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Abstract

Background: A family of parsimonious Gaussian mixture models for the biclustering of gene expression data is
introduced. Biclustering is accommodated by adopting a mixture of factor analyzers model with a binary, row-
stochastic factor loadings matrix. This particular form of factor loadings matrix results in a block-diagonal covariance
matrix, which is a useful property in gene expression analyses, specifically in biomarker discovery scenarios where
blood can potentially act as a surrogate tissue for other less accessible tissues. Prior knowledge of the factor loadings
matrix is useful in this application and is reflected in the one-way supervised nature of the algorithm. Additionally, the
factor loadings matrix can be assumed to be constant across all components because of the relationship desired
between the various types of tissue samples. Parameter estimates are obtained through a variant of the expectation-
maximization algorithm and the best-fitting model is selected using the Bayesian information criterion. The family of
models is demonstrated using simulated data and two real microarray data sets. The first real data set is from a rat
study that investigated the influence of diabetes on gene expression in different tissues. The second real data set is
from a human transcriptomics study that focused on blood and immune tissues. The microarray data sets illustrate
the biclustering family’s performance in biomarker discovery involving peripheral blood as surrogate biopsy material.

Results: The simulation studies indicate that the algorithm identifies the correct biclusters, most optimally when the
number of observation clusters is known. Moreover, the biclustering algorithm identified biclusters comprised of
biologically meaningful data related to insulin resistance and immune function in the rat and human real data sets,

respectively.

Conclusions: Initial results using real data show that this biclustering technique provides a novel approach for
biomarker discovery by enabling blood to be used as a surrogate for hard-to-obtain tissues.
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Background

With the introduction of personalized medicine, the dis-
covery of novel biomarkers via “omics” research plays
a critical role in its advancement [1]. A biomarker is
defined as “a characteristic that is objectively measured
and evaluated as an indicator of normal biological pro-
cesses, pathogenic processes, or pharmacologic responses
to a therapeutic intervention” [2]. The behaviour of a
biomarker is expected to vary among individuals, thereby
allowing treatment to be “personalized” depending on that
individual’s (predicted) response. The ideal diagnostic tool
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is minimally invasive, leading researchers to investigate
the use of peripheral blood cells as surrogate biopsy mate-
rial, since blood is more easily accessible. The assumption
is that the molecular profile of peripheral blood reflects
a global overview of the physiological events occurring in
different tissues throughout the body [3].

When gene expression microarrays are used for
biomarker discovery, the subset of identified genes acts
as the set of biomarkers [4, 5]. Returning to the idea of
peripheral blood as surrogate material, a gene that exhibits
correlated expression profiles in blood and a given tissue
(but not other tissues) may be a biomarker of interest. In
this scenario, the genes act as the observations and the
blood and tissues (the samples) act as the variables. A data
point in the microarray data set is thus an intensity value
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corresponding to a specific gene in a sample. One pop-
ular way of identifying these subsets of correlated genes
across the blood and the given tissue is via clustering
techniques [6].

One-way clustering methods can be restrictive in cer-
tain applications. It is not always the case that the groups
of patterns found in the observations are homogeneous
across all the variables; rather, it could be the case that
only a subset of the variables possesses these groupings.
With gene expression data, if the samples are the vari-
ables and the researcher hypothesizes that there exists
homogeneous groups of samples, this would be useful
information for the algorithm to have. A popular exam-
ple is the discovery of leukaemia tumour subtypes based
on gene expression [7]. Consequently, biclustering tech-
niques have been developed to address this recurring
issue. Biclustering, first explored by Hartigan [8], clus-
ters both rows and columns simultaneously and results in
biclusters.

Biclustering is a useful technique when the researcher
suspects biclusters of variables and observations in the
data, but does not understand what properties of the vari-
ables define the biclusters. For instance, in the leukaemia
tumour subtype analysis, researchers initially would not
have known the classes of each tumour sample (see [7] for
a discussion). Here, biclustering could help to reveal these
subtypes more efficiently, as done by Kluger et al. [9] for
example. However, researchers may desire that the obser-
vations within biclusters satisfy a particular relationship
among the variables; the biclustering method would then
be one-way supervised. This technique is particularly rel-
evant for the blood biomarker discovery application men-
tioned earlier. One-way supervision is effective because
the researcher specifically requires a prominent relation-
ship between the samples of blood and the samples of the
tissue of interest with respect to the expression profile of
a subset of genes. Additionally, the researcher explicitly
requires that the expression profiles of that same subset of
genes to have no relationship between the previously men-
tioned samples and the rest of the samples in the data set.
In this way, the resulting biclusters would contain a sub-
set of genes that is strictly correlated within blood and the
tissue of interest only.

Model-based clustering

Cluster analysis identifies homogeneous groups that are
relevant within a population. It is an unsupervised tech-
nique because it does not utilize existing labels to find
the best homogeneous groups among a set of observa-
tions, which reflects common real-life scenarios because
observations are not usually accompanied by hints about
their true groupings with respect to the variables. Some
popular clustering techniques include methods such
as hierarchical clustering [10], k-means clustering [11],
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and model-based clustering (see [12] for an in-depth
discussion).

In model-based clustering, group membership is esti-
mated using a parametric finite mixture model, which can
be denoted

G

F&I9) =) mefe (x| 6), (1)

g=1

where m, € (0,1], such that Zngl g = 1, is the mix-
ing proportion for component g, f:(x | 8¢) is the density
of a multivariate random variable X with parameters 6,
and ¢ = (m,...,7G,01,...,0¢5). Frequently, the finite
Gaussian mixture model is used because of its mathemat-
ical tractability. This density is given by

G

g=1
where ¢(x | pg Xg) is the density of a multivariate
Gaussian random variable X with mean s, and covariance

matrix X,. An overview of model-based clustering is given
by McNicholas [13].

Parsimonious Gaussian mixture models

The factor analysis model [14], assumes that a p-
dimensional random vector X; can be modelled using
a g-dimensional vector of latent factors U;, where ¢ <
p. Factor analysis allows for a decrease in the number
of parameters, which is useful in high-dimensional data
cases. The model can be written as

X;=p+AU; +¢€, (3)

where A is a p x g matrix of factor loadings, the latent
factors U; ~ N(0,1;) are independent, and the errors
€, ~ N(0,¥) are independently distributed and inde-
pendent of the U;, where ¥ is a diagonal noise matrix
with dimensions p x p. Thus, X; ~ N(u, AA" + ¥). In the
mixture of factor analyzers (MFA) model, different fac-
tor analysis models are allowed in different regions of the
feature subspace, using the density of a Gaussian mix-
ture model with covariance structure X, = AgAg, + ¥
[15] or £, = AgAé + W, [16]. The mixture of proba-
bilistic principal components analysis (PPCA) model [17]
is a special case of the MFA model from [16] in that it
adds the assumption that the noise matrix is isotropic
so that ¥, = ,I,. The parsimonious Gaussian mixture
model (PGMM) family [18] allows combinations of the
constraints: Ay, = A, ¥, = W, and ¥, = .1, within the
MFA model, resulting in a family of eight models.

Model-based biclustering
A recent review of biclustering on expression data by
Pontes et al. [19] classifies the methods using various
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taxonomies. One taxonomy is based on bicluster struc-
ture, specifically whether or not the genes and/or sam-
ples must be assigned to a bicluster (exhaustivity) and
whether or not the genes and/or samples can be assigned
to multiple biclusters (exclusivity). When considering
blood biomarker discovery, an implicit property of the
biomarker is that its expression profile is highly corre-
lated between the blood and tissue of interest, and distinct
from the rest of the tissues; indicating a unique biomarker
for that tissue. Thus, the researcher would be interested
in samples that are assigned to one bicluster only, in
other words, non-overlapping column-exclusive biclus-
ters. Examples of existing biclustering methods that adopt
this property are plaid models developed by Lazzeroni
and Owen [20], biclustering via Gibbs sampling developed
by Sheng et al. [21], and Bayesian biclustering developed
by Gu and Liu [22]. These are also examples of non
metric-based probabilistic biclustering methods, based on
another taxonomy provided in the review. The reader is
referred to the review paper by Pontes et al. [19] for a
structured and detailed discussion on the available biclus-
tering methods.

Under the probabilistic framework, Martella et al. [23]
propose a modified MFA technique for high-dimensional
data for simultaneously clustering observations and vari-
ables. Variable cluster membership is represented by a
binary row-stochastic matrix, which can be estimated via

. _ 1 QG Agr = 1) = max; Q(:, Agin = 1),
Ag = {igi} = { 0 otherwise,

where j = 1,...,p, bl = 1,...,q, g = 1,...,G,
and Q is the expected complete-data log-likelihood. We
have X; = re + A Uj, + €z with probability 7z,. In
this case, Uy ~ N(0,1,) and X; ~ N(p,, AgA:g + Wy).
This particular form of factor loadings matrix results in
a block-diagonal covariance matrix which is especially
suitable in the biclustering framework because it mod-
els the grouped nature of the variables. Additionally, it

Table 1 Properties of the OSGaBi family
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results in the non-overlapping biclusters that are useful
in blood biomarker discovery. Constraining or not con-
straining the covariance parameters across clusters leads
to a family of four models. This family will be referred
to as MFABC from this point forward. The remainder
of this paper describes a one-way supervised bicluster-
ing technique and its application to simulated and real
data.

Methods

Covariance structure

To accommodate biclustering we set the factor loadings
matrix to be binary row-stochastic. To allow for supervi-
sion along the variable dimension, we provide the struc-
ture of this matrix to the algorithm. In our gene expression
analysis case, the variables are the samples, thus we are
setting a relationship between the samples in the data set
and providing it to the algorithm during initialization and
take it as constant. Constraints can be imposed or not on
Ag, ¥,, and W, = ¥l to create a family of eight one-
way-supervised Gaussian mixture models for biclustering
(Table 1), which will be referred to as OSGaBi (one-way
supervised Gaussian biclustering) hereafter.

Parameter estimation

This section provides the mathematical details required to
compute the parameter estimates for the eight members
of the OSGaBi family, with a focus on the CUU model
because it is the most appropriate model for the appli-
cation presented previously and later in the Application
section. The expectation-maximization (EM) algorithm
[24] is an iterative procedure for computing the maximum
likelihood estimates (MLE) when data are incomplete
or treated as such. The EM algorithm is based on the
complete-data, which consist of both observed and miss-
ing data. The algorithm begins with the expectation step
(E-step), where the expected value of the complete-data
log-likelihood (Q) is computed conditional on the current
parameter estimates. In the maximization step (M-step),

Model nomenclature

Covariance structure ()Jg) Covariance parameters

Ag=A W, =V W, = yYl,

C C C AN + Y1, 1
C C u AN + W p
C u C AN+ ygl,

C u u AN + ¥, Gp
u C C AgAl + Y, 1
u C u AgA) + W p
u u C AgA, + Vgl

u u u AgA), + ¥, Gp

The nomenclature, covariance structure, and number of covariance parameters for each member of the OSGaBi family. C, constrained; U, unconstrained
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Q is maximized with respect to the model parameters.
These two steps are repeated until convergence.

The alternating expectation-conditional maximization
(AECM) algorithm [25] incorporates a series of condi-
tional maximization (CM) steps instead of a single M-step
and also allows for different specification of the complete-
data at each stage. This algorithm is used for parameter
estimation for the MFA model, the PGMM family, and the
MFABC family. It will also be used for the OSGaBi family.

For convenience, the following notation is adopted. We
denote the observed data as x and the unobserved latent
parameters as U; = (U, . . ., Ujg). We denote the missing
group memberships as z;, where

S 1 if observation i belongs to component g,
® 7] 0 otherwise,

fori=1,...,m,g=1,...,G.

In the first cycle of the AECM algorithm, (x;,z;) are
the complete-data, where i = 1,...,n. During the CM-
step, g and p, are updated. During the E-step, the z;; are
replaced by their expected values

ﬁg¢(xi | I’lg; IA\g; ‘i’g) —.3
1z

E[Zig | 7gr fyr Ay, Wo]= & =
ereteTe s S5 A | g Ay W)

leading to the calculation of the expected value of the
complete-data log-likelihood, Q;. In the CM-step, Q; is
maximized to give

. n
ng=—g
n

and

L Dil ZigXi
4 ng
where ng = Y7L, Zjq.
In the second cycle of the AECM algorithm, (x;, z;, U;)
are the complete-data. During this CM-step, W, is

updated. During this E-step, z;; are replaced by z;, and Uy
and U, Uj, are replaced by

n
E [Uig | Xi, g, A, ‘I’g] = ﬁg Z‘%ig(xi — [Lg),
i=1
E I:UigU;g | Xi» ,Lgr A’ \I’g] = Iq — ﬁgA
n
+ By Y Zig(xi— ) (Xi— ) By
i=1

(4)

Page4of 13

respectively, where B, = A'(AA’ + Wy)~! for model
CUU, to allow for the calculation of Q. In the CM-
step, the maximization of Q, is specific for each model.
Considering the CUU model,

G
QALY =C+Y % [log o - [\Izg—lsg}
g=1

+2tr {\Ilg_lABgSg}
—u |t ae N ],
(5)

where C is a constant with respect to the unknown param-
1 A
eters, Sg = g Yot Zigxi — ) (xi — pg)’, and @y =
/!
I; — BeA + BySeB,.
The following score function is obtained when differen-
tiating Q» with respect to W,:

8
S(A,W,) = 57?1

G
=3[ w8, + 248,58, — A, A'].

(6)

Now, setting S(A,\ilg) = 0 and solving gives the

estimate
W, = diag [Sg — 2A8,S, + A@A'}.

The parameter estimates for the remaining seven mod-
els are derived similarly and are provided in the Additional
file 1 titled 0SGaBi_ MWong appendix.pdf.

When running the AECM algorithm, utilizing the
Woodbury identity [26] avoids inverting any non-diagonal
p X p matrices that may be singular for p > n. Suppose an
n X n matrix A, an n X g matrix H, a g x ¢ matrix C, and
a g x n matrix V. The Woodbury identity states that

(A+HCV) ' = A'—A"'TH(C '+VA~TH)"'vA~L
(7)

Specifically for the AECM algorithm, setting H = A,
V=A', A=V, and C =1, results in

(F+AA) =0 A+ A A T AL
(8)

Now, instead of inverting the p x p covariance matrix on
the left side of Eq. 8, only the diagonal and g x ¢ matrices
on the right side need to be inverted. With gene expression
data where g < p, this identity provides a major computa-
tional advantage. Another useful identity is for calculating



Wong et al. BMC Bioinformatics (2017) 18:150

the determinant of the covariance matrix in the AECM
algorithm:

||
I, — A(AA + W)~ TA|

W+ AA'| =

Component membership

The predicted biclustering for each member of the
OSGaBi family is given by the maximum a posteriori
(MAP) classification for the observations and the classifi-
cations originally provided for the variables. That is, the
posterior predicted component membership of observa-
tion (i.e., gene) i is the value of g for which Z;, is greatest. In
the biological sense, this will identify which gene belongs
to which subset, implying that the genes in each subset are
related in some way. Component membership of variable
(i.e., sample) j is already provided as Ay at the beginning
of the algorithm, specifically

A — {A } | 1 if variable j belongs to cluster /,
&7 " 7 ) 0 otherwise,

forj=1,...,p,1=1,...,q,and g = 1,..., G. In the bio-
logical view, we know a priori that a certain set of samples
are/should be related to each other, which is uncorre-
lated to another set of samples. A concrete example of
how component membership is applied in microarray
gene expression analysis is presented in the Application
section.

Convergence and model selection

Convergence of the AECM algorithm is determined using
the Aitken’s acceleration [27] to estimate the asymptotic
maximum of the log-likelihood at each iteration of the
AECM algorithm for a specific number of components
and a specific number of factors, as described in [28]. The
Aitken’s acceleration at iteration £ is

(t+1) _ (0

L0t !
[® — =1’

where [ corresponds to the respective log-likelihood.

The asymptotic estimate of the log-likelihood at iteration

t+1is

_ (1(t+1> — 1)
1—a®

l(()l;+1) =0 4
[29]. The stopping criterion lgoﬂ) —1® < ¢ [30], where
€ = 0.1, is used and provided that the difference is posi-
tive [13]. The Bayesian information criterion (BIC) [31] is
used to choose the best member of the proposed OSGaBi
family with respect to the model and number of comp-
onents, G.
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Results

Simulation studies

Simulation studies were carried out to validate the pro-
posed biclustering algorithm. The adjusted Rand index
(ARI) [32] was used to evaluate the performance of the
algorithm in recovering biclusters from the simulated
data. Specifically, z; was compared with Z; after conver-
gence was attained. Model selection was done via the BIC
as previously described, although it can be noted that
the integrated completed likelihood (ICL) [33] and Akaike
information criterion (AIC) [34] were used as comparison
and produced the same outcomes. The parameters and
resulting data sets for the following simulation studies are
found in the (Additional file 1: Supplementary files).

Simulated data were generated with G = 2, 3, and 4
clusters for observations and g = 2 clusters for variables.
This resulted in 4, 6, and 8 biclusters, respectively. Four
cases were examined: low, medium, and high variance
coupled with good cluster separation, and high variance
coupled with relatively close clusters. For each case, 100
data sets were generated, where each set had p = 8 vari-
ables and #n = 200, 300, 400 observations (for G = 2, 3, 4,
respectively) and was randomly generated from the same
Gaussian distribution. Examples of heatmaps for each
of the CUC cases visibly indicate that there are distinct
biclusters in the simulated data (Fig. 1). To reflect the one-
way supervised nature of the algorithm, the true A was
provided. Twenty random starts were used for each run of
the algorithm. Table 2 presents the results from these four
simulation studies for the CUU and CUC models. It lists
the average number of components selected, the most fre-
quently chosen model, and the average ARI when fitting
G =2,...,10 observation clusters. Because the algorithm
was sometimes overfitting for the number of components
based on the model it chose, another analysis was included
to show the average ARI when the number of clusters was
known (i.e., G = 2, 3, 4, depending on the case). These
results are shown in the last column. The CUU and CUC
models are focused on because they are the most proba-
ble cases in real-life scenarios, and additionally, they are
the models most frequently selected when the number of
clusters was known (results not shown).

For completeness, simulation studies were conducted
on the remaining six OSGaBi models using simulated
data with medium variance and good cluster separation
and with the same properties as that used for the CUU
and CUC models. As the true A, or A was provided, it
implied that for models with unconstrained A (i.e., mod-
els UUU, UUC, UCU, and UCC), G was known because
the A for each component would have been provided.
Table 3 presents the average ARI, most frequently cho-
sen model, and average number of clusters selected from
this simulation study for each of the remaining six mod-
els when fitting G = 2,...,10 clusters for observations.



Wong et al. BMC Bioinformatics (2017) 18:150

Page 6 of 13

with relatively close clusters (d)
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Fig. 1 Heatmaps of simulated data for CUC model. Examples of heatmaps of the four types of simulated data used for the CUC model: low variance
and good cluster separation (a), medium variance and good cluster separation (b), high variance and good cluster separation (c), and high variance

Because the algorithm was once again sometimes overfit-
ting for the number of components based on the model
selected, this final analysis was included to show the algo-
rithm’s performance when the number of clusters was
fixed to G = ginown, Where ginown represents the num-
ber of observation clusters the data was generated from.
The last column of the table presents the corresponding
average ARI when fixing G for the CCU and CCC models.

It is important to note that although the algorithm
was overfitting for the number of components based on
the model selected, the majority of the time the origi-
nal components were simply being broken into smaller
components. A classification table from one of the sim-
ulation results illustrates the very common occurrence
(Table 4). In this specific result, Cluster 1 was broken up
into three components by the algorithm, resulting in a
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Table 2 Simulation study results for model CUU
G=2...,10 G = Gknown
Case Average G Most chosen model Average ARl Average ARI
CUC, Gknown = 2
Low var, good cluster sep 2.5(0.8) Ccuu 0.955 (0.083) 1.0 (0.0)
Mid var, good cluster sep 240.8) cuu 0.955 (0.094) 1.0 (0.0)
High var, good cluster sep 4.0(1.0) cuc 0.708 (0.106) 1.0 (0.0)
High var, close clusters 64(1.2) cuc 0.502 (0.135) 1.0(0.0)
CUU, Gknown = 2
Low var, good cluster sep 24(0.7) Ccuu 0.969 (0.072) 1.0(0.0)
Mid var, good cluster sep 2.5(0.8) Ccuu 0.964 (0.071) 1.0(0.0)
High var, good cluster sep 4.0(1.0) cuc 0.705 (0.103) 1.0(0.0)
High var, close clusters 6.4(1.3) Ccuc 0.485 (0.138) 1.0 (0.0)
CUC, Gknown =3
Low var, good cluster sep 3.5(0.7) cuu 0.981 (0.039) 1.0 (0.0)
Mid var, good cluster sep 34(0.7) Cuu 0.984 (0.033) 1.0(0.0)
High var, good cluster sep 5.1(1.0 Ccuc 0.864 (0.081) 1.0 (0.0)
High var, close clusters 8.8(1.1) CCC 0.601 (0.066) 1.0(0.0)
CUU, Gknown =3
Low var, good cluster sep 3.5(0.6) Ccuu 0.984 (0.028) 1.0(0.0)
Mid var, good cluster sep 3.4(0.7) Ccuu 0.975 (0.050) 1.0 (0.0)
High var, good cluster sep 50(01.1) cuc 0.866 (0.079) 1.0 (0.0)
High var, close clusters 8.8(1.0) cuc 0.590 (0.070) 1.0 (0.0)
CUGC, gknown =4
Low var, good cluster sep 44(0.7) Ccuu 0.989 (0.254) 1.0 (0.0)
Mid var, good cluster sep 43(0.5) Ccuu 0.992 (0.020) 1.0 (0.0)
High var, good cluster sep 6.2 (1.0) cuc 0.887 (0.048) 1.0(0.0)
High var, close clusters 9.7 (0.5) Ccuc 0.658 (0.045) 1.0 (0.0)
CUU, Gknown = 4
Low var, good cluster sep 44(0.9) cuu 0.989 (0.031) 1.0 (0.0)
Mid var, good cluster sep 44(0.7) cuu 0.989 (0.024) 1.0 (0.0)
High var, good cluster sep 46(0.8) Cuu 0.970 (0.048) 1.0(0.0)
High var, close clusters 9.8(0.5) Ccuc 0.653 (0.046) 1.0 (0.0)

Average ARI, most frequently chosen model, and the number of observation clusters selected for the CUU and CUC models using simulated data with low, medium, and high
variance (var) with good cluster separation (sep), and high variance with relatively close clusters when fitting G = 2,. . ., 10 observation clusters using 100 data sets and 20
random starts. The last column presents the ARl when fixing G = Gknown, Where gknown represents the number of observation clusters the data was generated from. Values in

brackets represent the respective standard deviation

total of four components. The final column of Tables 2 and
3 provide further evidence because once the algorithm
is provided the correct number of components, the ARI
become perfect or near perfect.

Application

Rat data

We present the biclustering results from Affymetrix
oligonucleotide array data from a nutritional and pharma-
ceutical intervention in diabetic rats . This study consisted
of five male lean control rats and five male Zucker diabetic

fatty (ZDF) rats, which are genetically predisposed to
developing diabetes. Details regarding the original rat
study are described in Beaudoin et al. [35]. From each
animal, tissue was extracted from various tissue depots,
including the liver and red tibialis anterior (red TA, a
type of muscle). Blood was also extracted, resulting in
a total of 30 samples. RNA was extracted from these
samples and used for the subsequent microarray gene
expression analysis. Pre-processed data can be found on
Gene Expression Omnibus (GEO) [36], accession num-
ber GSE93402 (blood), GSE93403 (liver), and GSE93406
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Table 3 Simulation study results for the other six models
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G=2,...,10 G = Gknown

Model Average G Most chosen model Average ARI Average ARl
Gknown = 2

Uuu 2 yuc 1.0 (0.0) NA

yuc 2 yuc 1.0 (0.003) NA

ucu 2 ucc 0.960 (0.028) NA

ucc 2 ucc 0.961 (0.025) NA

CCU 23(0.7) CCuU 0.971 (0.098) 1.0 (0.0)

CcccC 24(1.2) ccu 0.959 (0.113) 1.0 (0.0)
Gknown = 3

Uuu 3 yuc 1.0 (0.0) NA

yuc 3 yuc 1.0 (0.0) NA

ucu 3 ucc 1.0 (0.0) NA

ucc 3 ucc 1.0(0.0) NA

@y 40(1.3) CCu 0.936 (0.095) 1.0(0.0)

CCcC 43(14) ccu 0.915(0.107) 1.0 (0.0)
Jknown =4

Uuu 4 yuc 1.0(0.0) NA

yuc 4 yuc 1.0 (0.0) NA

ucu 4 ucc 1.0 (0.0) NA

ucc 4 ucc 1.0 (0.0) NA

CCU 51(1.3) CCuU 0.958 (0.057) 1.0 (0.055)

CCC 51(1.1) ccu 0.960 (0.052) 1.0 (0.029)

Average ARI, most chosen model, and the average number of observation clusters selected for the remaining six OSGaBI models using simulated data with medium variance
and good cluster separation when fitting G = 2,. .., 10 observation clusters using 100 data sets and 20 random starts. The last column presents the ARI when fixing
G = Gknown, Where gxnown represents the number of observation clusters the data was generated from, for the CCU and CCC models. Values in brackets represent the

respective standard deviation

(red TA). After pre-processing using the affy and oligo
packages [37, 38] respectively for R Bioconductor [39, 40]
respectively, # = 8801 genes remained. We worked with
the top 2000 differentially expressed genes between the
red TA and liver (p < 0.01). For this analysis, we set the
genes as the observations (# = 2000) and the samples as
the variables (p = 30).

The goal of the biclustering analysis was to identify sets
of genes within the blood that possess similar expression
profiles within the distinct tissues. Thus, we aimed to

Table 4 An example of a classification table from one of the
simulation results

True
1 2 3 4
Estimated 1 56 32 12 0
2 0 0 0 100

Although the algorithm was overfitting for the number of components based on
the model selected, the majority of the time the original components were simply
being broken into smaller components

match biclusters containing genes that had similar expres-
sion profiles that were unique for blood and a specific tis-
sue type. We focus here on genes with similar expression
profiles between blood and liver. Downstream, these can-
didate genes can be tested to determine if they can func-
tion as blood biomarkers of metabolic status in individuals
in different contexts (i.e., response to interventions, differ-
ent disease states, etc.); however, this subsequent analysis
goes beyond the scope of the present article.

We constrained the structure of A, because we knew
the relationships required among the three sample types.
Specifically, we wanted correlated expression between
blood and liver only, implying that expression between
blood and red TA were uncorrelated and expression
between liver and red TA were uncorrelated as well.
The other (extraneous) relationship characterized by
the block-diagonal covariance matrix was the correlated
nature of the expression strictly among the liver sam-
ples. Consequently, ¢ = 2 for the number of variable
clusters (i.e., the two relationships described previously).
Sample types were constant across all components, i.e.,
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Ag = A, and thus we limited the algorithm to fit model  enriched (p < 0.05). There is also a general inference that
CUU and CUC. These two A-constrained models were  insulin resistance occurs at different times in insulin sen-
chosen based on the results from the simulation studies sitive tissues such as muscle and liver [51, 52]; therefore, it
previously mentioned. We normalized the data and fitted is not surprising that the expression profiles between the
the range of G = 2,.. ., 30. liver and red TA were not similar. Additionally, it has been
The BIC selected a CUU model with G = 19 obser-  previously established that the peripheral blood transcrip-
vation clusters for the blood-liver analysis. As seen from  tome reflects changes in various tissues throughout the
the heatmaps before and after biclustering and subse- body [3], a property that is illustrated in the biclusters
quent rearranging, there were definitive biclusters in the  of interest.
data (Fig. 2). We inputted the gene lists for each of the
19 biclusters into the online functional annotation tool =~ Human data
DAVID (Database for Annotation, Visualization and Inte-  The second data set we analyzed is another Affymetrix
grated Discovery) [41, 42] to elucidate potential biological  oligonucleotide array retrieved from GEO, accession
processes that were dominant in each bicluster. DAVID  number GSE1133. The original study aimed to profile 79
functional annotation results indicated that the largest human and 61 mouse tissues in terms of their transcrip-
proportions of genes in the blood-liver biclusters had tomes under normal conditions [53]. Here, we focus on
roles in protein metabolic and modification processes, the human arrays, specifically the tissues related to the
carboxylic metabolic process, oxaloacid metabolic pro- immune system (20 tissue types) and the brain (16 tissue
cess, and intracellular signal transduction (biological pro-  types), and also whole blood, for a total of 37 tissue types.
cesses as defined by the Gene Ontology Consortium, [43]),  Each tissue had two replicates, giving a total of 74 samples.
all biological processes of which have previously been  After pre-processing using the same methods described
shown to have an involvement in diabetes and obesity, and  for the rat data and removing genes without Entrez gene
some processes within the liver [44—50]. These processes  identifiers, n = 3867 genes remained, of which 2148 genes
accounted for approximately 20—-43% of the genes in the  were differentially expressed between brain and immune
various biclusters and were all statistically significantly tissues (p < 0.01). Similar to the rat data, we set the genes
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Fig. 2 Heatmaps of the rat data. Heatmap of the rat data before biclustering (a). The red, yellow, and blue bars along the columns and represent liver,
blood, and red TA samples, respectively. Heatmap of the rat data after biclustering and subsequently rearranging the rows so that the observation
clusters were contiguous (b). Black and grey bars along the columns and rows simply represent the presence of the clusters and do not indicate
relationships between them. G = 19 for the observation clusters and along the columns, g1 = g, = 2
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as the observations (n = 2148) and the samples as the
variables (p = 74).

The goal of this biclustering analysis was to identify sets
of genes within the blood that possess similar expression
within the distinct groups of tissues. Thus, we aimed to
match biclusters containing genes that had similar expres-
sion that were unique for blood and a specific group of
tissues. We focus here on genes with similar expression
between blood and immune tissues. Subsequent work can
involve determining which of these candidate genes can
function as blood biomarkers of normal immune function
in individuals.

Similar to the rat data, we constrained the structure of
Ag because we knew the relationships required among
the three sample types. Specifically, we wanted correlated
expression only between blood and immune tissues. This
implied that expression between blood and brain tissues
were uncorrelated, and expression between immune and
brain tissues were uncorrelated as well. The other (extra-
neous) relationship characterized by the block-diagonal
covariance matrix was the correlated nature of the expres-
sion strictly among the immune tissue samples. Conse-
quently, ¢ = 2 for the number of variable clusters (i.e.,
the two relationships described previously). Samples were
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constant across all components, i.e.,, A; = A, and thus we
again limited the algorithm to fit model CUU and CUC.
We normalized the data and fitted models in the range of
G=2,...,30.

The BIC selected a CUU model with G = 10
observation clusters for the blood-immune analysis. As
seen from the heatmaps before and after biclustering
and subsequent rearranging, there were again defini-
tive biclusters in the data (Fig. 3). DAVID functional
annotation results indicated that the largest portion of
genes in each bicluster had roles in the nucleobase-
containing small molecule metabolic process, macro-
molecule metabolic process, microtubule-based process,
microtubule cytoskeletal organization, response to DNA
damage stimulus, and transmembrane transport; all bio-
logical processes that have been linked to immune
responses [54—57]. These processes accounted for any-
where between 4 to 51% of the genes in the various biclus-
ters, and were all statistically significantly enriched (p <
0.05). Furthermore, blood acts as a transporter for the
immune system by transporting immune cells through-
out the body, thus blood can provide an extensive view
of the immune status of an individual [58]. This property
is reflected in the biclusters of interest because there is a

R e L A A A A

Fig. 3 Heatmaps of the human data. Heatmap of the human data before biclustering (a). The red, yellow, and blue bars along the columns and

represent immune tissues, whole blood, and brain tissues respectively. Heatmap of the human data after biclustering and subsequently rearranging
the rows so that the observation clusters were contiguous (b). Black and grey bars along the columns and rows simply represent the presence of the
clusters and do not indicate relationships between them. G = 10 for the observation clusters and along the columns, g1 = g, =2
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correlation among the expression between the blood and
the immune tissues.

Discussion

One specific taxonomy of biclustering methods for gene
expression data aims to retrieve non-overlapping biclus-
ters characterized by one specific sample type (in this case,
“sample” could refer to a type of treatment, tissue, disease
state, etc.) along the variable dimension, as reviewed in
Pontes et al. [19]. This is useful in applications such as dis-
ease subtype discovery, where the focus is to elucidate the
various disease subtypes based on the genes. Conversely,
in blood biomarker discovery, knowledge of the types of
samples a priori is required and the focus is on the rela-
tionships between those sample types based on the genes,
which is where one-way supervised biclustering is able to
play a role. Two inherent criteria of blood biomarkers are
that there is 1) a correlation between blood and the tissue
of interest and 2) no correlation between those two sam-
ple types and other tissues. The second criteria is enforced
by including other tissues into the biclustering analysis so
that the condition can be set in conjunction with the first
criteria. The relationships required are satisfied through
the use of one-way supervision to explicitly determine the
relationship between blood and the various tissues. To
the best of our knowledge, biclustering methods currently
available under the taxonomy of non-overlapping biclus-
ters do not provide the option of one-way supervision
along the variable dimension to aid in applications such as
blood biomarker discovery.

Another advantage of approaching tissue-specific blood
biomarker discovery through the use of biclustering is
the ability to identify groups of genes that are poten-
tially related to each other through their biological path-
ways. Commonly, correlation analysis between blood and
a tissue is conducted using the available gene list in its
entirety, e.g. [59], consequently not revealing any infor-
mation about genes related by biological pathways that
a cluster analysis would provide. In our OSGaBi fam-
ily, setting the variable clusters labels and subsequently
biclustering conditional on this information allows us to
handle this limitation of correlation analysis.

Simulation study results show that models with values
of G that are too high are sometimes selected, and this
problem becomes more pronounced for high variance.
While the BIC has been shown to be unreliable in higher
dimensions, e.g. [60] — and this may suggest that further
research on an optimal model selection criteria for this
family of biclustering models is warranted — it is quite
possible that the selection of larger values of G is sim-
ply a result of lack of concentration around the modes at
higher variances. The inclusion of results for fixed G fol-
lows [61] and [62], who carried out mixture model analysis
of gene expression data by treating G as fixed and known.
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Note that, in [23] where the binary row-stochastic fac-
tor loadings matrix is a property of their MFABC family,
the authors report simulation results but do not mention
the model selection criterion or the range of number of
observation clusters fitted; therefore, it is not known if the
authors treated G as fixed. Conversely, the authors men-
tion the use of the BIC and AIC for model selection in
their real data study with gene expression data, support-
ing the use of the BIC for our analyses until the optimal
model selection criteria is determined.

Future work will also aim to compare performance of
the OSGaBi family to that of other model-based biclus-
tering algorithms capable of detecting non-overlapping
clusters and allowing for one-way supervision. Current
methods are available for the former (as mentioned pre-
viously), but do not allow for the latter criteria. This
limitation in the existing methods makes it difficult to
compare the genes that are found in the biclusters to those
found using the OSGaBi family since they do not always
correspond to the intended subset of variables.

We have presented biclustering results using the
OSGaBi family on two real microarray gene expression
data sets. The first one was a previously unpublished
rat microarray gene expression data set, where identified
biclusters corresponded to genes whose expression pro-
files were correlated between liver and blood (and not
between red TA and blood, or liver and red TA). Identi-
fied biclusters were enriched in genes related to biological
processes known to play a role in insulin resistance and
obesity in a tissue-specific manner. The second data set
was a subset of a microarray gene expression data set from
the GEO database that aimed to profile the human tran-
scriptome under normal conditions. In this analysis, iden-
tified biclusters corresponded to genes whose expression
correlated between immune tissues and blood (and not
between brain tissues and blood, or immune and brain tis-
sues). Identified biclusters contained genes related to bio-
logical processes previously associated with the immune
system. Although further biological experimental analysis
and interpretation need to be conducted to determine the
best candidate gene(s) in both preliminary analyses, the
initial results show promise in using the OSGaBi bicluster-
ing family for discovering novel blood biomarkers to act
as surrogate tissue material in the maintenance of health
and the prevention of disease.

Conclusions

A family of parsimonious Gaussian mixture models for
the biclustering of gene expression data has been pro-
posed. These models work in a one-way-supervised fash-
ion in that the variable labels are known. The binary
and row-stochastic factor loadings matrix results in a
block-diagonal covariance matrix, which can be a use-
ful property in biclustering applications for dictating the
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relationships between the variables. A promising applica-
tion for our method is in the discovery of novel peripheral
blood biomarkers for use as surrogate biopsy material.
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