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Abstract

Background: Recent studies illuminated a novel role of microRNA (miRNA) in the competing endogenous RNA
(ceRNA) interaction: two genes (ceRNAs) can achieve coexpression by competing for a pool of common targeting
miRNAs. Individual biological investigations implied ceRNA interaction performs crucial oncogenic/tumor
suppressive functions in glioblastoma multiforme (GBM). Yet, a systematic analysis has not been conducted to
explore the functional landscape and prognostic significance of ceRNA interaction.

Results: Incorporating the knowledge that ceRNA interaction is highly condition-specific and modulated by the
expressional abundance of miRNAs, we devised a ceRNA inference by differential correlation analysis to identify the
miRNA-modulated ceRNA pairs. Analyzing sample-paired miRNA and gene expression profiles of GBM, our data
showed that this alternative layer of gene interaction is essential in global information flow. Functional annotation
analysis revealed its involvement in activated processes in brain, such as synaptic transmission, as well as critical tumor-
associated functions. Notably, a systematic survival analysis suggested the strength of ceRNA-ceRNA interactions, rather
than expressional abundance of individual ceRNAs, among three immune response genes (CCL22, IL2RB, and IRF4) is
predictive of patient survival. The prognostic value was validated in two independent cohorts.

Conclusions: This work addresses the lack of a comprehensive exploration into the functional and prognostic
relevance of ceRNA interaction in GBM. The proposed efficient and reliable method revealed its significance in
GBM-related functions and prognosis. The highlighted roles of ceRNA interaction provide a basis for further biological

and clinical investigations.
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Background

microRNAs (miRNAs) are crucial players in tumorigen-
esis and patient prognosis in cancers [1, 2]. Upon comple-
mentary binding to target mRNAs, they lead to mRNA
degradation or translational repression [3, 4]. Recently,
an alternative role of miRNA as a “bridge” of gene
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interaction, namely the competing endogenous RNA
(ceRNA) interaction, was proposed and verified using
in vitro and in vivo models [5-7]. In the scenario of
ceRNA interaction, genes (ceRNAs) achieve coexpression
by competing for a common pool of targeting miRNAs
(acting as sponges; illustrated in Fig. 1a). ceRNA inter-
action has been shown to play essential roles in the devel-
opment and progression of cancers, and to potentially
serve as new therapeutic targets [8—10]. Recent studies
also revealed its role in propagating the effects of alter-
ations in 3" untranslated regions of genes, including single
nucleotide polymorphisms and alternative polyadenylation
[11-13]. Strength of such miRNA-mediated gene crosstalk
can even outperform the one achieved by direct transcrip-
tional regulation [14]. In vitro and in silico investigations
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Fig. 1 lllustration of miRNA-modulated ceRNA interaction. a lllustration of ceRNA interaction. An increase in the expression of one ceRNA attracts its
targeting miRNAs and protects the other ceRNA from miRNA-induced degradation. Such competition leads to coexpression between two ceRNAs in a
miRNA-modulated manner. b Based on previous reports and the characteristics of high-throughput profiling, interaction strength between two ceRNAs
is optimized within a certain range of miRNA abundance. c lllustration of miRNA-modulated ceRNA interaction. We devised a ceRNA inference by
differential correlation analysis (CEIDCA) to identify miRNA-modulated ceRNA interaction pairs. For each putative ceRNA triplet, CEIDCA partitions samples
based on miRNA expression levels and statistically infers whether the two ceRNAs are differentially correlated in one group compared to another

suggest that a balance among miRNA and ceRNA abun-
dance and targeting affinities is essential for optimal
ceRNA interaction [15-19]. Taking into consideration
the variations from high-throughput profiling (probe
sensitivity, heterogeneity and variations of sampled co-
horts, etc.), ceRNA interaction appears to be modulated
by (i.e., dependent on) the expression of bridging miR-
NAs [7, 20, 21] (illustrated in Fig. 1b). In other words,
coexpression between a pair of ceRNAs (ce-pair) is op-
timized when its bridging miRNA is expressed within a

certain range (Fig. 1b, right panel), suggesting the ne-
cessity to consider miRNA modulation in a systematic
screening of ceRNA interaction.

Glioblastoma multiforme (GBM) is the most aggressive
type of brain tumors. Previous works have extensively
explored the molecular alterations and heterogeneity in
order to better understand its biology and develop effect-
ive prognostic biomarkers [22-24]. However, 2-year and
3-year survival rates remain lower than 50% and 20%,
respectively [25], suggestive of the urgent need for new
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therapeutic strategies. GBM was one of the cancers in
which the ceRNA hypothesis was postulated and experi-
mentally validated [6, 7], where ceRNA interaction was
demonstrated to play important roles in tumor initiation
and progression. Existing systematic methods for ceRNA
analysis, e.g., Hermes [6], are mostly built based on mutual
information (MI) that requires heavy computation for
statistical inference. Thus, a comprehensive investiga-
tion into the functional and prognostic significance of
ceRNA interaction on a genome-wide scale that may
reveal crucial biological and clinical clues to GBM
remains an uncharted territory.

Addressing these needs, in the present study we devised
a ceRNA inference by differential correlation analysis
(CEIDCA) for a systematic identification of miRNA-
modulated ce-pairs. Facilitated by its vastly improved
computational efficiency, we conducted a genome-wide
analysis and unveiled the essential involvement of ceRNA
interaction in the information flow of global gene signal-
ing, cellular signaling, and GBM-related crucial processes.
Furthermore, incorporating survival data, we discovered
the prognostic significance of ceRNA interactions among
three immune response genes (CCL22, IL2RB, and IRF4),
which was verified in two independent cohorts. Taken to-
gether, our data highlight the crucial roles of this alterna-
tive layer of gene interaction in GBM. The proposed
method is broadly applicable to systematically explore
ceRNA interaction in cancers with novel applications to
regulatory biology and prognosis prediction.

Results

Overview of the CEIDCA algorithm

The study is aimed to comprehensively explore the func-
tional landscape and prognostic significance of ceRNA
interaction in GBM. We devised the CEIDCA algorithm
to systematically identify ceRNA interaction pairs from
sample-paired miRNA and gene expression profiles. In-
corporating the findings from previous in vitro and in
silico studies that ceRNA interaction is modulated by
miRNA abundance, CEIDCA identifies a pair of ceRNAs
(ce-pair) that are significantly differentially correlated
with each other with changes in miRNA expression
levels (Fig. 1). We defined putative ce-pair as two genes
(say, i and j) that share at least one predicted targeting
miRNA (m). For each putative ce-triplet (i —j—m) we
tested whether the interaction strength, measured by
Pearson correlation transformed to the ¢-domain (Eq. 1),
between i and j changes among samples partitioned by
the level of m. Out of simplicity, samples were stratified
into high (H), medium (M), or low (L) expression of m
(see the Discussion section). Statistical significance of an
inter-group change (an interaction score, Al7}) was eval-
uated by a simulation-based lookup table. A ce-pair
showing significantly intensified coexpression from one
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state of m (namely, optimized group G%*) to another
was identified as a miRNA-modulated ce-pair (G**-ce-
pair). Details of CEIDCA are described in the Methods
section (flowchart in Additional file 1: Figure S1).

Analysis of miRNA-modulated ceRNA interaction

In sample-paired miRNA and gene expression datasets of
520 GBM samples profiled by The Cancer Genome Atlas
project (TCGA) [26, 27], we defined a total of 2,756,415
putative ce-triplets (ceRNA-miRNA-ceRNAs) that corre-
sponded to 1,546,640 unique ce-pairs (ceRNA-ceRNAs),
composed of 4,334 ceRNAs and 314 miRNAs. CEIDCA
called 537,304 (3,968 ceRNAs and 304 miRNAs) significant
miRNA-modulated ce-triplets (P < 0.01, corresponding Al
>2.36). Among them, 27.0% (144,848), 21.5% (115,646),
and 51.5% (276,810) were optimized in samples with high
(H-ce-pair), medium (M-ce-pair), and low (L-ce-pair) ex-
pression of bridging miRNAs, respectively (examples in
Fig. 2a). A highly interconnected ceRNA interaction net-
work was constructed by merging these ce-pairs using
Cytoscape [28] (connectivity =270.8; Additional file 2:
Figure S2A). Interestingly, the network was also highly cen-
tralized; the top 479 (12.1%) hub ceRNAs or the top 18
(5.9%) bridging miRNAs accounted for over one-half ce-
triplets (Additional file 2: Figure S2B-C). The most well-
studied ceRNA, PTEN, had an overrepresented number of
ce-triplets (591, Fisher’s exact test P =5.99x1072°). In line
with findings of previous in vitro investigations (reviewed
in Ref. [29]), its partner ceRNAs were associated tumor
suppressive functions, such as cell death (117 ceRNAs,
Fisher’s exact test P =6.49x10™?) and apoptosis (93 ceR-
NAs, P=2.08x10"°), reported by the knowledge-based
Ingenuity Pathway Analysis software (IPA, Qiagen Inc.).

Functional landscape of core ceRNA interactions

To further investigate the functional landscape of ceRNA
interactions in GBM, we extracted 1,762 core ce-triplets
(Fig. 2b and Additional file 3: Table S1) by a stringent cri-
terion (Bonferroni adjusted P< 10, the most significant
order of cutoff achievable from our simulation; correspond-
ing AI >7.36). These ce-triplets were composed of 1,019
ceRNAs. We evaluated the role of core ceRNA interactions
in global gene interaction. Notably, they had much higher
node degrees in the genome-wide coexpression network
than other genes (mean degrees, 5,208 vs. 4,601; Wilcoxon
rank sum test P=4.30x10%" and t-test one-tailed P=
3.92x107%%; Fig. 2c), where the network was composed of
gene pairs with Pearson correlation coefficient >0.099 (P =
0.012) that includes all core ceRNA pairs. Furthermore, a
higher proportion of core ceRNAs appeared to be hub
genes, defined as the top 5% genes by degree [30], in the
genome-wide network (10.2% vs. 4.5%; Fisher’s exact test
P=522x10""3; Fig. 2d), suggesting the essential roles in
maximizing information exchanges of gene interactions.
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Fig. 2 Core ceRNA interaction network and its significance in genome-wide gene interaction. a Examples to high- (H-ce-pair), medium- (M-ce-pair),
and low- (L-ce-pair) miRNA-optimized ceRNA interaction pairs. Coexpression of two ceRNAs is significantly intensified in the optimized group. b The
core ceRNA interaction network. A total of 1,762 core ceRNA triplets were identified by a stringent criterion (Bonferroni adjusted P < 10™). Node size is
proportional to node degree. ceRNAs accounting for more than 1% of edges are labeled with gene symbols. Highlighted in colors are ceRNAs involved
in the largest three enriched functions reported by DAVID. ¢ Node degrees of core ceRNAs and other genes in the genome-wide gene coexpression
network. Statistical significance of difference is assessed by the Wilcoxon rank sum test. d Proportions of core ceRNAs and other genes appearing as
hub genes (with degrees ranked in the top 5%) in the genome-wide interaction network. Statistical significance is assessed by a Fisher's exact test.
e Validation of core ceRNA triplets in CGGA datasets. Interaction scores were compared between the 1,762 core ce-triplets identified in TCGA datasets
and other putative triplets by the t-test

Interestingly, the top overrepresented ceRNAs, AAKI,
BSN, and SV2B (Fisher’s exact test P=1.61x10"%,
1.10x10"?, and 8.05x10*'; Additional file 4: Table S2),
are all known to participate in cellular signaling of
membrane-bound receptors or synapse [31-33]. Func-
tional annotation analysis of the 1,019 core ceRNAs by
the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) [34] revealed concordant en-
richments in synaptic/cellular signaling, accordingly
plasma membrane (206 ceRNAs), cell/synapse junction
(76), cytoplasmic vesicle (74), intracellular transport
(108), and transmission of nerve impulse (104) (Fig. 2b and
Additional file 5: Figure S3; Additional file 6: Table S3).
Our findings substantiate a recent report that ceRNA is in-
volved in routine functions of the nervous system [35], and
further imply that ceRNA interaction, similar to other
dynamic gene-gene interactions [36, 37], enables flexibility
to the genome-wide interaction networks and facilitates
cells to transiently respond to cellular stimulus and
organize communication and signaling.

We also analyzed the involvement in physiology and
disease by IPA. The core ceRNAs were enriched in
the canonical pathway of “molecular mechanisms of
cancer” (Fisher’s exact test P=6.66x10") and other

functions, such as “tumorigenesis of malignant
tumor”, “growth of tumor”, and “epithelial-mesenchy-
mal transition of tumor” (P=5.59x107, 6.25x107%
and 3.17x107%).

Validation analysis of core ceRNA interactions

We validated the core ce-triplets identified in TCGA
(Fig. 2b) by an independent dataset of sample-matched
miRNA and gene expression profiles (Chinese Glioma
Genome Atlas (CGGA); n=64) [38, 39]. We note that
for cohort variability, tumor heterogeneity, and differ-
ence in profiling technologies (illustrated in Fig. 1), the
validation analysis was conducted with respect to inter-
actions scores, not examining the consistency of G”*
between the two datasets. The 1,762 core ce-triplets
showed concordantly increased interaction scores than
other putative ce-triplets with respect to density func-
tions (¢-test P=9.55x107%; Fig. 2e) and cumulative
distributions (Kolmogorov—Smirnov test statistic =
0.18, P=8.78x10"*%; Additional file 7: Figure S4). Our
data suggest the reliability of CEIDCA and the stabil-
ity of miRNA-modulated ceRNA interaction among
cohorts.
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Comparison with Ml-based methods

We compared CEIDCA to two MlI-based methods,
namely SMI and CMI (see the Methods section for de-
tails), with respect to identified ceRNA triplets (edges in
the ceRNA interaction network), ceRNAs (nodes), and
computation time. Since CEIDCA utilizes a random simu-
lation in the t-domain, high precision of P-values was
achieved (to the order of 102, while of 10 in SMI and
CMI methods), enabling a statistically stringent inference
and theoretically lowering false-positive rates. Generally,
results of the three methods were highly comparable
(Fig. 3a—b; Fisher’s exact test P-values<5.15x10™"" and
<4.01x107" for identified ce-triplets and ceRNAs, respect-
ively). While only a moderate proportion of CEIDCA-
reported core ce-triplets (20.5%, 361 out of 1,762; Fig. 3a)
were reported by SMI or CMI, reflecting the distinct
mathematical characteristics of correlation and MI in de-
tecting ceRNA-ceRNA interactions, we noted the two
methods covered up to 96.7% of CEIDCA-identified ceR-
NAs (985 of 1,019; Fig. 3b). The data correspond to our
previous study that suggests a massive rewiring among a
stably maintained set of ceRNAs underlie ceRNA inter-
action networks in different cancer settings [20]. Since
CEIDCA pre-generated a lookup table for the significance
of interaction scores, the evaluation of ~2.76 million ce-
triplets cost less than 1.4 h on a Xeon X7350 server with
full 4-core 2.93 GHz processors (Fig. 3c). However, MI-
based methods, for the need to permute datasets for each
ceRNA triplet, are computationally expensive (4.7 and 5.7
days for SMI and CMI, respectively; Fig. 3c), limiting their
applications to genome-wide analyses. More general simu-
lation comparisons regarding MI-based vs. correlation-
based methods can be found in [40].

Prognostic significance of ceRNA interactions

For each of the core ce-pairs, we compared the survival dis-
tributions between G”* samples and others. Interestingly,
pairwise interactions among three immune response-

Page 5 of 11

related genes, IRF4 — CCL22, CCL22 - IL2RB, and IRF4 -
IL2RB, were found with the highest significance (log-rank
test P-values = 1.92x107; Additional file 8: Table S4). The
three L-ce-pairs were optimally coexpressed and associated
with favorable survival in patients with low hsa-miR-34a
(Fig. 4a—b). Expression levels of CCL22 and IRF4 were also
associated with patients’ overall survival (OS) (right panel,
Fig. 4a). We analyzed two mRNA-only datasets, GSE4271
(n=77) [41] and GSE4412 (n = 85) [42], to see whether the
prognostic associations were attributed to the coexpression
per se among the three ceRNAs. Of note, expression levels
of none of the three ceRNAs were significantly associated
with OS (right panels of Fig. 4c—d). We designed a machine
learning procedure to identify an optimized subset of sam-
ples for the three ce-pairs by iteratively including samples
until the average t-domain correlation cannot be further
increased (detailed in the Methods section). Concordantly,
patients with strong positive correlation among the
three ceRNAs showed significantly prolonged OS (log-rank
P=7.69x10" and 0.014 in the two datasets; left panels,
Fig. 4c—d). To test the convergence of our machine learn-
ing procedure, we repeated the entire learning procedure
for 1,000 times. Overall, patients with strong positive cor-
relation (average transformed correlation, 12.7 vs. 3.2 and
8.9 vs. 1.1; Additional file 9: Figure S5A) showed signifi-
cantly extended median OS by 9.8 (30.9 vs. 21.1) and 6.3
(18.9 vs. 12.6) months (paired t-test P=2.70x10""> and
1.24x10™*; Additional file 9: Figure S5B). Also, patients
with strong correlation achieved higher estimated 2-year
survival rates than the complete cohorts in 89.5% and
65.9% repeats. The data strongly suggest the prognostic
value of modulated ceRNA interaction and warrant further
investigations into IRF4 — CCL22 — IL2RB in GBM.

Discussion

Immunotherapy is an emerging field in cancer biology
and therapeutics. For the nature of the immune system
to respond to cancer-specific or -associated antigens, it

-
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can be employed to attack, and even prevent, cancer
cells and achieve a durable response in cancer patients
[43, 44]. Regulatory T cells (Tregs) are known to infil-
trate brain tumors and preferentially accumulate in
high-grade ones, such as GBM [45, 46]. An investigation
into GBM patients’ molecular profiles reported the asso-
ciation between Tregs and adverse survival [47]. Inter-
estingly, CCL22 (C-C motif chemokine ligand 22), one
of the three ceRNAs we found to jointly predict survival,
is a crucial mediator of Treg migration towards brain tu-
mors [48—50] and specifically expressed in GBM (not in
low-grade tumors) [47]. Although the other two genes in
the 3-ceRNA signatures, IRF4 and IL2RB, are not yet
functionally characterized in GBM, they play essential
roles in immune responses and cancer. IRF4 encodes
interferon regulatory factor 4, a member of the inter-
feron regulatory factor family of transcription factors
that are essential in interferon regulation in response to
infection. The expression of IRF4 is restricted to the im-
mune system [51]. It is a critical player in the develop-
ment/differentiation and the adaptive responses of B and
T lymphocytes [52-55]. On the other hand, IL2RB
(interleukin 2 receptor subunit beta) is a crucial player

in T cell-mediated immune responses. It was implied to
be associated with apoptosis of GBM cells [56] and to
participate in IL-15 induced activation of tumor-specific
gamma delta T cells [57], a subset of T cells that express
a unique T cell receptor and are multi-functional in
cancer [58]. Taken together with our findings, miRNA-
bridged crosstalk among the 3 immune genes is implied
in cell-mediated immunity. Such crosstalk may enhance
cellular immune response against cancer and thus has
favorable prognostic effects on GBM patients. Further
investigations are necessary to delineate the underlying
mechanisms.

Several interaction-based approaches to predict sur-
vival were previously developed. For instance, the dyna-
micity in protein-protein interactions was predictive of
breast cancer outcome [36]. An association-based bio-
marker was proposed to distinguish patients harboring
strong miRNA-gene interactions from others [59]. The
biomarker was significantly associated with patient
survival in both GBM and breast cancer. Recently, by
incorporating a potential modulator feature, NPM1 mu-
tation, we proposed a prognostic predictor for acute
myeloid leukemia based on the interaction strengths
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between several miRNAs and their modulated target genes
[60]. These reports showed the value to consider, in
addition to expressional abundance, the interaction
strength between genomic features for the development of
prognostic markers. Our discovery of the CCL22 - IL2RB
— IRF4 signature illuminated the potential of ceRNA inter-
action as a novel candidate for the interaction-based bio-
markers. Though the signature was identified by stratifying
patients according to the expression levels of hsa-miR-34a
in TCGA data, we note that our further analysis verified
the prognostic effect of the interaction strength per se by
using two independent mRNA-only datasets. The finding
echoes a central concept of ceRNA scenario that bridging
miRNAs serve as only “buffers” or “sponges” of protein-
coding genes that execute biological functions.

CeRNA interaction requires the correlation between
two mRNAs modulated by miRNA expression levels. To
systematically analyze ceRNA interaction, Hermes [6]
was developed by comparing the MI between a miRNA
and one ceRNA against the conditional MI given the ex-
pression profile of another ceRNA. Although MI is a
widely used measure of coexpression in genomic inter-
action networks [61, 62], it poses a heavy computational
burden due to the permutation-based statistical infer-
ence and is limited in the application to genome-wide
studies. Instead, for the mathematical transformability,
correlation-based methods are computationally efficient
and biologically straightforward alternatives. Studies
have confirmed its efficiency and comparable, or even
better, performance to MI-based methods in simulated
and patients’ datasets [40, 63]. Concordantly, we showed
that CEIDCA identified results highly comparable to
those achieved by MI-based methods (Fig. 3a—b), while
greatly improving computation efficiency and statistical
stringency, identify a core set of ceRNA triplets from a
genome-wide study. We also note that the 3 prognostic
ce-pairs cannot be identified by the MI methods (SMI
P-values ranged from 0.18 to 0.86; CMI P-values fall-
ing between 0.20 and 0.95). Incorporating findings
from a synthetic gene circuit or mass-action modeling
[17, 18, 21], CEIDCA was designed based on a strati-
fication of samples according to the expression level
of a bridging miRNA. Out of simplicity, we set the
number of groups at three (high, medium, and low).
While an increase in the number of groups (k) equips
the method the capability to identify ceRNA pairs
with subtle changes, it may compromise sensitivity to
systematic noises, statistical power, and computational
efficiency. To understand the effect of this parameter
on CEIDCA, we compared the core ceRNA interaction
pairs identified by different settings (ke [3, 10]). Notably,
the results seemed to be quite stable (Fisher’s exact test P-
values < precision of double-precision floating point, and
Jaccard indices > 0.39, pairwise comparisons with the
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setting of k=3), suggestive of the robustness and wide
applicability of CEIDCA, while computation time rose
roughly linearly from 1.4 to 4.7 h with k.

Future studies may address several limitations of this
work. First, since the TCGA gene expression dataset was
derived by DNA microarrays, ceRNAs analyzed in this
study are mostly protein-coding mRNAs. However, some
long non-coding RNAs (IncRNAs), such as a well-
known oncogene, HOTAIR, and pseudogenes (e.g.,
PTENPI), perform their functions, at least partially, by
acting as ceRNA partners of crucial mRNAs [64—66].
Such IncRNA-miRNA-mRNA scenario was overlooked
in this study. Next, CEIDCA analyzes each of these pu-
tative triplets independently. Realizing those interactions
among miRNAs and mRNAs are highly complex in liv-
ing cells, ceRNA triplets may be to some extent associ-
ated with each other and form higher-order ceRNA
modules, which poses great computation burden and
mathematical complexity to further investigations. Fu-
ture studies may, based on our findings, conduct
network-based analysis to dissect higher-order graph
properties among ceRNA triplets. Furthermore, we cor-
roborated the prognostic value of the 3-ceRNA signature
by stratifying patients based on the average pairwise
correlation. A per-sample prediction (e.g, a prediction
score) was not developed. Further studies may incorpor-
ate mathematical advances in interaction-based predic-
tion and translate our results into a personalized
biomarker. Also, though we have validated its prognostic
value in two independent cohorts, analysis of other large
datasets is needed before it can be applied clinically.

Conclusions

This work addresses the lack of a comprehensive explor-
ation into the functional and clinical relevance of ceRNA
interaction in GBM. We devised a novel and efficient al-
gorithm that integrates miRNA and gene expression
profiles of patients. As summarized in Fig. 5, by the pro-
posed comprehensive and efficient algorithm, we showed
that miRNA-modulated ceRNA interaction is involved
in synaptic transmission as well as tumor-related func-
tions in GBM. Furthermore, this is, to our knowledge,
the first study to show that the interaction strength per
se of three immune ceRNAs, CCL22, IL2RB, and IRF%, is
predictive of patient prognosis. Overall, our findings illu-
minate the potential of ceRNA interaction in prognosti-
cation and therapeutics of the malignancy and warrant
further biological and clinical investigations.

Methods

GBM datasets

We analyzed sample-paired datasets of miRNA and gene
expression of 520 GBM patients profiled by TCGA [26, 27].
The two datasets were profiled by Agilent 8 x 15K Human
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miRNA-specific microarrays and Affymetrix HT Human
Genome U133 Array Plate Sets, respectively, and we used
pre-normalized level-3 data. The identified core ce-triplets
were validated by independent CGGA datasets of miRNA
and gene expression profiles of 64 GBMs [38, 39]. To verify
the results of survival analysis, we included two additional
gene expression datasets from the Gene Expression Omni-
bus (accession numbers, GSE4271 (n=77) [41] and
GSE4412 (n = 85) [42]). For genes with multiple probes, the
one with the largest coefficient of variation was chosen as a
representative probe.

The CEIDCA algorithm

The CEIDCA algorithm was developed to systematically
identify miRNA-modulated ceRNA interaction pairs. It
contains three major components: i) definition of puta-
tive ce-pairs, ii) measuring miRNA-modulated inter-
action strengths of putative ce-pairs, and iii) statistical
inference. In the first component (Additional file 1:
Figure S1A), we processed TargetScan [67] prediction
data for miRNA targets (downloaded from the miRSys-
tem database [68]) as previously described [69]. A puta-
tive ce-pair was defined as two genes sharing at least
one targeting miRNAs; a ce-triplet referred to the set of
such ce-pair and the targeting miRNA.

For each putative ce-triplet, say ceRNAs i and j and
miRNA m, in the second component of CEIDCA
(Additional file 1: Figure S1B), samples were partitioned
into k equally-sized groups (G € {Gj, :*-, Gi}) based on the
expression level of m. We measured the interaction
strength between i and j within group G by a Pearson cor-
relation coefficient pf;,.. We eliminated non-informative

ceRNAs of which coefficients of variation were less than
5% in any group [40]. Since correlation coefficients are
biased by population correlation (the change of correlation
coefficients from 0 to 0.2 is statistically inequivalent to one
from 0.8 to 1), we transformed the coefficients to the #-do-
main [70]:

ij W] Ge{Gr,,Gi)

N-2
- {pim 1_76} ’ B
Pijm Ge{G1, .Gk}

where N denotes the group size. We measured the inter-
group change in normalized correlation coefficients as
an “interaction score” by

AI;‘; = max({lf}(Gp)

I7(Gp) > 0}) —min(

m
i

i)

(2)
and tested the following hypotheses:

H()Z Al =0
L
{le AL > 0" (3)

We note that since only positive interaction is consid-
ered in the ceRNA scenario, AL}; is set as 0 if I}; has no
positive element. Lastly, the significance level was
assessed against an empirical density function D! gen-
erated by a trillion-time simulation of ¢-distributions
(Additional file 1: Figure S1C):
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We employed such a large number of simulations
to enable Bonferroni correction addressing the mul-
tiple comparisons problem. The group G”* that cor-
responds to max(I};) for a significant ce-pair is
referred to as the “optimized group” and the ce-pair
as a “G”'-ce-pair”. Out of simplicity, analysis of this
study was conducted under the setting of k=3 (ie.,
Ge{H, M, L}, representing high-, medium-, and low-
miRNA expression).

Implementation of MI-based methods

We compared CEIDCA to two MI-based methods, SMI
and CMI. SMI was implemented by simply substituting
t-domain correlation by MI in the calculation of an
interaction score, with other procedures remained iden-
tical to CEIDCA. The CMI method (slightly adapted
from a previous report [6]) tests the improvement of MI
between m and one ceRNA i given the other ceRNA j,
i.e, AIlj = CMI(i, m|j) - MI(i, m). We used the “MITool-
box for C and MATLAB” [71] for the calculation of MI
and CMI. Statistical significance was assessed by 1,000
random permutations.

Survival analysis

To infer whether a miRNA-modulated ceRNA inter-
action is associated with prognosis, for each ce-pair we
compared the survival curves between samples belong-
ing to the optimized group and the others by a log-rank
test. For each validation dataset, we used a machine-
learning procedure to identify the optimized group of
samples where a set of ceRNAs are (globally or locally)
maximally correlated. We started by repeatedly ran-
domly selecting 10% samples for 50,000 times and chose
the selection achieving the largest average pairwise cor-
relation (in the ¢z-domain) as a seed. Subsequently, we
iteratively added one sample into the seed that in-
creased the average correlation by the most. The itera-
tive procedure was terminated when the addition of
any sample could not improve the correlation any
more. Comparison of survival curves between the iden-
tified optimized group and the other samples, along
with a comparison between samples with high and low
expression of a ceRNA, directly verifies whether the
predictive value of a ce-pair is confounded by the ex-
pression level per se of component ceRNAs. The entire
machine-learning procedures were repeated for 1,000
times to ensure convergence.
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Additional file 1: Figure S1. Flowchart of CEIDCA. The algorithm is
mainly built on three components. (A) Definition of putative ceRNA
triplets. We defined putative ceRNA triplets by reprocessing prediction
miRNA-target data of TargetScan. (B) Measuring interaction strengths of
ceRNA pairs. For each putative ceRNA triplet, GBM samples were sorted
and divided into three equally-sized groups based on the expression of
miRNA. We employed Pearson correlation coefficients and conversion to
the t-domain to measure the interaction strength between two ceRNAs.
(O) Statistical inference of miRNA-modulated ceRNA pairs. We tested
whether a putative ceRNA pair exhibited intensified correlation in one
group compared to another. The statistical significance was assessed
against a trillion-time simulation. (PDF 367 kb)

Additional file 2: Figure S2. Complete ceRNA interaction network. (A)
ceRNA interaction network constructed by merging 537,304 significant
ceRNA triplets (P < 0.01). (B) Histogram of number of ceRNA partners for a
ceRNA in the network. (C) Histogram of number of bridged ceRNA triplets
by a miRNA. (PDF 2423 kb)

Additional file 3: Table S1. List of 1,762 core ceRNA pairs. (PDF 535 kb)

Additional file 4: Table S2. Top overrepresented ceRNAs in the core
ceRNA network. (PDF 67 kb)

Additional file 5: Figure S3. Functional subnetworks of the core
ceRNA interaction network. (A) Subnetwork of the cluster of plasma
membrane, extracted from Fig. 2b of main text. (B) Subnetwork of the cluster
of intracellular transport, extracted from Fig. 2b of main text. (PDF 489 kb)

Additional file 6: Table S3. Top functional clusters of core ceRNAs.
(PDF 2280 kb)

Additional file 7: Figure S4. Validation of core ce-triplets using CGGA
dataset. We compared the cumulative distribution curves of interaction
scores in the CGGA dataset between 1,762 core ce-triplets identified in
TCGA and all other putative ce-triplets. Statistical significance was
assessed by the Kolmogorov-Smirnov test. (PDF 162 kb)

Additional file 8: Table S4. Prognostic ceRNA triplets. (PDF 925 kb)

Additional file 9: Figure S5. Prognostic significance of CCL22 — IL2RB —
IRF4 in validation datasets. (A) Distributions of average t-scores of the
three ceRNA pairs in the optimized group of samples and others in 1,000
iterations. (B) Distributions of median survival in the optimized group of
samples and others in 1,000 iterations. (PDF 1295 kb)

Abbreviations

CEIDCA: ceRNA inference by differential correlation analysis; ce-pair: ceRNA
pair; ceRNA: Competing endogenous RNA; ce-triplet: ceRNA triplet;
CMI: Conditional mutual information; DAVID: Database for Annotation,
Visualization and Integrated Discovery; GBM: Glioblastoma multiforme;
IPA: Ingenuity Pathway Analysis; MI: Mutual information; miRNA: microRNA;
OS: Overall survival; SMI: Substituted mutual information; TCGA: The Cancer
Genome Atlas

Acknowledgements
Not applicable.

Funding

This work was supported in part by the Greehey Children’s Cancer Research
Institute intramural research fund and the Ministry of Science and Technology
of Taiwan (103-2917--002-166). The funding sources had no role in the design
of the study and collection, analysis, and interpretation of data and in writing
the manuscript.

Availability of data and materials

All expression and clinical datasets used in the study are publicly available at
The Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov/) and Gene
Expression Omnibus (GEO; https://www.ncbi.nim.nih.gov/geoy).



dx.doi.org/10.1186/s12859-017-1557-4
dx.doi.org/10.1186/s12859-017-1557-4
dx.doi.org/10.1186/s12859-017-1557-4
dx.doi.org/10.1186/s12859-017-1557-4
dx.doi.org/10.1186/s12859-017-1557-4
dx.doi.org/10.1186/s12859-017-1557-4
dx.doi.org/10.1186/s12859-017-1557-4
dx.doi.org/10.1186/s12859-017-1557-4
dx.doi.org/10.1186/s12859-017-1557-4
https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/

Chiu et al. BMC Bioinformatics (2017) 18:132

Authors’ contributions

YCC, UW, TPL, THH, EYC, and YC conceived and designed research. YCC, THH,
and YC designed analysis workflow. YCC and LJW analyzed data. YCC, LJW, TPL,
THH, EYC, and YC wrote and approved the final version of paper.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate

Not applicable. All expression and clinical datasets used in this study were
generated from previous studies and are publicly available at The Cancer
Genome Atlas (TCGA; https://cancergenome.nih.gov/) and Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/).

Author details

'Greehey Children’s Cancer Research Institute, University of Texas Health
Science Center at San Antonio, San Antonio, TX 78229, USA. *Graduate
Institute of Biomedical Electronics and Bioinformatics, National Taiwan
University, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan. 3Department
of Medical Research, Taichung Veterans General Hospital, No. 1650, Section 4,
Taiwan Blvd, Xitun District, Taichung City 40705, Taiwan. *Department of
Public Health, National Taiwan University, Taipei 10055, Taiwan.
*Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National
Taiwan University, Taipei 10055, Taiwan. ®Department of Epidemiology and
Biostatistics, University of Texas Health Science Center at San Antonio, 8403
Floyd Curl Dr,, San Antonio, TX 78229, USA.

Received: 26 October 2016 Accepted: 21 February 2017
Published online: 28 February 2017

References

1. Joshi P, Jeon YJ, Lagana A, Middleton J, Secchiero P, Garofalo M, Croce CM.
MicroRNA-148a reduces tumorigenesis and increases TRAIL-induced apoptosis
in NSCLC. Proc Natl Acad Sci U S A. 2015.

2. Chuang MK Chiu YC, Chou WC, Hou HA, Chuang EY, Tien HF. A 3-microRNA
scoring system for prognostication in de novo acute myeloid leukemia
patients. Leukemia. 2015;29(5):1051-9.

3. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell.
2009;136(2):215-33.

4. Shukla GC, Singh J, Barik S. MicroRNAs: Processing, Maturation, Target
Recognition and Regulatory Functions. Mol Cell Pharmacol. 2011;3(3):83-92.

5. Karreth FA Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA,
Weiss D, Perez-Mancera PA, et al. In vivo identification of tumor- suppressive
PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma.
Cell. 2011;147(2):382-95.

6. Sumazin P, Yang X, Chiu HS, Chung WJ, lyer A, Llobet-Navas D, Rajbhandari
P, Bansal M, Guarnieri P, Silva J, et al. An extensive microRNA-mediated
network of RNA-RNA interactions regulates established oncogenic pathways
in glioblastoma. Cell. 2011;147(2):370-81.

7. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero
P, Di Cunto F, et al. Coding-independent regulation of the tumor suppressor
PTEN by competing endogenous mRNAs. Cell.
2011,147(2):344-57.

8. Karreth FA, Pandolfi PP. ceRNA cross-talk in cancer: when ce-bling rivalries
go awry. Cancer Discov. 2013;3(10):1113-21.

9. Qul DingJ, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, et al.
Exosome-Transmitted INCARSR Promotes Sunitinib Resistance in Renal Cancer
by Acting as a Competing Endogenous RNA. Cancer Cell. 2016;29(5):653-68.

10. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and
controversy. Nat Rev Genet. 2016;17(5):272-83.

11, Li MJ, Wu J, Jiang P, Li W, Zhu Y, Fernandez D, Ryan RJH, Chen Y, Wang J,
Liu JS, et al. Exploring functional variation affecting ceRNA regulation in
humans. bioRxiv. 2015. http://biorxiv.org/content/early/2015/03/22/016865.

12. Masamha CP, Xia Z, Yang J, Albrecht TR, Li M, Shyu AB, Li W, Wagner EJ.
CFIm25 links alternative polyadenylation to glioblastoma tumour suppression.
Nature. 2014;510(7505):412-6.

20.

22.

23.

24

25.

26.

27.

28.

29.

30.

32.

33.

34.

Page 10 of 11

Xia Z, Donehower LA, Cooper TA, Neilson JR, Wheeler DA, Wagner EJ, Li W.
Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3'-
UTR landscape across seven tumour types. Nat Commun. 2014;5:5274.
Martirosyan A, Figliuzzi M, Marinari E, De Martino A. Probing the Limits to
MicroRNA-Mediated Control of Gene Expression. PLoS Comput Biol. 2016;
12(1), €1004715.

Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA
hypothesis with quantitative measurements of miRNA and target abundance.
Mol Cell. 2014;54(5):766-76.

Bosson AD, Zamudio JR, Sharp PA. Endogenous miRNA and target
concentrations determine susceptibility to potential ceRNA competition.
Mol Cell. 2014;56(3):347-59.

Ala U, Karreth FA, Bosia C, Pagnani A, Taulli R, Leopold V, Tay Y, Provero P,
Zecchina R, Pandolfi PP. Integrated transcriptional and competitive endogenous
RNA networks are cross-regulated in permissive molecular environments. Proc
Natl Acad Sci U S A. 2013;110(18):7154-9.

Yuan Y, Liu B, Xie P, Zhang MQ, Li Y, Xie Z, Wang X. Model-guided
quantitative analysis of microRNA-mediated regulation on competing
endogenous RNAs using a synthetic gene circuit. Proc Natl Acad Sci

U S A 2015;112(10):3158-63.

Sanchez-Taltavull D, MacLeod M, Perkins TJ. On cross-conditional and
fluctuation correlations in competitive RNA networks. Bioinformatics.
2016,32(17):i790-7.

Chiu YC, Hsiao TH, Chen Y, Chuang EY. Parameter optimization for constructing
competing endogenous RNA regulatory network in glioblastoma multiforme
and other cancers. BMC Genomics. 2015;16 Suppl 4:S1.

Lai X, Wolkenhauer O, Vera J. Understanding microRNA-mediated gene
regulatory networks through mathematical modelling. Nucleic Acids Res. 2016.
Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, McDonough WS, Sloan A,
Coons SW, Berens ME. Gene expression profile of glioblastoma multiforme
invasive phenotype points to new therapeutic targets. Neoplasia. 2005;7(1):7-16.
Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK, Lamborn
KR, Berger MS, Botstein D, Brown PO, et al. Gene expression profiling reveals
molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc
Natl Acad Sci U S A. 2005;102(16):5814-9.

Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P,
Carter H, Siu IM, Gallia GL, et al. An integrated genomic analysis of human
glioblastoma multiforme. Science. 2008;321(5897):1807-12.

Cho DY, Yang WK, Lee HC, Hsu DM, Lin HL, Lin SZ, Chen CC, Harn HJ, Liu
CL, Lee WY, et al. Adjuvant immunotherapy with whole-cell lysate dendritic
cells vaccine for glioblastoma multiforme: a phase Il clinical trial. World
Neurosurg. 2012;77(5-6):736-44.

Cancer Genome Atlas Research N. Comprehensive genomic characterization
defines human glioblastoma genes and core pathways. Nature. 2008;
455(7216):1061-8.

Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR,
Ding L, Golub T, Mesirov JP, et al. Integrated genomic analysis identifies
clinically relevant subtypes of glioblastoma characterized by abnormalities
in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98-110.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,
Schwikowski B, Ideker T. Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504.
de Giorgio A, Krell J, Harding V, Stebbing J, Castellano L. Emerging roles of
competing endogenous RNAs in cancer: insights from the regulation of
PTEN. Mol Cell Biol. 2013;33(20):3976-82.

Yang Y, Han L, Yuan Y, Li J, Hei N, Liang H. Gene co-expression network
analysis reveals common system-level properties of prognostic genes across
cancer types. Nat Commun. 2014;5:3231.

Ricotta D, Conner SD, Schmid SL, von Figura K, Honing S. Phosphorylation
of the AP2 mu subunit by AAKT mediates high affinity binding to
membrane protein sorting signals. J Cell Biol. 2002;156(5):791-5.

Dick O, tom Dieck S, Altrock WD, Ammermuller J, Weiler R, Garner CC,
Gundelfinger ED, Brandstatter JH. The presynaptic active zone protein
bassoon is essential for photoreceptor ribbon synapse formation in the
retina. Neuron. 2003;37(5):775-86.

Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER. Glycosylated
SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons.
Mol Biol Cell. 2008;19(12):5226-37.

da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis
of large gene lists using DAVID bioinformatics resources. Nat Protoc.
2009;4(1):44-57.


https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://biorxiv.org/content/early/2015/03/22/016865

Chiu et al. BMC Bioinformatics (2017) 18:132

35.

36.

37.
38.

39.

40.

41,

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Xu J, Feng L, Han Z, Li Y, Wu A, Shao T, Ding N, Li L, Deng W, Di X, et al.
Extensive ceRNA-ceRNA interaction networks mediated by miRNAs regulate
development in multiple rhesus tissues. Nucleic Acids Res. 2016.

Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson
T, Morris Q, Wrana JL. Dynamic modularity in protein interaction networks
predicts breast cancer outcome. Nat Biotechnol. 2009,27(2):199-204.

Ideker T, Krogan NJ. Differential network biology. Mol Syst Biol. 2012;8:565.
Sun'Y, Zhang W, Chen D, Lv Y, Zheng J, Lilliebjorn H, Ran L, Bao Z, Soneson C,
Sjogren HO, et al. A glioma classification scheme based on coexpression
modules of EGFR and PDGFRA. Proc Natl Acad Sci U S A. 2014;111(9):3538-43.
Yan W, Liu Y, Yang P, Wang Z, You Y, Jiang T. MicroRNA profiling of Chinese
primary glioblastoma reveals a temozolomide-chemoresistant subtype.
Oncotarget. 2015;6(13):11676-82.

Hsiao TH, Chiu YC, Hsu PY, Lu TP, Lai LC, Tsai MH, Huang TH, Chuang EY,
Chen V. Differential network analysis reveals the genome-wide landscape of
estrogen receptor modulation in hormonal cancers. Sci Rep. 2016;6:23035.
Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A,
Nigro JM, Colman H, Soroceanu L, et al. Molecular subclasses of high-grade
glioma predict prognosis, delineate a pattern of disease progression, and
resemble stages in neurogenesis. Cancer Cell. 2006,9(3):157-73.

Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM, Mischel
PS, Nelson SF. Gene expression profiling of gliomas strongly predicts survival.
Cancer Res. 2004;64(18):6503-10.

Finn OJ. Cancer immunology. N Engl J Med. 2008;358(25):2704-15.
Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age.
Nature. 2011:480(7378):480-9.

El Andaloussi A, Lesniak MS. An increase in CD4 + CD25 + FOXP3+ regulatory
T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme.
Neuro-Oncology. 2006;8(3):234-43.

Jacobs JF, Idema AJ, Bol KF, Nierkens S, Grauer OM, Wesseling P, Grotenhuis
JA, Hoogerbrugge PM, de Vries 1), Adema GJ. Regulatory T cells and the PD-
L1/PD-1 pathway mediate immune suppression in malignant human brain
tumors. Neuro-Oncology. 2009;11(4):394-402.

Jacobs JF, Idema AJ, Bol KF, Grotenhuis JA, de Vries IJ, Wesseling P, Adema
GJ. Prognostic significance and mechanism of Treg infiltration in human
brain tumors. J Neuroimmunol. 2010;225(1-2):195-9.

Ishida T, Ueda R. CCR4 as a novel molecular target for immunotherapy of
cancer. Cancer Sci. 2006:97(11):1139-46.

Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB.
Preferential migration of regulatory T cells mediated by glioma-secreted
chemokines can be blocked with chemotherapy. Cancer Immunol
Immunother. 2008;57(1):123-31.

Crane CA, Ahn BJ, Han SJ, Parsa AT. Soluble factors secreted by glioblastoma
cell lines facilitate recruitment, survival, and expansion of regulatory T cells:
implications for immunotherapy. Neuro-Oncology. 2012;14(5):584-95.

Shaffer AL, Emre NC, Romesser PB, Staudt LM. IRF4: Immunity. Malignancy!
Therapy? Clin Cancer Res. 2009;15(9):2954-61.

Mittrucker HW, Matsuyama T, Grossman A, Kundig TM, Potter J, Shahinian A,
Wakeham A, Patterson B, Ohashi PS, Mak TW. Requirement for the transcription
factor LSIRF/IRF4 for mature B and T lymphocyte function. Science.
1997;275(5299):540-3.

Lu R, Medina KL, Lancki DW, Singh H. IRF-4,8 orchestrate the pre-B-to-B
transition in lymphocyte development. Genes Dev. 2003;17(14):1703-8.
Nayar R, Schutten E, Bautista B, Daniels K, Prince AL, Enos M, Brehm MA,
Swain SL, Welsh RM, Berg LJ. Graded levels of IRF4 regulate CD8+ T cell
differentiation and expansion, but not attrition, in response to acute virus
infection. J Immunol. 2014;192(12):5881-93.

Huber M, Lohoff M. IRF4 at the crossroads of effector T-cell fate decision.
Eur J Immunol. 2014;44(7):1886-95.

Berghoff J, Jaisimha AV, Duggan S, MacSharry J, McCarthy JV. Gamma-secretase-
independent role for cadherin-11 in neurotrophin receptor p75 (p75(NTR))
mediated glioblastoma cell migration. Mol Cell Neurosci. 2015;69:41-53.
Yamaguchi T, Suzuki Y, Katakura R, Ebina T, Yokoyama J, Fujimiya Y. Interleukin-
15 effectively potentiates the in vitro tumor-specific activity and proliferation
of peripheral blood gammadeltaT cells isolated from glioblastoma patients.
Cancer Immunol Immunother. 1998;47(2):97-103.

Silva-Santos B, Serre K, Norell H. gammadelta T cells in cancer. Nat Rev
Immunol. 2015;15(11):683-91.

Ben-Hamo R, Efroni S. MicroRNA-gene association as a prognostic biomarker in
cancer exposes disease mechanisms. PLoS Comput Biol. 2013,9(11), e1003351.

60.

61.

63.

64.

65.

66.

67.

68.

69.

70.

Page 11 of 11

Chiu YC, Tsai MH, Chou WC, Liu YC, Kuo YY, Hou HA, Lu TP, Lai LC, ChenY,
Tien HF, et al. Prognostic significance of NPM1 mutation-modulated
microRNA-mRNA regulation in acute myeloid leukemia. Leukemia. 2016;
30(2):274-84.

Margolin AA, Nemenman |, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R,
Califano A. ARACNE: an algorithm for the reconstruction of gene regulatory
networks in a mammalian cellular context. BMC Bioinformatics. 2006;7
Suppl 1:57.

Wang K, Saito M, Bisikirska BC, Alvarez MJ, Lim WK, Rajbhandari P, Shen Q,
Nemenman |, Basso K, Margolin AA, et al. Genome-wide identification of
post-translational modulators of transcription factor activity in human B
cells. Nat Biotechnol. 2009;27(9):829-39.

Song L, Langfelder P, Horvath S. Comparison of co-expression measures:
mutual information, correlation, and model based indices. BMC Bioinformatics.
2012;13:328.

Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A
coding-independent function of gene and pseudogene mRNAs regulates
tumour biology. Nature. 2010;465(7301):1033-8.

Liu XH, Sun M, Nie FQ, Ge YB, Zhang EB, Yin DD, Kong R, Xia R, Lu KH, Li JH, et
al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate
HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer.
2014,13:92.

Eades G, Wolfson B, Zhang Y, Li Q, Yao Y, Zhou Q. lincRNA-RoR and miR-145
regulate invasion in triple-negative breast cancer via targeting ARF6. Mol
Cancer Res. 2015;13(2):330-8.

Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA
targets. Cell. 2005;120(1):15-20.

Lu TP, Lee CY, Tsai MH, Chiu YC, Hsiao CK, Lai LC, Chuang EY. miRSystem:
an integrated system for characterizing enriched functions and pathways
of microRNA targets. PLoS One. 2012;7(8), e42390.

Chiu Y-C, Chuang EY, Hsiao T-H, Chen Y. Modeling competing endogenous
RNA regulatory networks in glioblastoma multiforme. In: Bioinformatics and
Biomedicine (BIBM), 2013 IEEE International Conference on: 18-21 Dec. 2013
2013.201-204.

Kendall MG, Stuart A. The advanced theory of statistics: Inference and
relationship, vol. 2. London: Charles Griffin; 1961.

Brown G, Pocock A, Zhao M-J, Lujan M. Conditional likelihood maximisation:
a unifying framework for information theoretic feature selection. J Mach
Learn Res. 2012:13(1):27-66.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolVled Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Overview of the CEIDCA algorithm
	Analysis of miRNA-modulated ceRNA interaction
	Functional landscape of core ceRNA interactions
	Validation analysis of core ceRNA interactions
	Comparison with MI-based methods
	Prognostic significance of ceRNA interactions

	Discussion
	Conclusions
	Methods
	GBM datasets
	The CEIDCA algorithm
	Implementation of MI-based methods
	Survival analysis

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

