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Abstract

Background: Several methods have been developed to predict the pathogenicity of missense mutations but none
has been specifically designed for classification of variants in mtDNA-encoded polypeptides. Moreover, there is not
available curated dataset of neutral and damaging mtDNA missense variants to test the accuracy of predictors.
Because mtDNA sequencing of patients suffering mitochondrial diseases is revealing many missense mutations, it is
needed to prioritize candidate substitutions for further confirmation. Predictors can be useful as screening tools but
their performance must be improved.

Results: We have developed a SVM classifier (Mitoclass.1) specific for mtDNA missense variants. Training and
validation of the model was executed with 2,835 mtDNA damaging and neutral amino acid substitutions,
previously curated by a set of rigorous pathogenicity criteria with high specificity. Each instance is described by a
set of three attributes based on evolutionary conservation in Eukaryota of wildtype and mutant amino acids as well
as coevolution and a novel evolutionary analysis of specific substitutions belonging to the same domain of
mitochondrial polypeptides. Our classifier has performed better than other web-available tested predictors.
We checked performance of three broadly used predictors with the total mutations of our curated dataset.
PolyPhen-2 showed the best results for a screening proposal with a good sensitivity. Nevertheless, the number of
false positive predictions was too high. Our method has an improved sensitivity and better specificity in relation to
PolyPhen-2. We also publish predictions for the complete set of 24,201 possible missense variants in the 13 human
mtDNA-encoded polypeptides.

Conclusions: Mitoclass.1 allows a better selection of candidate damaging missense variants from mtDNA. A careful
search of discriminatory attributes and a training step based on a curated dataset of amino acid substitutions
belonging exclusively to human mtDNA genes allows an improved performance. Mitoclass.1 accuracy could be
improved in the future when more mtDNA missense substitutions will be available for updating the attributes and
retraining the model.
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Background
Mitochondrial DNA (mtDNA) encodes 13 key polypep-
tides of the oxidative phosphorylation (OXPHOS) sys-
tem. Its close proximity to a major reactive oxygen
species (ROS) source and its particular replication sys-
tem favours a quick accumulation of mutations [1].
Since polypeptide-coding genes represent 70% of the hu-
man mtDNA, most of these mutations affect protein-
coding genes. Many mutations in protein-coding genes
are missense point mutations (non-synonymous) that
provoke an amino acid substitution. Some of these mu-
tations will produce very severe disorders, but many
others will have no important phenotypic effects. It is
not an easy task to differentiate the former from the
latter, and several criteria have been proposed to achieve
this goal [1–3].
The functional characterization of a mtDNA missense

mutation is an irreplaceable way to determine its pheno-
typic effect and potential pathogenicity, but this process
is not always possible and is expensive and time con-
suming. Moreover, because mitochondrial disorders can
also be due to nuclear DNA (nDNA) mutations [4], the
finding of ways to prioritize which mtDNA mutations
should be subjected to functional analysis is crucial. For
this reason, computational predictors are useful, inex-
pensive and fast tools for checking novel missense muta-
tions reported in patients with a possible mitochondrial
disease and assist in the selection of mutations for sub-
sequent functional assays.
Different prediction algorithms and web tools are

available to classify missense mutations in neutral or
damaging categories [5]. Unfortunately, the overall ac-
curacy of these tools is low, and predictions generated
by current computational tools may mislead researchers
involved in downstream experimental and clinical stud-
ies [6–8]. Moreover, most of these predictors focus
uniquely on the nuclear genome. As an example,
Mutpred [8] and PolyPhen-2 [7] use Human Genome
Mutation Database (HGMD) [9] and HumDiv dataset,
respectively, to train the program. Provean [10] uses
Humsavar dataset [11] to adjust cut off of damaging mu-
tations. These datasets do not include, or only include a
few, mtDNA missense variants and do not consider the
special features of mtDNA-encoded polypeptides.
Our goal is to develop a classifier to select damaging mis-

sense candidates of the human mtDNA genome with im-
proved performance. Our validation shows that our method
Mitoclass.1 is a good alternative to other web-available tools.

Methods
Pathogenicity criteria for identification of damaging
amino acid substitutions
The dataset of damaging and neutral mtDNA missense mu-
tations was obtained from the Mitomap website (February

2015). However, many missense variants reported in the
Mitomap section “mtDNA Mutations with Reports of
Disease-Associations” meet only a small number of the
established pathogenicity criteria for mtDNA mutations
[1, 12] and their pathogenicity is, therefore, doubtful. To
solve this problem, we have only considered as damaging
missense mutations those substitutions that have been
associated with a possible mitochondrial disease and
meet, at least, one of these two pathogenicity criteria:
a) Functional confirmations. It has been previously re-

ported that functional studies provide high quality evi-
dence in support of pathogenicity [13]. Therefore,
cellular, biochemical and molecular-genetic studies of
mtDNA missense mutations, using cybrids or single
fiber analysis, are important ways to determine their
phenotypic effects and potential pathogenicity. With
both techniques, different mtDNA genotypes are associ-
ated to a same nuclear genetic background and environ-
ment. Then, the differences between cybrids or between
single muscle fibers, with different mutational load,
would be due to the mtDNA genotype.
b) Rareness of the mutation. Rare diseases affect a lim-

ited number of individuals, defined as no more than one
in 2,000 individuals in the European Union [14]. Mito-
chondrial disorders are rare diseases and are present
clinically in at least one in 10,000 adults [15]. Thus, we
have also considered damaging changes those mutations
present in more than one pedigree with patients suffer-
ing from mitochondriopathy but absent in the control
population, or at a very low population frequency
(≤0.1‰), then suggesting an association with the path-
ology. Moreover, because negative selection tends to re-
move deleterious mutations along the evolution, these
mutations must be absent at internal branches of a
phylogenetic tree.
After the application of these criteria to missense vari-

ants reported in the Mitomap section “mtDNA Mutations
with Reports of Disease-Associations”, we generated the
mtDNA missense variants.1 (mdmv.1) dataset including
57 damaging and 2,778 neutral variants (Additional file 1:
Table S1). These neutral variants include those mutations
from the Mitomap section “mtDNA Mutations with Re-
ports of Disease-Associations” that do not fulfill the above
criteria (85 variants), and those from Mitomap section
“mtDNAVariants”.

Identification of positions belonging to the same domain
for the 13 human mtDNA-encoded polypeptides
All the human mtDNA-encoded polypeptides are integral
membrane proteins with intermembrane (IM), transmem-
brane (TM) and matrix (M) domains. The biochemical en-
vironments of these three regions are different. Thus,
same amino acid substitutions in different domains will
not have the same functional effects [16]. Unfortunately,
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there are no crystal structures available for these human
polypeptides. Therefore, domain characterization of these
thirteen polypeptides is made using structural homology
with ortholog proteins from other organisms, mainly bac-
terial species, for which the crystal structure has been
published.
The p.MT-ATP8 polypeptide is a supernumerary poly-

peptide not present in prokaryote species. Moreover,
there is no published p.MT-ATP8 crystal structure from
other eukaryote species. In this case, we have used infor-
mation contained in previous studies [17].
Domains are annotated with the help of Cn3D 4.3.1

visualization tool [18]. This program allows correlating
sequence, alignment and structure information. In this
way, we correlate crystal visualization for each ortholog
protein with the alignment between it and its human
mtDNA-encoded polypeptide counterpart. With this
methodology, we identify the first and last positions of
each transmembrane helix. Using Jmol visualization of
the complete respiratory complex crystals published in
other species, we can determine the domain of the N
and C terminus of the polypeptides (Additional file 2:
Table S2 and Additional file 3: Table S3).

Discriminatory features
Feature 1. Conservation index + cumulative Mutual
Information in Eukaryota
This feature is the sum of two scores: Conservation
index + cumulative Mutual Information. For conserva-
tion index (CI) analysis, we used multiple sequence
alignments of orthologs.
The revised Cambridge reference sequence (rCRS,

NC_012920.1) was used to define the reference amino
acid sequence of each gene. We used Bioperl Eutilities
[19] to retrieve from GenBank [20] all mtDNA-encoded
polypeptides for organisms of the RefSeq database
(around 5,000 species on February 2015). Multiple se-
quence alignment of orthologs was made with MAFFT
v.7.147b (−−auto option) [21].
Each aligned fasta file of ortholog sequences was used

as the input argument of a Perl/Awk script to calculate
CI, which was defined as the relative frequency of the
amino acid present in the RefSeq human polypeptide.
Values are represented as a percentage.
For coevolution analysis, we used MISTIC (mutual in-

formation server to infer coevolution), a web server for a
complete analysis of Mutual Information networks in
protein families [22]. Mutual Information (MI) from in-
formation theory can be used to estimate the extent of
the coevolutionary relationship between two positions in
a protein family. The cumulative Mutual Information
score (cMI) defines to what degree a given amino acid
takes part in a mutual information network and is pro-
vided by the program. Because cMI values differ from

one polypeptide to another, we have considered a rela-
tive cMI with a normalized scale from 0 to 100% defin-
ing as baselines the minimum and maximum cMI values
for each polypeptide.

Feature 2. Conservation of the mutant amino acid for each
single position in the polypeptides
Relative frequency of each mutant amino acid for every
amino acid position of the polypeptides was calculated.
Information was obtained from the multiple alignment
files. Each aligned fasta file of ortholog sequences was
used as the input argument of a Perl/Awk script to cal-
culate absolute and relative frequency of each mutant
amino acid, including gaps, for all positions.

Feature 3. Relative frequency for each variant into a
particular domain
Given that the thirteen polypeptides encoded by the hu-
man mtDNA are integral membrane proteins with three
distinct domains (IM, TM and M), we generated a matrix
of conservation of each amino acid for the three domains
with the multiple alignments of the thirteen polypeptides
using relative frequencies of each mutant amino acid ob-
tained for feature 2. Next, all positions belonging to the
same domain were grouped to generate a table of relative
frequencies of variants for each possible amino acid.
Finally, a new table was generated to exclude gaps fre-
quency and conservation of each amino acid (diagonals of
the table) from calculation of the final score for relative
frequency of the variants (Additional file 4: Table S4).

Feature evaluation
We evaluated attributes with Weka (Select Attributes).
We selected the complete training database and applied
the attribute evaluator CfsSubsetEval together with the
search method Best First.

Machine learning method
The complete curated dataset of 2,835 missense variants
(mdmv.1 dataset) was split randomly into two: a training
dataset (60% damaging / 60% neutral variants) and a val-
idation dataset (40% damaging / 40% neutral variants)
(Additional file 5: Table S5). We use a Support Vector
Machine (SVM) Classifier [23]. The open-source data
mining suite WEKA 3.7.7 [24] was selected for execu-
tion of the classification algorithms. Numerical values of
features were normalized (that is, rescaled to the range
of 0 to 1) before using the classifier. Parameters “C” and
“gamma” were optimized by a grid search using 10-fold
cross validation of training dataset. Finally, C = 200 and
gamma = 0.01 were selected. Ten folds cross validation
was also executed with the training dataset to check the
robustness of the method and prevent the possibility of
overfitting. Because of the imbalanced nature of training
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dataset (damaging and neutral mutations are not repre-
sented equally) we used SMOTE [25] (parameters:
nearestsneightbors = 5; randomseed = 1) to oversample
the minority class (damaging mutations) in order to have
a similar number of mutations from both classes
(Additional file 6: Table S6). SMOTE works by creating
synthetic samples from the minor class instead of creat-
ing copies. The algorithm selects two or more similar
instances (using a distance measure) and perturbing an
instance one attribute at a time by a random amount
within the difference to the neighboring instances.
The minority class must be properly oversampled

(Additional file 7: Figure S1).
We have also generated a repository in Github with in-

formation about the data/scripts used: https://github.-
com/tonomartin2/MITOCLASS.1/.

Evaluation of the predictor
To evaluate the generalization of the SVM model, a
blind test was carried out with the validation dataset,
which was not involved in the training process. Sensitiv-
ity and specificity were calculated.
Our validation dataset is a subgroup of mdmv.1, the

self-curated dataset containing only mtDNA missense
variants. Several benchmark datasets exist for nuclear
mutations classifiers. These benchmark datasets cannot
be used in our work for validation/training purpose be-
cause we are interested in a screening classifier specific
for mtDNA substitutions not including nuclear variants.
Moreover, discriminatory features of our classifier are
not possible to be calculated for nuclear substitutions.
Predictive results of SVM on the validation dataset

were compared with results of other classifiers. The
comparison was made using the default parameters of-
fered by Weka for other classifiers. We selected Random
forest, IBK, SMO and Naive Bayes Multinomial.

Statistical analysis
Mann-Whitney-Wilcoxon test has been run with R lan-
guage to decide whether the population distributions
(damaging and neutral) are identical without assuming
them to follow the normal distribution (P ≤ 0.05 as sig-
nificance level).

Results and discussion
Selected features for the discrimination of neutral and
damaging mutations
Feature 1: Conservation index of the human wild-type
amino acid + cumulative Mutual Information in Eukaryota
Conservation index (CI), defined as the frequency of the
reference human amino acid at a particular position in
Eukaryota species, is a commonly used attribute to deter-
mine pathogenicity of amino acid substitutions in mtDNA-
encoded polypeptides [1, 2]. Many recent methods have

used conservation along with other parameters to predict
functional importance but it has been found that conserva-
tion is the single most powerful attribute [26, 27].
To perform this analysis, it is required an alignment of

ortholog polypeptide sequences and a reliable metric for
quantifying residue conservation. Many scores have been
proposed, but none has emerged as a generally accepted
standard [28]. Moreover, it has been demonstrated that
predictions of impact on protein structure and function
for missense mutations depend on which values are
chosen for alignment parameters [29]. Other predictors
use Basic Local Alignment Search Tool (BLAST) and
the human reference polypeptide as the query sequence
to find a list of sequence-similar proteins that are poten-
tial homologs. Therefore, paralogs and nuclear pseudo-
genes of mtDNA-encoded polypeptides (NUMTs) could
be also retrieved because of sequence similarity. More-
over, low identity orthologs from evolutionary distant
species could not be recovered depending on the BLAST
parameters considered. To avoid any selection bias, we
have decided to retrieve all the ortholog sequences from
organisms of the RefSeq database: 4,668 for p.MT-ATP8
and 5,177 for p.MT-ND6 are the lowest and highest
numbers of analyzed species for the 13 mtDNA-encoded
polypeptides. These differences are mainly due to the
fact that the 13 mtDNA-encoded human polypeptides
are not mtDNA-encoded in all organisms. Moreover,
there are a minority number of sequences that have not
been published in GenBank database with the same
“protein name” tag and could not been retrieved by our
searching protocol.
The CI analysis for a particular position in a mtDNA-

encoded polypeptide is an inexpensive and quick approach
to obtain information on its functional significance. The
underlying idea is that an important position will be highly
conserved throughout the evolution because mutations in
this location will be removed by negative selection. As an
example, histidines 83, 97, 182 and 196 from p.MT-CYB
and 61, 376 and 378 from p.MT-CO1 that bind the heme
groups required for the electron transfer reactions in the re-
spiratory chain show CI values equal or higher than 99.8%
in our panel of organisms (Additional file 8: Table S7).
Thus, the mean CI of amino acids affected by damaging
variants [79.0% ± 29.0 (57)] is significantly higher (P = 6.64e
−15) than that of neutral variants [41.4% ± 34.2 (2778)]
(Additional file 1: Table S1).
However, a certain percentage (14.3%) of neutral vari-

ants of mdmv.1 dataset show really high (≥90%) CIs. In
some cases, these results might mirror sequencing errors
or misclassification of the variants. mtDNA sequences are
very frequently obtained in population studies from many
individuals and a special attention to the quality of the se-
quence is, sometimes, not paid [30]. Moreover, the incom-
plete penetrance of some mtDNA missense variants can
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make difficult to classify them correctly. As an example,
the m.11778G >A transition causes a p.MT-ND4:
Arg340His substitution and provoke Leber hereditary
optic neuropathy (LHON) [31]. The CI of this p.MT-ND4:
Arg340 is 99.2%. However, many individuals from a
LHON pedigree harboring this mutation do not develop
the disease because other factors are required to express
the phenotype [32]. Then, if a pathologic mutation is
found in a healthy individual from a population study and
information on his/her family is not recovered, this dam-
aging mutation might be wrongly considered neutral.
A high CI for a particular polypeptide position gives

an idea about its functional importance. However, a low
CI does not directly imply lack of functional importance.
In fact, a small number (12.3%) of damaging mutations
show really low (≤25%) CIs. Thus, it is possible that an
amino acid substitution (A to B) in a polypeptide pos-
ition X is compensated, along the evolution, by a change
(C to D) in other position Y of the same or other poly-
peptide [33]. This fact would allow the fixation of a new
amino acid (B) in that particular position X and a lower
CI for A, although that position was functionally import-
ant. To check this possibility, we estimated the cumula-
tive Mutual Information (cMI) score, which is
representative of the covariation along the evolution. In
fact, the 7 damaging mutations with CIs ≤ 25% have
cMIs (57.5% ± 11.0) significantly higher (P = 0.0088) than
those of 1,278 neutral mutations with CIs ≤ 25% (44.1%
± 21.1) (Additional file 1: Table S1). As an example, the
m.10663 T > C transition causes a p.MT-ND4L:
Val65Ala substitution and provokes LHON [34]. The CI
of this p.MT-ND4L:V65 is 24.7% but its cMI is 78.3%.
Therefore, the low CI of some functionally important
amino acids is probably due to environmental or genetic
coevolution [35].
In order to consider amino acid conservation and co-

evolution with other amino acids together, we created a
feature including both of them (Feature 1 = CI + cMI).
There are significant differences (P = 5.37e−10) in this fea-
ture between damaging [107.9% ± 22.6 (57)] and neutral
[80.2% ± 33.8 (2778)] variants (Additional file 1: Table S1).

Feature 2: Conservation index of the human mutant amino
acid
A similar consideration about evolutionary conservation
and functional importance can be applied for the mutant
amino acid. Thus, some amino acids would be very dele-
terious in particular polypeptide positions and natural
selection would tend to remove them. Therefore, its
relative frequency would be very low. In this sense, the
mean relative frequency of the new amino acid is signifi-
cantly lower (P = 1.893e−14) in the damaging [1.4% ± 5.1
(57)] than in the neutral [8.2% ± 14.2 (2778)] mutations
(Additional file 1: Table S1). Interestingly, 12 out of 57

(21.1%) damaging mutations have substituted an amino
acid by another one not found in our multi-species
(close to 5,000 sequences) alignment [in 6 cases (50%),
the new amino acid was proline] but this has only oc-
curred in 137 out of 2778 (4.9%) neutral mutations [in
14 cases (10.2%), the new amino acid was proline].

Feature 3: Relative frequency of specific amino acid
substitutions into a particular domain
This feature tries to quantify the importance of a specific
amino acid substitution (for example, alanines by threo-
nines). In general, mutant amino acids chemically similar
to the substituted ones will be less affected by natural
selection than those very different. However, amino acids
have many different physicochemical and biochemical
properties. Thus, an amino acid can share some proper-
ties with certain amino acids and others with different
amino acids [36]. Therefore, it is not an easy task to se-
lect the best discriminative properties. We can take ad-
vantage of evolution. Thus, if a specific substitution is
rarely observed, this might indicate that key properties
of the new amino acid are very different from those of
the original one and natural selection tent to remove it.
However, not all amino acid substitutions are equally
plausible. Thus, some particular amino acid changes re-
quire two mutations in the same codon, a very improb-
able event. Other amino acid replacements require DNA
transversions but, in animal mtDNA, transitions are
much more common [37]. This fact would introduce a
bias in the frequency of particular substitutions. In any
case, this observation is independent of the phenotypic
effect of a particular amino acid exchange. Moreover, we
have observed that there are significant differences (P =
0.0003) among relative frequencies of specific substitu-
tions associated [9.4 ± 8.8 (57)] or not [12.7 ± 8.5 (2778)]
to pathologic mutations (Additional file 1: Table S1).
The human mtDNA-encoded polypeptides are integral

membrane proteins with three distinct domains (IM, TM
and M). These environments are very different and, there-
fore, the same amino acid substitution can present different
effect depending on the affected domain, as it has been pre-
viously documented [38]. Then, we have previously defined
the mtDNA-encoded polypeptide domains (Additional file
2: Table S2). Next, we determined the relative frequency of
each amino acid in every domain (Table 1). L and T have
frequencies > 8% in the three domains. A and I in the TM
domain; and P in the IM and M domains have also fre-
quencies > 8%. In general, and as expected, the TM domain
is enriched (2/3) and impoverished (1/3) in hydrophobic
and hydrophilic amino acids, respectively. C, K and R in
the IM; C, D, E, K, Q, and R in the TM; and C in the M do-
mains have frequencies < 2%. Remarking the inter-domain
differences, the CIs for several amino acids are very dissimi-
lar between domains. Thus, inter-domain differences in the
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E, H, K, M, W and Y CIs are > 15% (Additional file 4: Table
S4). For example, the CIs for Y in the IM and M domains
are 67.1 and 43.2%, respectively. These observations suggest
that a Y substitution will probably have a more important
phenotypic effect in the IM than in the M domain.
The number of mutations per amino acid is similar be-

tween domains (Table 1). This number is 0.7 in TM and
IM domains (1714/2314 and 506/729) and 0.8 in M do-
main (615/746). There are no differences in the frequen-
cies of pathologic mutations. However, TM and IM
domains show the highest (42 out of 1714, 2.5%) and
lowest (4 out of 506, 0.8%) frequencies of pathologic
mutations, respectively. Pathologic mutations in IM, TM
and M domains affect 3 (L, M and Y), 14 (A, D, E, F, G,
H, L, M, P, Q, R, S, V and W) and 7 (A, E, F, L, R, S and
Y) amino acids, respectively (Table 1). Pathologic muta-
tions affecting L are found in all the domains probably
because this is the most frequent amino acid in each do-
main. Mutations in five amino acids have not been
found associated to mitochondriopathies (C, I, K, N and
T). Pathologic mutations affecting C are not found in
any domain probably because this is the least frequent
amino acid in each domain. Curiously, T is between the

three most frequent amino acids in each domain and it
is one of the three amino acids that more mutations
have suffered, but no pathologic mutation has been asso-
ciated to this amino acid. These results suggest that
functional effect of substitutions on this T amino acid is
not very important. On the contrary, R is one of the
least frequent amino acids in the TM and M domains,
but it shows pathologic mutations in both of them, thus
remarking their functional importance.
There are significant differences (P = 0.0009) among

relative frequencies of specific substitutions associated
[9.3 ± 8.7 (42)] or not [13.3 ± 9.4 (1672)] to pathologic
mutations in the TM domain. This does not occur in IM
and M domains. In the TM domain, the substitution of a
very frequent L by a very rare R is not frequent (0.3%)
(Additional file 4: Table S4). This might be due to the
fact that L to R change requires a transversion, although
the substitution of a frequent M to a very frequent I is
also very frequent (17.0%) and is due to a transversion.
However, all the three domains contain substitutions of
very frequent L to very frequent P. This change is pro-
duced by a transition, but the relative frequency of this
particular substitution is very low (≤3.8%). These L to P

Table 1 Amino acid (AA) relative frequency (%) and conservation index (CI)

IM TM M

AA N % CI tM D N % CI tM D N % CI tM D

A 37 5.1 50.4 37 0 192 8.3 57.4 177 7 26 3.5 44.6 27 1

C 3 0.4 67.4 1 0 14 0.6 59.2 8 0 5 0.7 64.5 4 0

D 28 3.8 73.2 25 0 21 0.9 69.8 9 2 17 2.3 72.4 16 0

E 18 2.5 57.5 7 0 42 1.8 78.4 23 2 28 3.8 71.0 15 2

F 30 4.1 60.7 22 0 154 6.7 69.5 104 1 32 4.3 58.3 18 1

G 46 6.3 73.9 25 0 128 5.5 80.8 60 4 38 5.1 77.0 15 0

H 18 2.5 64.6 12 0 51 2.2 74.0 22 1 28 3.8 55.9 26 0

I 45 6.2 44.4 44 0 234 10.1 46.0 318 0 40 5.4 35.5 55 0

K 11 1.5 58.2 1 0 39 1.7 66.2 9 0 45 6.0 45.3 17 0

L 98 13.4 50.1 44 1 457 19.7 60.4 205 12 89 11.9 49.0 46 1

M 31 4.3 52.5 20 2 140 6.1 38.9 134 3 37 5.0 34.1 36 0

N 49 6.7 48.4 49 0 65 2.8 47.7 59 0 50 6.7 44.0 70 0

P 61 8.4 70.9 31 0 90 3.9 65.1 41 2 68 9.1 65.2 41 0

Q 24 3.3 55.9 8 0 35 1.5 63.2 11 1 31 4.2 54.1 20 0

R 10 1.4 86.6 2 0 33 1.4 80.5 14 1 20 2.7 82.6 13 3

S 58 8.0 39.6 55 0 159 6.9 53.1 117 2 57 7.6 42.2 61 2

T 82 11.2 36.3 73 0 207 8.9 40.6 201 0 62 8.3 33.4 79 0

V 33 4.5 49.7 32 0 114 4.9 50.7 147 3 20 2.7 42.0 18 0

W 20 2.7 89.0 1 0 64 2.8 79.9 19 1 20 2.7 71.5 7 0

Y 27 3.7 67.1 17 1 75 3.2 64.9 36 0 33 4.4 43.2 31 1

729 506 4 2314 1714 42 746 615 11

IM, TM, M, N, tM and D code for intermembrane, transmembrane, and matrix domains, total positions with this amino acid, number of total and damaging
mutations, respectively
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mutations are associated many times with pathological
phenotypes. L promotes generation of alpha-helix but P
provokes the loss of hydrogen bonds in the peptide
bonds, destabilizes the secondary structure and intro-
duces a kink in this structure [39, 40]. From 10 de-
scribed L-P damaging mutations, 8 are present in TM
domain, in which most the mtDNA-encoded polypep-
tides acquire an alpha-helix conformation (Additional
file 1: Table S1).
These three features were evaluated by the attribute selec-

tion tool of Weka and were considered useful and not redun-
dant for training the classifier (Additional file 9: Figure S2).

Assessment of the classifier
Firstly, predictive results of SVM on the validation data-
set were compared with results of other classifiers. We
did not get as good results as with the SVM (4.3% false
negative predictions). We selected Random forest, IBK,
SMO and Naive Bayes Multinomial with 39.1, 43.5, 87.0
and 17.4% of false negative predictions respectively.
Next, we have compared our classifier with other pre-

dictors, such as PolyPhen-2 (with HumDiv classifier
model and both “probably damaging” and “possibly dam-
aging” predictions considered as damaging), Provean (de-
fault settings) and with the results on mtDNA mutations
previously reported using Mutpred (score cut-off 0.75)
[41] (Table 2). These predictors are very popular and sup-
port batch submission, making them viable for analysis of
a big set of mutations. First, we carry out a full analysis of
these three predictors with mdmv.1 dataset. This analysis
shows that PolyPhen-2 is the predictor with the best sensi-
tivity (94.7%) and only 3 false negative predictions.
Provean also has a high sensitivity (87.7%) and 7 false neg-
atives. However, the sensitivity of Mutpred (cut-off ≥ 0.75)
is very low (57.9%). Thus, 24 out of 57 pathologic muta-
tions are not included in the damaging group by this pre-
dictor (Additional file 1: Table S1). Therefore, we ruled

out Mutpred (with 0.75 cut-off) for the screening of
mtDNA missense variants because it would remove too
many potential damaging mtDNA mutations.
We cannot use the complete mdmv.1 dataset to evaluate

our predictor because it includes mutations selected for
training, so we use validation dataset to compare the per-
formance of the four predictors (Additional file 10: Table
8). In this case, Provean and PolyPhen-2 show identical re-
sults in sensitivity (91.3%). Mitoclass.1 achieves a better
sensitivity (95.7%) on the validation dataset. In addition,
our classifier generates results for 100% of the analyzed
variants. On the contrary, PolyPhen-2 does not generate
predictions for ten mutations of p.MT-ND5 with result
“unknown” for validation dataset and for 25 variants with
result “unknown” when checking complete mdmv.1 d-
ataset. A Venn diagram shows predictive results for the 23
variants confirmed as pathological present in the
validation dataset. It can be observed that 13 (56.5%) have
been classified as pathological by the four predictors
(Additional file 11: Figure S3).
Analyzing false negative predictions of validation data-

set, we observe that both Provean and PolyPhen-2 classi-
fied as neutral a mutation corresponding to the
transition m.10158 T > C (p.S34P at p.MT-ND3). This
mutation shows an inverse relationship in osteosarcoma
143B cybrids between the mutation load and the com-
plex I activity [42]. Moreover, it has been reported in
several pathologic pedigrees [42–45] and its pathogen-
icity confirmed [13]. The m.3700G > A transition
(p.A132T at p.MT-ND1) is classified as neutral only by
PolyPhen-2. This mutation is classified as a rare primary
damaging mutation for LHON [46]. Moreover, Provean
does not classify correctly as pathological the transver-
sion m.4171C > A (p.L289M at p.MT-ND1), a primary
LHON causative mutation [47]. These three mutations
affect positions with low conservation in Eukaryota
(Additional file 8: Table 7). Nevertheless, our classifier
achieves a correct prediction for all of them probably be-
cause we do not use conservation of a single position as
a discriminatory feature. By using sum of conservation
and coevolution as an attribute (feature 1), we allow that
little conserved positions but with significant signs of
coevolution could be predicted as damaging. The only
damaging mutation of validation dataset that our classi-
fier does not predict as pathological is p.V65A at p.MT-
ND4L. The reason is the very high relative frequency in
eukaryotes (feature 2 = 35%) (Table 3).

Amino acid substitutions with no clear evidences of
pathogenicity
For 37 mutations of validation dataset that Mitomap
(http://www.mitomap.org) listed as “mtDNA Mutations
with Reports of Disease-Associations”, we do not find
enough evidences to classify them as really damaging

Table 2 Comparison between predictors with validation dataset
of 1,100 mutations (23 damaging + 1,077 neutral)

MITOCLASS.1 POLYPHEN-2 PROVEAN MUTPRED

Sensitivity 95.7 91.3/94.7 91.3/87.7 60.9/57.9

Specificity 58.7 47.7/46.9 60.4/59.2 85.6/87.3

TP 22 21/54 21/50 14/33

TN 623 514/1303 650/1646 922/2426

FP 454 563/1475 427/1132 155/352

FN 1 2/3 2/7 9/24

For PolyPhen-2, Provean and Mutpred, the complete mdmv.1 dataset has also
been analyzed (numbers after the slash). PolyPhen-2 is unable to predict the
phenotype of 10 missense mutations because much of the initial and final se-
quence of p.MT-ND5 is non-aligneable due to large stretches of repeats and/or
high compositional biases as commented by authors. For the sake of compari-
son, we consider these unknown predictions as neutral variants. TP, TN, FP, FN
refers to true positives, true negatives, false positives and false negatives re-
spectively. Sensitivity is estimated as [TP/(TP + FN)], specificity as [TN/(TN + FP)]
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and are included as neutral mutations in mdmv.1 data-
set. For this set of variants, we analyzed the predicted re-
sults of the tested methods. Specificity of Mitoclass.1,
PolyPhen-2, Provean and Mutpred for this group of mu-
tations is 37.8, 43.2, 45.9 and 70.0%, respectively, com-
pared to specificity for complete validation dataset: 58.7,
47.7, 60.4 and 85.6% respectively. Thus, the number of
false positive predictions for this group is greater than in
complete validation dataset. It indicates that some of
these variants could be really damaging and additional
confirmatory analysis would be interesting.
Nine out of 37 were classified as neutral by all four

tested predictors and 5 more were classified as neutral
by our and two other predictors, 3 of them with popula-
tion frequencies > 0.1% (a frequency ten times higher
than our established cut-off to separate pathologic from
neutral mutations). On the other side, Mitoclass.1 classi-
fied 23 of them as damaging mutations (Additional file

12: Table S9, Additional file 13: Figure S4) and 16 of
them are extremely rare in human beings (≤1 in 30589
human sequences, < 0.03‰). Moreover, 14 of these 16
mutations are considered damaging by 3 or more tested
predictors and 11 were heteroplasmic mutations, an-
other feature frequently considered as a pathogenicity
criterium (Table 4).

Prediction for all possible missense variants in the 13
human mtDNA-encoded polypeptides
We also provide the pathogenicity scores for all 24,201
possible amino acid changes in the 13 human mtDNA-
encoding polypeptides. The revised Cambridge reference
sequence (rCRS, NC_012920.1) was used to define the
reference amino acid sequence of each gene. The results
show that 15,049 (62.2%) potential missense substitu-
tions due to single point mutations would be damaging
(Additional file 14: Table S10).

Table 3 Analysis of features for false negative (FN) predictions of Provean, PolyPhen-2 and Mitoclass.1 in validation dataset

AA substitution (polypeptide) FN CI F1 F2 F3

p.A132T (p.MT-ND1) PolyPhen-2 72.82 123.98 0.30 12.59

p.L289M (p.MT-ND1) Provean 29.72 78.64 1.99 16.07

p.S34P (p.MT-ND3) PolyPhen-2 and Provean 10.15 60.53 0.34 5.23

p.V65A (p.MT-ND4L) Mitoclass.1 24.72 103 35.06 6.78

CI refers to conservation index for each position. F1, F2 and F3 refer to the numerical values of the three attributes considered for Mitoclass.1 classifier

Table 4 Feature values for rare missense mutations without clear evidences of pathogenicity classified as damaging mutations by
Mitoclass.1

rCRS Mut AA subs/PP/Dom F1 F2 F3 Freq Ho/He DamPre

m.4633C > G p.A55G/p.MT-ND2/TM 127.5 2.33 12.66 0 Ho 4

m.4648 T > C p.F60S/p.MT-ND2/TM 113.7 0.02 4.22 0 Ho 4

m.5244G > A p.G259S/p.MT-ND2/TM 138.9 1.01 23.65 0 He 4

m.6742 T > C p.I280T/p.MT-CO1/TM 99.7 0.02 9.22 0 He 3

m.8528 T > C p.W55R/p.MT-ATP8/M 102.6 0.04 14.99 0 He 4

m.8795A > G p.H90R/p.MT-ATP6/TM 73.8 0 0.66 0 He 4

m.9972A > C p.I256L/p.MT-CO3/IM 112.3 0.97 25.85 1 He 1

m.10543A > G p.H25R/p.MT-ND4L/TM 150.5 2.57 0.66 0 He 4

m.10591 T > G p.F41C/p.MT-ND4L/TM 134.9 0.02 1.08 0 He 3

m.12848C > T p.A171V/p.MT-ND5/TM 164.3 0.16 8.93 0 He 3

m.13051G > A p.G239S/p.MT-ND5/TM 163.9 0.02 23.65 0 Ho 4

m.13511A > T p.K392M/p.MT-ND5/TM 98.9 0,02 3.24 0 He 4

m.13849A > C p.N505H/p.MT-ND5/TM 61.8 0.27 5.24 0 Ho 2

m.14430A > G p.W82R/p.MT-ND6/M 99.2 0.19 14.99 0 Ho 3

m.14498 T > C p.Y59C/p.MT-ND6/TM 143.9 0.04 2.97 0 He 3

m.15243G > A p.G166E/p.MT-CYB/IM 115.6 0 11.92 0 He 4

Mean 118.8 0.48 10.25

Mean of neutral variants from validation dataset 80.1 7.90 12.70

rCRS Mut, AA subs, PP, Dom, F1, F2, F3, Freq, Ho/He and DamPre code for position of the mutation according to the revised Cambridge Reference Sequence,
amino acid substitution, polypeptide, domain, Feature 1–3 scores, frequency, Homoplasmy/Heteroplasmy, and number of predictors that consider damaging this
amino acid substitution, respectively
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Damaging predictions of Mitoclass.1 do not accumu-
late in particular genes. Despite 77.2% of confirmed
pathologic mutations from mdmv.1 affecting four genes
(MT-ND1, ND5, ND6, ATP6), only 30.2% of potential
pathologic mutations affect these genes (close to the
expected 34.9% considering the number of amino acids
of these polypeptides) (Table 5A). This biased result of
mdmv.1 dataset could indicate that phenotypes associ-
ated to mutations in some mtDNA genes (MT-ND2-4,
MT-CYB, MT-CO1-3, and MT-ATP8) are not easily
recognizable as mitochondriopathies and mtDNA patho-
logic mutations are not looked for.
When analyzing presence of damaging mutations in

each domain, the confirmed damaging mutations of

mdmv.1 tend to be overrepresented in the transmem-
brane domain. However, the distribution of total
damaging predictions does not accumulate in any par-
ticular domain. Despite 73.7% of confirmed mutations
from mdmv.1 affecting transmembrane domain, only
61.8% of predicted variants affect this domain (similar to
the expected 61.1% according to the number of amino
acids in the domain). Predicted damaging mutations
from matrix and intermembrane domains are also simi-
lar to the expected number (Table 5B). The explanation
can be similar to the previous one. Maybe, mutations
out of the transmembrane domain are not easily
recognizable as mitochondriopathies and, therefore,
mtDNA is not checked.

Conclusions
We have developed a SVM classifier, Mitoclass.1, to pre-
dict pathogenicity of human mtDNA missense variants.
This tool is a good screening classifier to select candidate
damaging mtDNA missense mutations from patients suf-
fering mitochondrial disorders, but taking into account
that the real phenotypic effect of these variants must be al-
ways confirmed by functional analysis. We have trained
and validated our model with a curated dataset of mtDNA
amino acid substitutions instead of using benchmark data-
sets of nuclear variants. Because a well-curated dataset of
mtDNA variants did not exist, we have established a set of
pathogenicity criteria to develop the dataset, that we have
called mdmv.1. The chosen discriminatory attributes are
based on conservation and coevolution, but also introdu-
cing the novel idea of analyzing each polypeptide domain
separately. The training of our predictor only with previ-
ously curated mtDNA variants as well as the selection of
discriminatory features improves the performance when
compared with other existing predictors. Finally, we have
also provided predictive results with our classifier for all
possible missense mutations of the thirteen polypeptides
encoded by human mtDNA.
The number of mtDNA reference sequences from

different species published in GenBank and the number
of candidate mutations identified by sequencing is
growing very fast. Because our discriminatory features
are dependent on this information, and our predictor
can be easily updated, Mitoclass.1 will be improved peri-
odically by retraining with new data.

Additional files

Additional file 1: Table S1. MtDNA missense variants.1 dataset
(mdmv.1). Each mutation is described by its polypeptide RefSeq code
(Code), gene (GENE), amino acid position within the polypeptide (AA
position), wild type amino acid (WT AA), mutant amino acid (M AA), domain
(Domain) and phenotype of the mutation (Phenotype). Numerical scores
and predicted phenotypes for the three tested predictors (Provean,
Mutpred and PolyPhen-2) are also included. (XLS 608 kb)

Table 5 Percentage of confirmed and predicted pathologic
mutations per polypeptide/complex (A) or domain (B)

A

Complex Polypeptide AA % MUT % MUT %

Confirmed Predicted

CI 2214 55.8 36 63.2 7190 47.8

p.MT-ND1 318 8.4 15 26.3 1300 8.6

p.MT-ND2 347 9.2 1 1.8 1032 6.9

p.MT-ND3 115 3.0 2 3.5 420 2.8

p.MT-ND4 459 12.1 3 5.3 1689 11.2

p.MT-ND4L 98 2.6 1 1.8 377 2.5

p.MT-ND5 603 15.9 7 12.3 2008 13.3

p.MT-ND6 174 4.6 7 12.3 364 2.4

CIII 380 10.0 2 3.5 1721 11.4

p.MT-CYB 380 10.0 2 3.5 1721 11.4

CIV 1001 26.4 4 7.0 5146 34.2

p.MT-CO1 513 13.5 1 1.8 2803 18.6

p.MT-CO2 227 6.0 2 3.5 1021 6.8

p.MT-CO3 261 6.9 1 1.8 1322 8.8

CV 294 7.8 15 26.3 992 6.6

p.MT-ATP6 226 6.0 15 26.3 876 5.8

p.MT-ATP8 68 1.8 0 0 116 0.8

B

Domain AA % MUT % MUT %

Confirmed Predicted

3889 100 57 100 15049 100

IM 747 19.2 4 7.0 2883 19.1

TM 2376 61.1 42 73.7 9294 61.8

M 766 19.7 11 19.3 2872 19.1

Complex, polypeptide, AA, %, MUT, %, confirmed, predicted, IM, TM and M
refer to OXPHOS complexes, mtDNA-encoded polypeptides, number of amino
acids and its percentage in a particular polypeptide or domain, number of
damaging mutations and its percentage in a particular polypeptide or domain,
confirmed damaging mutations, predicted damaging mutations by Mitoclass.1,
intermembrane, transmembrane and matrix domains, respectively
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Additional file 2: Table S2. Domains (segments of amino acids) of
mtDNA-encoded polypeptides. IM, TM and M code for intermembrane,
transmembrane and matrix domains, respectively. (DOC 38 kb)

Additional file 3: Table S3. Ortholog proteins with known crystal
structure. For each human polypeptide, the organism with known crystal
structure and the PDB code and polypeptide chain is included. (DOC 36 kb)

Additional file 4: Table S4. Matrix of relative frequencies of each amino
acid for each domain. Scores obtained from the multiple alignments of
Eukaryota orthologs of the thirteen polypeptides encoded by human
mtDNA. Each sub-table contains the scores for a single domain
(intermembrane-IM, transmembrane-TM and matrix-M). (XLS 49 kb)

Additional file 5: Table S5. Training set before oversampling with
SMOTE and validation set (each one in a different sheet of the file). Each
mutation is described by its gene (GENE), amino acid position within the
polypeptide (AA position), wild type amino acid (WT AA), mutant amino
acid (M AA), domain (Domain) and phenotype of the mutation
(Phenotype). (XLS 316 kb)

Additional file 6: Table S6. Training set after oversampling with SMOTE.
1666 mutations are synthetic samples. Each mutation is described by its
phenotype of the mutation (Phenotype), numerical scores for the three
features (Feature_1, Feature_2, Feature_3), gene (GENE), amino acid position
within the polypeptide (AA position), wild type amino acid (WT AA), mutant
amino acid (M AA) and domain (Domain). (XLS 427 kb)

Additional file 7: Figure S1. Representation of synthetic (SMOTE
instances, red) and original (real instances, blue) dataset in the feature
space. (DOC 62 kb)

Additional file 8: Table S7. Conservation Index (CI) in Eukaryota. Each
score is described by its gene (GENE), amino acid position within the
polypeptide (AA position) and wild type amino acid (WT AA) as well as
number of ortholog sequences used in the multiple sequence alignment
(Sequences). CI is described as a percentage. The revised Cambridge
reference sequence (rCRS, NC_012920.1) was used to define the
reference amino acid sequence of each gene. (XLS 453 kb)

Additional file 9: Figure S2. Correlation between features. These 2D-
scatter-plots show lack of correlations between the features. Neutral and
pathological classes are indicated by blue and red color, respectively. (DOC 62 kb)

Additional file 10: Table S8. Prediction of validation dataset. Each
mutation is described by its phenotype (Mutation type) and numerical
values of attributes (feature 1, 2, and 3). The affected polypeptides and
amino acid are indicated with the Gene, WT AA, M AA, AA position and
Domain columns that refers to gene, wild type and mutant type amino
acid, position in the polypeptide and domain. A column with
conservation index values for each variant is also included (CI column).
Performance of predictors (Mitoclass.1, Provean, Mutpred and PolyPhen-
2) shows numerical scores and/or predicted phenotypes. (XLS 292 kb)

Additional file 11: Figure S3. Venn diagram for predictive results of 23
pathological-confirmed variants from the validation dataset. (DOC 92 kb)

Additional file 12: Table S9. Amino acid substitutions with no clear
evidences of pathogenicity. Mutations are described by the polypeptide
amino acid position (AA Position), wild type amino acid (WT AA), mutant
amino acid (MUT AA) and affected gene (Gene). Predicted phenotype of
Mitoclass.1 is included. The next four columns summarize the prediction
result (P, positive/damaging; N, negative/neutral) for the four tested
predictors. The last column (Count) indicates the number of predictors
with the same damaging phenotype output. (XLS 31 kb)

Additional file 13: Figure S4. Venn diagram showing unique and
common damaging predictions among different predictors for amino
acids substitutions with no clear evidences of pathogenicity. (DOC 93 kb)

Additional file 14: Table S10. Prediction results for all possible missense
variants in the 13 human mtDNA-encoded polypeptides. Each mutation is
described by its position in the revised Cambridge reference sequence
(rCRS, NC_012920.1), base change, gene, codon position, wild type amino
acid (WT AA), mutant amino acid (M AA), polypeptide amino acid position
(AA position) and domain. Feat 1 to 3 indicates the numerical values for the
four analyzed attributes. Mitoclass.1 prediction for each mutation is showed
as well as PolyPhen-2 prediction and score. (XLS 4726 kb)
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