sensu [3]) view of character evolution. MP- or
ML-based ASRs imply that, at most, one single change in
a character state will be recovered at any given node
regardless of the length of the incident edge (i.e. the dur-
ation of the preceding lineage). With the advent of dated
phylogenies, it has become evident that some of these
edge lengths may actually span millions of years. Given
such timescales and the fact that most lineages that have
ever lived are now extinct, several cladogenetic events will
be missed when one samples extant taxa (as in most
molecular phylogenies) and even when extinct ones are
included in the analysis, for the fossil record is all but
guaranteed to be incomplete. Hence, even in the rare
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situation of exhaustive taxon sampling, there will be
plenty of room left for missed state changes along phylog-
enies with deep splits. The bias introduced by the missing
nodes is known as the node density effect (NDE) [4], a
positive relationship between the number of nodes
through which a lineage passes and the amount of esti-
mated evolutionary change.
NDE is particularly pervasive in MP reconstructions be-

cause they do not factor branch lengths in their estimates.
ML reconstructions are built on Markov models which as-
sume that character evolution is a stochastic process, fully
expressed as a matrix (Q) of instantaneous, pairwise rates
of change between character states. These rates can be ana-
lytically integrated to probabilities of state change along a
branch of known length. Markov models are based on a
fundamental property: future states depend only on the
present state and not on the sequence of events that pre-
ceded it. This model reflects the memory-less nature of sto-
chastic processes, i.e. they tend to become independent of
their initial conditions in time. This implies that state prob-
abilities on a node will converge to their underlying equilib-
rium frequencies when the length of the incident branch
tends to infinity [5]. Thus, inferred probabilities will be-
come more evenly split among possible character states
when focal nodes are closer to the root of a phylogeny with
long internal branches. This somewhat compensates for
NDE because reconstructions tend to become more am-
biguous as the distance between the focal node and the
phylogeny tips increases. This ambiguity reflects the uncer-
tainty about the existence of missing nodes along ancient
lineages. However, such uncertainty may be rather frustrat-
ing if the researcher is only interested in knowing, for in-
stance, whether the underlying topology supports more
transitions away from a state than towards it. This type of
information is readily obtained via SM.
SM also has issues of its own. Unlike Bayesian phylo-

genetic analysis (e.g. [6–8]) there are no convergence
diagnostics to assess how many simulations must be run
in order to obtain a sufficient sample size. If not enough
simulations are run, the posterior distribution will be
undersampled. Otherwise, the analysis will waste com-
putational resources. Given the ever increasing power of
most personal computers, it seems wiser to err on the
side of the second option because execution times tend
to be small anyway. However, the other strong assump-
tion embedded in ASR is that the chosen topology is the
correct one, which is hardly, if ever, satisfied. This as-
sumption can be relaxed by conducting ASR on a set of
trees that represent the uncertainty inherent to the
process of phylogenetic inference. This is normally done
by running ASR on every tree in a posterior distribution,
sampled via Metropolis-Coupled MCMC (MC3) (e.g. [2,
9]). Because the sizes of these distributions tend to be
quite large, computation time may now become an issue.

Additionally, one is faced with the challenge of how to
summarize the results of such analyses. Several SM sim-
ulations must be conducted on each tree in order to re-
duce the stochastic error intrinsic to this approach.
When applied to a posterior distribution of trees, this
means tens of simulations per tree, being each one of its
branches potentially replicated thousands of times. Con-
ceivably, one could approximate a per-branch expect-
ation of the character’s evolutionary history by averaging
across different simulations conducted on a single
branch and then integrating expectations for this branch
across all trees. This is analogous to the popular “relaxed
molecular clock” approach to divergence time estimation
[7] because it effectively factors phylogenetic uncertainty
into the posterior distribution of the variable of interest.
It has been demonstrated ([10]) that per-branch expecta-

tions of the number of transitions (away from a state) and
dwelling times (the fraction of the branch length that a
character is expected to have “spent” or dwelt on a given
state) can be approximated analytically in execution times
which are orders of magnitude faster than simulation based
stochastic mapping. To our knowledge, this algorithm is
only implemented in the library Bio++. Besides being re-
stricted to molecular data, this (C++) implementation will
likely have a much smaller user base among researchers in-
terested in ASR than a package written in R, a high-level
programming language tailored for statistical computing.
Here, we introduce SFREEMAP (Simulation-FREE stochas-
tic MAPping), an R-based implementation of the algorithm
described in ([10]), specifically designed to allow fast ances-
tral character state reconstruction on thousands of phylo-
genetic trees. Additionally, our package offers an easy,
intuitive way of creating synoptic charts of the results on
any reference topology provided by the user.

Implementation
R [11] is a multiplatform computer language that pro-
vides a high level environment for data analysis and plot-
ting. It is a broadly used tool for phylogenetics [1] with
dozens of related packages [12] written by researchers
and developers around the globe. SFREEMAP has it’s
interface written in R with parts of it’s core transcripted
to C (with help from Rcpp [13] package), which can sig-
nificantly improve performance on computing intensive
calculations. The source code was made freely available
under GPL [14] license and can be found on https://
github.com/dpasqualin/sfreemap. The reference manual
and vignettes are available as Additional files 1 and 2,
please see [AF2 Ref. Manual] and [AF1 Vignettes].

Results
Performance evaluation
We benchmarked the performance of SFREEMAP against
an open source implementation of the simulation-based,
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stochastic mapping algorithm SIMMAP [15], available as
the function make.simmap from the package phytools
[16]. Experiments evaluated three main parameters
thought to affect execution time: i) the number of trees, ii)
the number of taxa and iii) the number of character states.
Trees were always ultrametric and generated using
phytools’ function pbtree. While evaluating one parameter,
the others were held constant (defaults were 1 tree, 4
states and 256 terminals). Also, due to the stochastic na-
ture of SIMMAP simulations, the researcher would want
to perform several simulations (runs) to reduce the error
inherent to the method. We employed 1, 10 and 20 simu-
lations. make.simmap experiments were performed setting
the parameter Q to “empirical”, meaning that a single Q
matrix is estimated and subsequently used in all simula-
tions. All experiments were conducted in a machine with
256GB of RAM memory, 32 cores processor Intel(R)
Xeon(R) E5-4627 v2 running at 3.30GHz. Execution time
increases linearly with the number of trees in all experi-
ments (Fig. 1a). Due to the high determination coefficients
of the regression lines (R2 > 0.99 in all cases), we can use
slopes as accurate estimates of average performance,
expressed as seconds spent on each tree (s/tree). In the
case of SIMMAP-1 (i.e. make.simmap with a single simu-
lation) the slope is 8.6 ± 0.11 s/tree. It took roughly 1.7×
as long (14.8 ± 0.11 s) for 10 simulations (SIMMAP-10)
and 2.5× (21.8 ± 0.12 s) for 20 simulations (SIMMAP- 20).
Although execution times scale modestly with the number
of simulations, SFREEMAP’s performance was far super-
ior, approximately 1.8 ± 0.02 s/tree, or roughly 5× faster
than SIMMAP-1, 10× faster than SIMMAP-10 and 12×
faster than SIMMAP-20. Total execution time for the
latter was almost 2900 s (≈48mins) for 128 trees, while

SFREEMAP completed the same task under 4 mins (≈
224 s). Usually, posterior distributions sampled by Bayes-
ian phylogenetic analyses are made up by thousands to
tens of thousands of trees. In order to obtain a new distri-
bution made up of quasi-independent samples, they are
normally sub-sampled (“thinned”) in order to break high
temporal auto-correlations among parameters, character-
istic of MCMC-based sampling [9]. Nevertheless, even
after thinning, posterior distributions will typically retain
hundreds of trees (e.g. [17]), meaning that it should take a
couple of hours for make.simmap to reconstruct the evo-
lution of a single 4-state character, even when a relatively
small number of per-tree simulations is employed.
Algorithmic complexity was also O(n) with respect to the

number of taxa (terminals), although it increased modestly
with the addition of new taxa i.e., under 1 s/taxon in every
experiment (Fig. 1b). Again, increasing number of simula-
tions had a limited impact on execution time (1.6× for
SIMMAP-10 and 2.2× for SIMMAP-20), but performance
was substantially higher in the case of SFREEMAP, whose in-
crease in execution time was, on average, only 7x10−3s per
taxon, running 6× faster than SIMMAP-1 and 13× faster
than SIMMAP-20 (Fig. 1b). Although the performance gain
may appear small in absolute numbers, it is worth noting that
a 4-fold increase in the number of terminals, from 256 (the
default in the case of Fig. 1a) to 1024, means that execution
time for one tree would go from 22.5 to 90 s in the case of
SIMMAP-20. In contrast, the difference would be 5.9 s/tree
(from 1.7 to 6.6 s) if the user chose SFREEMAP. Given the
results for 128 trees with 256 terminals, SFREEMAP would
finish in approximately 15 mins if the number of terminals
were increased to 1024, whereas computation time would go
from 48 mins to more than 3 h in the case ofmake.simmap.

Fig. 1 Benchmarking results for SFREEMAP. The curve labeled SIMMAP-1 was obtained using a single simulation, SIMMAP-10 using 10 simulations and
SIMMAP-20 using 20 simulations. a) Increase in execution times with numbers of trees (256 terminals) during the mapping of a single 4-state character.
Average performances were estimated from slopes (±SE), computed using R’s linear model (lm function), as seconds spent on each tree (SIMMAP-1 8.64 ±
0.11 s/tree, SIMMAP-10 14.80 ± 0.11 s/tree, SIMMAP-20 21.77 ± 0.12 s/tree, SFREEMAP 1.78 ± 0.02 s/tree). Intercepts were forced to 0 and determination
coefficients (R2) exceeded 0.99 in all experiments. b) Increase in execution times with number of taxa for the reconstruction of a 4-state character on a
single tree. Average performances were estimated from slopes (±SE) as seconds added per taxon (SIMMAP-1 0.038 ± 0.001 s/taxon, SIMMAP-10 0.063 ±
0.001 s/taxon, SIMMAP-20 0.088 ± 0.001 s/taxon, SFREEMAP 0.0066 ± 0.0002 s/taxon). Intercepts were forced to 0 and determination coefficients (R2) were
over 0.97 in all experiments. c) Exponential increase in execution time with number of states. Experiments were run using one tree with 256 terminals. Lines
were fit using the function nls, also implemented in R, assuming the formula y = bxa. We verified goodness-of-fit by adjusting a linear regression to log-log
transformed data. R2 exceeded 0.89 in all experiments
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The estimation of the Q matrix, a first step for both
make.simmap and SFREEMAP, is a high complexity non-
linear optimization problem, implemented in the latter
using the Quasi-Newton [18] method available through
nlminb function from the R stats package, and only solv-
able in reasonable time due the low dimensionality of the
matrix. Still, performance was most affected by the number
of character states, as evidenced by the exponential increase
in execution time depicted in Fig. 1c. This is highlighted by
the nearly identical make.simmap’s curves corresponding to
increasing numbers of simulations, whose effect is virtually
obliterated by that critical first step in all experiments.
Once again, SFREEMAP’s estimated performance was su-
perior, although the difference was not as large as the previ-
ous experiments (3.5× with respect to SIMMAP-20 in the
case of 4 states and 8× in the case of 10 states). The range
of simulated states is not very realistic, for most biological
characters would seldom have more than 10 states. A
notable exception are proteins, whose state space may be as
large as 20 amino acids. However, in this case, the re-
searcher would probably start the analysis with a user-
provided Q matrix, computed from empirically derived
substitution matrices such as the ones in the BLOSUM or
PAM series, thus reducing execution times considerably. At
any rate, these results show that Q matrix estimation is the
main performance bottleneck for both make.simmap and
SFREEMAP. Optimization of phytools’ implementation of
this step should yield the greatest performance gain for
ASR algorithms built on that package.
Algorithm complexity can thus be generalized as

O(t∙n∙s3), where t is the number of trees, n is the number
of terminals and s is the number of character states. Be-
cause a fixed number of steps is performed on each
branch (and the number of branches is a linear function
of the number of terminals), algorithm complexity in-
creases linearly as more terminals and/or trees are added
to the problem. The term s3 comes from the decompos-
ition and multiplication of square matrices whose di-
mensions are set by the number of character states, as
described in steps (i) and (ii) of Minin & Suchard's paper
[10], on page 5. This formula excludes Q matrix estima-
tion, the first step in the algorithm. As discussed above,
performance is strongly limited by this single step as
currently implemented in phytools, classified as a nonlin-
ear optimization problem with exponential search space
regarding the number of character states.

Accuracy verification
SFREEMAP returns the expectation (approximated as the
average) of the number of transitions and dwelling times
on a given state along a branch. We evaluated the accuracy
of the method by comparing these values to the numbers
of transitions and dwelling times of a binary character with
known (i.e. simulated) evolutionary history. An ultrametric

tree with 128 terminals was generated via “pure-birth”, with
exponentially distributed speciation times, using the func-
tion pbtree from phytools. Character evolution on this tree
was simulated via sim.history, also part of phytools. Add-
itionally, we evaluated the accuracy of the results obtained
using make.simmap for the same simulated data. As make.-
simmap is based on stochastic simulations, the number of
replicates for each simulation becomes another parameter
of interest because the error inherent to the algorithm
should decrease as replication increases. When the option
Q = “mcmc” is set, make.simmap first samples a number
(specified by the user) of Q matrices using MCMC and
then generates one simulation of the character history for
each sampled matrix. We ran simulations with varying
numbers of replicates, from 100 to 2500.
Figure 2a shows the tree-wide dwelling times for state

0. The boxplot summarizes make.simmap simulations
results and the blue line is the overall mean dwelling
time, computed across all these simulations. The red line
corresponds to the grand mean of the per branch expec-
tations, computed by SFREEMAP, which corresponds to
the overall dwelling time on state 0 across the entire
tree. Results for tree-wide numbers of transitions away
from that state are shown in Fig. 2b. The blue line repre-
sents the overall mean obtained using make.simmap and
the red line is the sum of the per branch expected num-
ber of transitions, computed by SFREEMAP.
Figure 3a and b represent the accuracy of SFREEMAP

and make.simmap with respect to the simulated data. Ac-
curacy was computed as the difference between estimated
(computed as described in the previous paragraph) and ob-
served (i.e. simulated) evolutionary trajectories. The blue
and red lines in Fig. 3a represent the accuracy of dwelling-
time estimation for make.simmap and SFREEMAP, respect-
ively. The same color coding was used for the numbers of
transitions in Fig. 3b. This experiment yielded three inter-
esting results. The first is the closeness, on average, be-
tween estimates obtained using the make.simmap and
SFREEMAP (represented by the blue and red lines, respect-
ively (Fig. 2a and b). It suggests that the simulation-based
approach can be replaced, with significant computational
advantage, by the algorithm proposed in ([10]), whenever
per-branch estimates will suffice. The second is that make.-
simmap’s stochastic error does not seem to taper off with
increasing number of replicates. And finally, although both
methods tend to overestimate dwelling times and numbers
of transitions, SFREEMAP had, on average, greater accur-
acy than make.simmap (Fig. 2a and b). Nevertheless,
virtually every set of make.simmap simulations had at least
one replicate that recovered observed dwelling times and
numbers of transitions with 100% accuracy (i.e. 0 error),
although outliers were abundant in the case of numbers of
transitions (Fig. 2b), highlighting the need to replicate the
analysis in order to obtain more reliable estimates.
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The results of this experiment should be taken with
caution because observed data were obtained from a sin-
gle simulation. Accuracy evaluation results could change
if a larger number of empirical simulations under the
same model and/or different parameters (i.e. numbers of
character states, tree topology and branch lengths, etc.)
were tested. The full evaluation of the algorithm’s accur-
acy is beyond the scope of this paper. The aim of this
section is merely to demonstrate that the results gener-
ated by SFREEMAP agree with the theoretical expecta-
tions of its underlying algorithm.

Graphical summarization
When working with a posterior of trees obtained via
Bayesian phylogenetic analysis, it is desirable to summarize
the probability distributions of the parameters of interest
onto a target topology. For example, clade posterior prob-
abilities may be mapped onto a maximum likelihood phyl-
ogeny obtained from the same data, or the distribution of
divergence times may be represented as error bars centered
on the internal nodes of a time-calibrated MAP (Maximum
a Posteriori) tree. The latter approach is commonly used in
studies focusing on Bayesian divergence times estimation

Fig. 2 Comparison of SFREEMAP and make.simmap estimates. make.simmap estimates were obtained for stochastic mappings from a range of
replicates, from 100 to 2500. Boxes correspond to standard deviations, dashes to means, whiskers to the min-max ranges and dots to outliers. a)
Dwelling times, i.e. the fraction of the tree expected to have been “spent” on a given state, represented as percentages of tree length. b) Absolute
numbers of transitions summed across tree branches

Fig. 3 Accuracy verification. Absolute error for dwelling times and number of transitions. Errors were computed by comparing the differences
between simulated (observed) and estimated dwelling times and absolute numbers of transitions across trees obtained using SFREEMAP and
make.simmap. The latter were obtained for a range of replicates, from 100 to 2500. Boxes correspond to standard deviations, dashes to means,
whiskers to the min-max ranges and dots to outliers. a) Dwelling times, i.e. the fraction of the tree expected to have been “spent” on a given
state, represented as percentages of tree length. b) Absolute numbers of transitions summed across tree branches
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and it is implemented, for instance, in the TreeAnnotator
package, which is part of the BEAST suite [7].
We introduce a graphical approach to summarize the

results of simulation-free stochastic mapping conducted
on several trees. The data in Fig. 4 were published in
[17]. The tree corresponds to a MAP rRNA phylogeny
of Scleractinian (hard) corals generated using BEAST.
The binary character reconstructed onto each one of the
901 trees in the posterior is the presence or absence of
coloniality (i.e. terminals are either colonial or solitary
species). Given a branch, SFREEMAP returns the ex-
pected dwelling time on a state, expressed as a fraction
of that branch’s length, and the absolute number of tran-
sitions away from that state. In order to summarize
dwelling times (Fig. 4b), values are first normalized as
percentages and converted into a corresponding color
scale, whose tonality varies in 5% steps. Each branch in
the target tree is then painted according to that scale,
being the fraction covered by each tone proportional to
the posterior probability of branches with corresponding
dwelling times. For instance, (pure) red is used to repre-
sent 100% in the color scale. If 80% of the trees in the

posterior have a branch a whose dwelling time on state
0 is 100%, then 80% of the total length of branch a in
the target tree will be painted red. If the remaining 20%
of the trees in the posterior had dwelling times on state
0 of 50% for branch a, the remaining 20% of branch a in
the target tree will be painted green (Fig. 4b). A similar
approach is adopted for the number of transitions, but
in this case the color scale is adjusted between the 0 and
the maximum number of transitions observed (Fig. 4a).
If a branch in the target tree is not found in the other
trees in the posterior, it will be colored gray.

Conclusions
SFREEMAP provides a fast and accurate alternative to
ancestral state reconstruction via simulation-based sto-
chastic mapping. The package is specifically aimed at
fast integration and intuitive representation of phylogen-
etic uncertainty associated with ASR. It does not return
detailed estimates of the character’s evolutionary trajec-
tory, which is needed, for instance, for character correl-
ation analysis [2], as implemented in [15]. Nevertheless,
dwelling times and number of transitions are important

Fig. 4 Example of graphical summarization of mapping results. Evolution of coloniality in scleractinian corals, data from [17]. In both cases, the
MAP (maximum a posteriori) tree from a “thinned” posterior distribution of ultrametric trees (obtained using BEAST, n = 302) was used to
summarize SFREEMAP’s results. The branch fraction painted with a given tone corresponds to the posterior probability of that tone. Gray
branches are not present in other trees. a) Number of transitions from colonial to solitary states. Scale goes from 0 to over 5.34 transitions per
branch. Branch coloring follows the same rationale as dwelling time. Note how greater number of transitions (represented by the “greenshift”) are
observed on longer branches which, in the framework of stochastic mapping, offer more evolutionary opportunity for state change. b) Dwelling
times in colonial state. Color scale goes from 0% (or 100% solitary) to 100% dwelling time on the colonial state. If 80% of a branch is painted
pure red, this means that 80% of the trees in the posterior had equivalent branches expected to have been colonial throughout the entire
duration of the corresponding lineage. If 80% of a branch is painted in pure green, then 80% of the equivalent branches were expected to have
been colonial during half of the lineage duration. Note that coloring shifts to either red (colonial) or blue (solitary) towards the tips of the tree,
matching the state observed on the terminals, whereas most of the internal branches closer to the root are green, due the uncertainty associated
with increasing internal branch lengths
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quantities for evolutionary biologists. The first allows
the researcher to evaluate how prevalent a certain char-
acter state was during the evolution of a group. Quanti-
fying numbers of transitions allows for testing of
possible biases in character evolution (e.g. if coloniality
evolved more often that it was lost during the history of
hard corals). Besides being an useful quantity in itself,
this latter variable may be converted to rates of evolu-
tion when normalized by branch lengths. Rate of evolu-
tion is a fundamental concept in biology, found
inevitably at the core of virtually all hypotheses on the
origin of genotypic, phenotypic and taxonomic biodiver-
sity [19]. One major limitation of the current implemen-
tation in this regard is the fact that expectations
correspond to transitions away from a state. Thus, this
method does not allow direct computation of expected
pairwise changes among states of non-binary characters
(e.g. A→G or C→ T in the case of DNA sequence
data). Nevertheless, in cases where character states may
be lumped into binary categories (such as transitions vs.
transversions), it is possible to circumvent this limitation
by estimating a Q matrix for this new (lumped) param-
eter space. Interested readers are referred to [10] for an
example with synonymous vs. non-synonymous substitu-
tions in HIV sequences.
Stochastic mapping is a powerful resource in the evolu-

tionary toolbox, but we must guard against its unwarranted
accuracy when a single topology is assumed to depict the
“true tree”. The importance of accommodating uncertainty
about the phylogenetic history of a group in comparative
analysis is well established [20]. We believe this package
provides an efficient way of accomplishing that within the
framework of stochastic character mapping.

Availability and requirements
Project name: Sfreemap
Project home page: https://github.com/dpasqualin/sfreemap
Operating systems: Platform independent
Programming languages: R
License: GNU GPL v3
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