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Abstract

Background: Gene regulatory networks reveal how genes work together to carry out their biological functions.
Reconstructions of gene networks from gene expression data greatly facilitate our understanding of underlying
biological mechanisms and provide new opportunities for biomarker and drug discoveries. In gene networks, a gene
that has many interactions with other genes is called a hub gene, which usually plays an essential role in gene
regulation and biological processes. In this study, we developed a method for reconstructing gene networks using a
partial correlation-based approach that incorporates prior information about hub genes. Through simulation studies
and two real-data examples, we compare the performance in estimating the network structures between the existing
methods and the proposed method.

Results: In simulation studies, we show that the proposed strategy reduces errors in estimating network structures
compared to the existing methods. When applied to Escherichia coli, the regulation network constructed by our
proposed ESPACE method is more consistent with current biological knowledge than the SPACE method.
Furthermore, application of the proposed method in lung cancer has identified hub genes whose mRNA expression
predicts cancer progress and patient response to treatment.

Conclusions: We have demonstrated that incorporating hub gene information in estimating network structures can
improve the performance of the existing methods.

Keywords: Gene regulatory network, Hub gene, Partial correlation, Sparse partial correlation estimation, Escherichia
coli, Lung cancer

Background
A gene regulatory network (GRN) describes interactions
and regulatory relationships among genes. It provides
a systematic understanding of the molecular mecha-
nisms underlying biological processes by revealing how
genes work together to form modules that carry out cell
functions [1–4]. In addition, the visualization of genetic
dependencies through the GRN facilitates the systematic
interpretation and comprehension of analysis results from
genome-wide studies using high-throughput data. GRNs
have proven valuable in a variety of contexts, including
identifying druggable targets [5], detecting driver genes in
diseases [6], and even optimizing prognostic and predic-
tive signatures [7].
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Gene expression microarrays monitor the transcription
activities of thousands of genes simultaneously, which
provides a great opportunity to study the “relation-
ships” among genes on a large scale. However, challenges
lie in constructing large-scale GRNs from gene expres-
sion microarray data due to the small sample sizes of
microarray studies and the extremely large solution space.
Computational techniques and algorithms have been pro-
posed to reconstruct GRNs from gene expression data,
including probability-based approaches such as Bayesian
networks [8–12], correlation-based approaches [13],
likelihood-based approaches [14–16], partial-correlation-
based approaches [17, 18], and information-theory-based
approaches [19–22]. The existing methods are briefly
reviewed in the Methods Section. Readers can also refer
to Bansal et al. [23] and Allan et al. [24] for a more detailed
review of network construction methods.
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The sparse partial correlation estimation (SPACE)
method, proposed by Peng et al. [18], considers a penal-
ized regression approach to estimate edges in the GRN,
which utilizes the sparse feature of the GRN. Comparative
studies have shown that the SPACEmethod performs well
in estimating sparse networks with high accuracy [24].
Peng et al. [18] also showed that the method was able to
identify functional relevant molecular networks. In addi-
tion, recent studies of network analysis have revealed its
advantage in detecting genes or modules associated with
phenotypes [25–27].
In gene networks, genes that have many interactions

with other genes are defined as hub gens. Because of these
interactions, hub genes usually play an important role in a
biological system. For example, transcription factor (TF),
a protein that binds to specific DNA sequences, can reg-
ulate a given set of genes. In humans, approximately 10%
of genes in the genome code for around 2600 TFs [28].
The combinatorial human TFs account for most of the
regulation activities in the human genome, especially dur-
ing the development stage. As a result, the genes that
code TFs, called TF-encoding genes, are usually regarded
as hub genes. Furthermore, in cancer research, cancer
genes (oncogenes or tumor suppressor genes) take part in
tumor genesis and are likely to be hub genes in the genetic
networks of tumors [29, 30]. Through decades of biolog-
ical studies, knowledge on important genes (such as TFs
or cancer genes) has been accumulated. Our hypothesis
is that incorporating prior knowledge about hub genes
can improve accuracy in estimating the gene network
structure. It is worth noting that there is a reweighted
�1 regularization method [31] that repeatedly estimates
the structures and modifies the weights of the penalties
by using the information on degrees from the previ-
ous estimation to encourage the appearance of the hubs.
This method does not use the prior information obtain-
able from the other resources while our method uses
additional information not contained in the observed
dataset.
To explicitly account for the information on hub genes,

we propose an extension of the SPACE method, which
introduces an additional tuning parameter to open up
the possibility of reducing penalization and increasing
the likelihood of selecting the edges connected to such
genes. We numerically show that the proposed method
reduces errors in estimating network structures. Although
we focus on extending the SPACE method in this paper,
the idea can also be applied to penalized likelihood meth-
ods as well as to other penalized regressionmethods. Note
that there is no rigorous definition of a hub in the con-
text of a network; the definition of a hub varies depending
on the sparsity of the network. For sparse protein net-
works, a hub is defined in [32] as a protein whose degree
lies over the 0.95 quantile of the degree distribution or in

[33] and [7] as a protein whose degree is greater than 7. In
this paper, we conservatively define a hub as a node whose
degree is both greater than 7 and above the 0.95 quantile
of the degree distribution, because most nodes in sparse
networks have relatively small degrees between 0 and 3.
In this study, we briefly introduce seven existing meth-

ods, including the SPACE and the graphical lasso, and
propose the extended SPACE (ESPACE) method to incor-
porate the biological knowledge about important genes,
i.e. network hubs. Moreover, it is worth noting that the
ESPACE only incorporates the previously known biolog-
ical information not contained in the observed dataset
compared to the other existing methods. Through simula-
tion studies, we show that the proposed approach reduces
error in estimating the network structures compared to
the seven other existing methods that we reviewed in the
“Methods” section. Finally, we demonstrate the improve-
ment of the ESPACE method compared to the SPACE
method with two real-data examples.

Methods
Review of existing methods
Here, we briefly review the existingmethods; the GeneNet
[34], the NS [17], the GLASSO [15], the GLASSO-SF [31],
the PCACMI [21], the CMI2NI [22], and the SPACE [18].
Let Xk

i be the expression level of the ith gene of the kth
array for i = 1, 2, . . . , p and k = 1, 2, . . . , n. Let Xi =
(
X1
i ,X2

i , . . . ,Xn
i
)T so that observed gene expression data

can be denoted by an n × p matrix X = (X1;X2; . . . ;Xp)
whose rows and columns denote arrays and genes, respec-
tively. Suppose row vectorsXk =

(
Xk
1 ,X

k
2 , . . . ,Xk

p

)
for k =

1, 2, . . . , n are independently and identically distributed
random vectors from the multivariate normal distribution
with mean 0 and covariance matrix �. We assume that �

is positive definite, and let � ≡ �−1 = (ωij
)
1≤i,j≤p be the

inverse of the covariance matrix �, which is referred to as
a concentration matrix or a precision matrix.

GeneNet
Schäfer and Strimmer [34] propose the linear shrink-
age estimator for a covariance matrix and the Gaussian
graphical model (GGM) selection based on the partial
correlation obtained from their shrinkage estimator. With
multiple testing procedure using the local false discovery
rate [35], the GGM selection controls the false discovery
rate under a pre-determined level α. Since Schäfer and
Strimmer [34] provide their GGM selection procedure in
the R package GeneNet, we denote their GGM selection
procedure as GeneNet in this paper. To be specific, one of
the most commonly used linear shrinkage estimators S∗
for the covariance matrix � is

S∗ = λ∗T + (1 − λ∗)S,
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where S = (sij)1≤i,j≤p is the sample covariance matrix,
T = diag(s11, s22, . . . , spp) is the shrinkage target matrix,
and λ∗ = ∑i�=j V̂ar(sij)/

(∑
i�=j s2ij

)
is the optimal shrink-

age intensity. With this estimator S∗, the matrix of
the partial correlations P = (ρ̂ij)1≤i,j≤p is defined as
ρ̂ij = −ω̂ij/

√
ω̂iiω̂jj, where �̂ = (ω̂ij)1≤i,j≤p = (S∗)−1.

To identify the significant edges, Schäfer and Strimmer
[34] suppose the distribution of the partial correlations as
the mixture

f (ρ) = η0f0(ρ, ν) + (1 − η0)f1(ρ),

where f0 is the null distribution, f1 is the alternative dis-
tribution corresponding to the true edges, and η0 is the
unknown mixing parameter. Using the algorithm in [35],
GeneNet identifies significant edges that have the local
false positive rate

fdr(ρ) = η̂0f0(ρ, ν̂)

f̂ (ρ)

smaller than the pre-determined level α, where f0(ρ, ν) =
|ρ|Be (ρ2; 0.5, (ν − 1)/2

)
, Be(x; a, b) is the density of the

Beta distribution and ν is the reciprocal variance of the
null ρ.

Neighborhood selection (NS)
Meinshausen and Bühlmann [17] propose the neighbor-
hood selection (NS) method, which separately solves the
lasso [36] problem and identifies edges with nonzero esti-
mated regression coefficients for each node. Meinshausen
and Bühlmann [17] prove that the NS method is asymp-
totically consistent in identifying the neighborhood of
each node when the neighborhood stability condition is
satisfied. Note that the neighborhood stability condition
is related to the irrepresentable condition in linear model
literature [37].
To be specific, for each node i ∈ V = {1, 2, . . . , p}, NS

solves the following lasso problem

β̂ i,λ = argmin
β∈Rp:βi=0

1
2
‖Xi − Xβ‖22 + λ‖β‖1,

where ‖x‖22 = ∑p
i=1 x

2
i and ‖x‖1 = ∑p

i=1 |xi| for x ∈ R
p.

With the estimate β̂ i,λ, NS identifies the neighborhood of
the node i asNi(λ) = {k | β̂

i,λ
k �= 0}, which defines an edge

set Eλ
i = {(i, j) | j ∈ Ni(λ)}. Since NS separately solves p

lasso problems, contradictory edges may occur when we
define the total edge set Eλ = ∪p

i=1Eλ
i , i.e., β̂

i,λ
k �= 0 and

β̂
k,λ
i = 0. To avoid these contradictory edges, NS suggests

two types of edge sets Eλ,∧ and Eλ,∨ defined as follows:

Eλ,∧ = {(i, j) | i ∈ Nj(λ) and j ∈ Ni(λ)
}
,

Eλ,∨ = {(i, j) | i ∈ Nj(λ) or j ∈ Ni(λ)
}
.

Meinshausen and Bühlmann [17] mentioned these two
edge sets have only small differences in their experience

and the differences vanish asymptotically. Meinshausen
and Bühlmann [17] also propose the choice of the tuning
parameter λi(α) for the ith node

λi(α) = ‖Xi‖2�̃−1
(

α

2p2

)
,

where �̃ = 1−� and � is the distribution function of the
standard normal distribution.With this choice of λi(α) for
i = 1, 2, . . . , p, the probability of falsely identifying edges
in the network is bounded by the level α. Note that we
estimate the edge set with Eλ,∧ and solve the lasso prob-
lems using the R package CDLasso proposed by [38] in
this paper.

Graphical lasso (GLASSO)
Friedman et al. [15] propose the graphical lasso method
that estimates a sparse inverse covariance matrix � by
maximizing the �1 penalized log-likelihood

l(�) = log |�| − tr(S�) − λ‖�‖1, (1)

where S is the sample covariance matrix, tr(A) is the trace
of A and ‖A‖1 is the �1 norm of A for A ∈ R

p×p.
To be specific, let W be the estimate of the covariance

matrix � and consider partitioningW and S

W =
(
W11 w12
wT
12 w22

)
, S =

(
S11 s12
sT12 s22

)
, � =

(
�11 ω12
ωT
12 ω22

)

Motivated by [39], Friedman et al. [15] show that the
solution �̂ of (1) is equivalent to the inverse of W whose
partitioned entity w12 satisfies w12 = W11β∗, where β∗ is
the solution of the lasso problem

min
β

1
2

∥
∥
∥W 1/2

11 β − W−1/2
11 s12

∥
∥
∥
2

2
+ λ‖β‖1. (2)

Based on the above property, the graphical lasso sets
the diagonal elements wii = sii + ρ and obtains the
off-diagonal elements of W by repeatedly applying the
following two steps:

1. Permuting the columns and rows to locate the target
elements at the position of w12.

2. Finding the solution w12 = W11β∗ by solving the
lasso problem (2).

until convergence occurs. After finding W, the estimate
�̂ is obtained from the relationships ω12 = −β̂ω̂22 and
ω̂22 = 1/(w22−wT

12β̂), where β̂ = W−1
11 w12. This graphical

lasso algorithm was proposed in [15] and had its compu-
tational efficiency improved in [16] and [40]. Witten et al.
[16] provide the R package glasso version 1.7.

GLASSOwith reweighted strategy for scale-free network
(GLASSO-SF)
Liu and Ihler [31] propose the reweighted �1 regulariza-
tion method to improve the performance of the estima-
tion for the scale-free network whose degrees follows the
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power law distribution. Motivated by the fact that the
existing methods work poorly for the scale-free networks,
Liu and Ihler [31] consider changing the �1 norm penalty
in the existing methods to the power law regularization

pλ,γ (�) = λ

p∑

i=1
log (‖ω−i‖1 + εi) + γ

p∑

i=1
|ωii|, (3)

where λ and γ are nonnegative tuning parameters, ω−i =
{ωij | j �= i}, ‖ω−i‖1 = ∑j �=i |ωij|, and εi is a small pos-
itive number for i = 1, 2, . . . , p. Thus, Liu and Ihler [31]
consider optimizing the following objective function

f (�;X, λ, γ ) = L(X,�) + uL · pλ,γ (�), (4)

where L(X,�) denotes the objective function of the exist-
ing method without its penalty terms, uL = 1 if L is
convex and uL = −1 if L is concave for �. Note that the
choice of L is flexible. For instance, L(X,�) can be the log-
likelihood function of � as in the graphical lasso or the
squared loss function as in the NS and the SPACE. In this
section, we suppose that L is concave for the purpose of
notational simplicity.
To obtain the maximizer of f (�;X, λ, γ ), Liu and Ihler

[31] propose the iteratively reweighted �1 regulariza-
tion procedure based on the minorization-maximization
(MM) algorithm [41]. The reweighted procedure itera-
tively solves the following problem:

�(k+1) = argmax
�

L(X,�) −
p∑

i=1

∑

j �=i
η

(k)
ij |ωij| − γ

p∑

i=1
|ωii|,

(5)

where �(k) =
(
ω

(k)
ij

)
is the estimate at the kth iteration,

‖ω(k)
−i ‖1 = ∑l �=i |ω(k)

il |, and η
(k)
ij = λ

(
1/(‖ω(k)

−i ‖1 + εi)+
1/(‖ω(k)

−j ‖1 + εj)
)
. In practice, [31] suggest εi = 1, γ =

2λ/εi, and the initial estimate �(0) = Ip, where Ip is the
p-dimensional identity matrix. Note that this reweighted
strategy facilitates to estimate the hub nodes by adjust-
ing weights in the penalty term but weights are updated
by solely using the observed dataset without previously
known information from other literatures.
In this paper, we consider L(X,�) = log |�| − tr(S�),

which is the same to the component in the objective func-
tion of the GLASSO. Thus, we call this procedure as the
GLASSO with a reweighted strategy for the scale-free
network (GLASSO-SF). As applied in [31], we stop the
reweighting iteration after 5 iterations. The R package
glasso version 1.7 is used to obtain the solution of (5) at
each iteration with the penalty matrix E(k) = (e(k)ij ), where
e(k)ij = η

(k)
ij for i �= j and e(k)ii = 2λ for i = 1, 2, . . . , p.

Path consistency algorithm based on conditional mutual
information (PCACMI)
Mutual information (MI) is a widely used measure of
dependency between variables in information theory. MI
even measures non-linear dependency between variables
and can be considered as a generalization of the corre-
lation. Several mutual information (MI) based methods
have been developed such as ARACNE [20], CLR [42], and
minet [43]. However, similar to the correlation, MI only
measures pairwise dependency between two variables.
Thus, it usually identifies many undirected interactions
between variables. To resolve this difficulty, Zhang et al.
[21] propose the information theoretic method for recon-
struction of the gene regulatory networks based on the
conditional mutual information (CMI).
To be specific, let H(X) and H(X,Y ) be the entropy of a

random variable X and the joint entropy of random vari-
ables X and Y, respectively. For two random variables X
and Y, H(X) and H(X,Y ) can be expressed as

H(X) = E
(− log fX(X)

)
, H(X,Y ) = E

(− log fXY (X,Y )
)
,

where fX(x) is the marginal probability density function
(PDF) of X and fXY (x, y) is the joint PDF of X and Y. With
these notations, MI is defined as

I(X,Y ) = E
(
−log fXY (X,Y )

fX(X)fY (Y )

)

= H(X) + H(Y ) − H(X,Y ).
(6)

It is known that MI measures dependency between two
variables that contain both directed dependency and indi-
rected dependency through other variables. While MI can
not distinguish directed and indirected dependency, CMI
can measure directed dependency between two variables
by conditioning on other variables. CMI for X and Y given
Z is defined as

I(X,Y |Z) = H(X,Z) +H(Y ,Z) − H(Z) − H(X,Y ,Z).
(7)

To estimate the entropies in (7), Zhang et al. [21] con-
sider the Gaussian kernel density estimator used in [19].
Using the Gaussian kernel density estimator, MI and CMI
are defined as

Î(X,Y ) = 1
2
log

|C(X)| |C(Y )|
|C(X,Y )| ,

Î(X,Y |Z) = 1
2
log

|C(X,Z)| |C(Y ,Z)|
|C(Z)| |C(X,Y ,Z)| ,

(8)

where |A| is the determinant of a matrix A, C(X), C(Y )

and C(Z) are the variances of X, Y and Z, respectively,
and C(X,Z), C(Y ,Z) and C(X,Y ,Z) are the covariance
matrices of (X,Z), (Y ,Z) and (X,Y ,Z), respectively.
To efficiently identify dependent pairs of variables,

Zhang et al. [21] adopt the path consistency algorithm
(PCA) in [44]. Thus, the authors called their proce-
dure as PCA based on CMI (PCACMI). The PCACMI
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method sets L = 0 and calculates with L-order CMI,
which is equivalent to MI if L = 0. Then, PCACMI
removes the pairs of variables such that the maximal CMI
of two variables given L + 1 adjacent variables is less
than a given threshold α, where α determines whether
two variables are independent or not and adjacent vari-
ables denote variables connected to the two target vari-
ables in PCACMI at the previous step. PCACMI repeats
the above steps until there is no higher order connec-
tion. The MATLAB code for PCACMI is provided by
[21] at the author’s website https://sites.google.com/site/
xiujunzhangcsb/software/pca-cmi.

Conditional mutual inclusive information-based network
inference (CMI2NI)
Recently, Zhang et al. [22] proposed the conditional
mutual inclusive information-based network inference
(CMI2NI) method that improves the PCACMI method
[21]. CMI2NI considers the Kullback-Leibler divergences
from the joint probability density function (PDF) of target
variables to the interventional PDFs removing the depen-
dency between two variables of interest. Instead of using
CMI, CMI2NI uses the conditional mutual inclusive infor-
mation (CMI2) as the measure of dependency between
two variables of interest given other variables. To be spe-
cific, we consider three random variables X, Y and Z. For
these three random variables, the CMI2 between X and Y
given Z is defined as

CMI2(X,Y |Z) = (DKL(P||PX→Y ) + DKL(P||PY→X)) /2,
(9)

where DKL(f ||g) is the Kullback-Leibler divergence from
f to g, P is the joint PDF of X, Y and Z, and PX→Y is the
interventional probability of X, Y and Z for removing the
connection from X to Y.
With Gaussian assumption on the observed data, the

CMI2 for two random variables X and Y given m-
dimensional vector Z can be expressed as

CMI2(X,Y |Z) = 1
4

(
tr(C−1�) + tr(C̃−1�̃) + logC0

+ log C̃0 − 2n
)
,

(10)

where � is the covariance matrix of (X,Y ,ZT )T , �̃ is
the covariance matrix of (Y ,X,ZT )T , �XZ is the covari-
ance matrix of (X,ZT )T , �YZ is the covariance matrix of
(Y ,ZT )T , n = m + 2, and C, C̃, C0 and C̃0 are defined
with the elements of�,�XZ ,�YZ ,�−1,�−1

XZ and�−1
YZ (see

Theorem 1 in [22] for details). As applied in PCACMI,
CMI2NI adopts the path consistency algorithm (PCA)
to efficiently calculate the CMI2 estimates. All steps of
the PCA in CMI2NI are the same as one of PCACMI
if we change the CMI to the CMI2. In the PCA steps

of CMI2NI, two variables are regarded as independent
if the corresponding CMI2 estimate is less than a given
threshold α. The MATLAB code for CMI2NI is avail-
able at the author’s website https://sites.google.com/site/
xiujunzhangcsb/software/cmi2ni.

Sparse partial correlation estimation (SPACE)
In the Gaussian graphical models [45], the conditional
dependencies among p variables can be represented
by a graph G = (V ,E), where V = {

1, 2, . . . , p
}

is a set of nodes representing p variables and E ={(
i, j
) ∣∣ ωij �= 0, 1 ≤ i �= j ≤ p

}
is a set of edges corre-

sponding to the nonzero off-diagonal elements of �.
To describe the SPACE method, we consider linear

models such that for i = 1, 2, . . . , p,

Xi =
∑

j �=i
βijXj + εi (11)

where εi is an n-dimensional random vector from themul-
tivariate normal distribution with mean 0 and covariance
matrix (1/ωii)In, and In is an identity matrix with size of
n × n. Under normality, the regression coefficients βijs
can be replaced with the partial correlations ρijs by the
relationship

βij = −ωij

ωii
= ρij

√
ωjj

ωii
, (12)

where ρij = corr
(
Xi,Xj | Xk , k �= i, j

) = −ωij
/√

ωiiωjj
is a partial correlation between Xi and Xj. Motivated by
the relationship (12), Peng et al. [18] propose the SPACE
method for solving the following �1-regularized problem:

min
ρ

1
2

p∑

i=1

⎧
⎪⎨

⎪⎩
wi

n∑

k=1

⎛

⎝Xk
i −
∑

j �=i
ρij
√

ωjj

ωii
Xk
j

⎞

⎠

2
⎫
⎪⎬

⎪⎭
+ λ

∑

1≤i<j≤p
|ρij|,

(13)

wherewi is a nonnegative weight for the i-th squared error
loss.

Proposed approach incorporating previously known hub
information
Extended sparse partial correlation estimation (ESPACE)
In this paper, we assume that some genes (or nodes),
which are referred to as hub genes (or hub nodes), reg-
ulate many other genes, and we also assume that many
of these hub genes were identified from previous experi-
ments. To incorporate information about hub nodes, we
propose the extended SPACE (ESPACE) method, which
extends the model space by using an additional tuning
parameter α on edges connected to the given hub nodes.
This additional tuning parameter can reflect the hub gene
information by reducing the penalty on edges connected
to hub nodes. To be specific, letH be the set of hub nodes

https://sites.google.com/site/xiujunzhangcsb/software/pca-cmi
https://sites.google.com/site/xiujunzhangcsb/software/pca-cmi
https://sites.google.com/site/xiujunzhangcsb/software/cmi2ni
https://sites.google.com/site/xiujunzhangcsb/software/cmi2ni
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that were previously identified. The ESPACE method we
propose solves

min
ρ

1
2

p∑

i=1

⎧
⎪⎨

⎪⎩
wi

n∑

k=1

⎛

⎝Xk
i −
∑

j �=i
ρij
√

ωjj

ωii
Xk
j

⎞

⎠

2
⎫
⎪⎬

⎪⎭

+ αλ
∑

i<j,
{i∈H}∪{j∈H}

|ρij| + λ
∑

i<j,
i,j∈Hc

|ρij|,
(14)

where 0 < α ≤ 1. Note that we consider the weights wis
for the squared error loss as one in this paper. To sum-
marize the process of the proposed method, we depict the
flowchart of the ESPACE method in Fig. 1. As described
in Fig. 1, the ESPACE has the prior knowledge about
hub genes as an additional input, which is the novelty
of the proposed method compared to the other existing
methods.

Extended graphical lasso (EGLASSO)
In the Background, we mentioned the proposed proce-
dure is applicable to other methods such as the graphical
lasso. For the purpose of fair comparison and the investi-
gation of the performance, we also applied the proposed
strategy to the GLASSO, which is the GLASSO incorpo-
rating the hub gene information. We call this procedure
the extended graphical lasso (EGLASSO). Similar to the
ESPACE, the EGLASSO maximizes

log |�|−tr(S�)−αλ
∑

i<j,
{i∈H}∪{j∈H}

|ωij|−λ
∑

i<j,
i,j∈Hc

|ωij|, (15)

where λ ≥ 0 and 0 < α ≤ 1 are two tuning parame-
ters, S is the sample covariance matrix, tr(A) is the trace
of A and H is the set of hub nodes that were previously
identified. Note that we can use the R package glasso
version 1.7 for the EGLASSO by defining the penalty
matrix corresponding to the penalty term in (15).

Active shooting algorithm for ESPACE
To solve (14), we adopt the active shooting algorithm
introduced in [18]. We rewrite the problem (14) as

min
ρ

1
2

∥
∥
∥Y − X̃ρ

∥
∥
∥
2

2
+ αλ

∑

i<j,
{i∈H}∪{j∈H}

|ρij| + λ
∑

i<j,
i,j∈Hc

|ρij|, (16)

Fig. 1 Flowchart of ESPACE

where Y = (XT
1 ,X

T
2 , . . . ,XT

p )T is an n × p column vector;

Xk,l =
(
0Tn(k−1)×1,X

T
l(k), 0

T
n(l−k−1)×1,X

T
k(l), 0

T
n(p−l)×1

)T
is

an n × p column vector as well, with Xk(l) =
√

ωkk
ωll

Xk ;

X̃ = (X1,2; X1,3; · · · ; X1,p; X2,3; X2,4; · · · ; X(p−1),p ) ,

and ρ = (
ρ12; ρ13; . . . ; ρ1p; ρ23; ρ24; . . . ; ρ(p−1)p)T . Let

ρ̂(m) and ω̂
(m)
ii be estimates of ρ and ωii at the m-th

iteration, respectively. Then, the steps of the modified
algorithm are outlined below:

Step 1: (Initialization of ω̂ii) For i = 1, 2, . . . , p,
ω̂

(0)
ii = 1 and s = 0.

Step 2: (Initialization of ρ̂) For 1 ≤ i < j ≤ p and
m = 0,

ρ̂ij,(0) = sign
(
YTXi,j)

(∣∣YTXi,j∣∣−αλ
)
+

(Xi,j)
TXi,j for {i ∈ H} ∪ {j ∈ H},

ρ̂ij,(0) = sign
(
YTXi,j)

(∣∣YTXi,j∣∣−λ
)
+

(Xi,j)
TXi,j for i, j ∈ Hc,

where (x)+ = max (x, 0) and Xi,js are defined in (16)
with ω̂

(s)
ii .

Step 3: Define an active set � = {(i, j) | ρ̂ij,(m) �= 0}.
Step 4: Iteratively update ρ̂(m) for (k, l) ∈ �,

ρ̂kl,(m) = sign
(
(Xk,l)Tε′)

(∣∣
∣(Xk,l)T ε′

∣∣
∣−αλ

)

+
(Xk,l)TXk,l

for {k ∈ H} ∪ {l ∈ H},
ρ̂kl,(m) = sign

(
(Xk,l)Tε′)

(∣∣
∣(Xk,l)T ε′

∣
∣
∣−λ
)

+
(Xk,l)TXk,l for k, l ∈ Hc,

where ε′ = Y −∑(i,j) �=(k,l) ρ̃ijXi,j and ρ̃ijs are current
estimates at the step for updating the (k, l)-th partial
correlation.
Step 5: Repeat Step 4 until convergence occurs on the
active set �.
Step 6: Update ρ̂(m+1) for 1 ≤ i < j ≤ p by using the
equations in Step 4. If the maximum difference
between ρ̂(m+1) and ρ̂(m) is less than a
pre-determined tolerance τ , then go to Step 7 with
the estimates ρ̂(m+1). Otherwise, consider
m = m + 1 and go back to Step 3.
Step 7: Update ω̂

(s+1)
ii for i = 1, 2, . . . , p,

1
ω̂

(s+1)
ii

= 1
n

∥
∥
∥
∥
∥
∥
∥
Xi −

∑

j �=i
ρ̂ij,(m+1)

√√
√
√ ω̂

(s)
jj

ω̂
(s)
ii

Xj

∥
∥
∥
∥
∥
∥
∥

2

2
for i = 1, 2, . . . , p.

Step 8: Repeat Step 2 through Step 7 with s = s + 1
until convergence occurs on ω̂iis.



Yu et al. BMC Bioinformatics  (2017) 18:186 Page 7 of 20

Note that the number of iterations of ω̂iis is usually small
for stabilization of the estimates of ρ. In our numeri-
cal study, the estimates of ωiis converge within 10 iter-
ations. Moreover, the inner products such as YTXi,j,
whose complexity is O(np), can efficiently be computed
by rewriting YTXi,j = ∑n

k=1
(√

ωjj/ωii +√ωjj/ωii
)
Xk
i X

k
j ,

whose complexity is O(n). We implemented the R pack-
age espace, which is available from https://sites.google.
com/site/dhyeonyu/software.

Choice of tuning parameters
We have introduced the ESPACE method, which relaxes
the penalty on edges connected to the hub genes (i.e., α <

1) but uses the same penalty on edges connected to non-
hub gene (i.e., α = 1). When no hub genes are involved in
a network, ESPACE is reduced to SPACE. For a given λ,
this modification allows us to find more edges connected
to the hub genes by reducing α. In practice, however, we
do not know the values of λ and α. In this paper, we con-
sider the GIC-type criterion used in [46] for the Gaussian
graphical model to choose the optimal tuning parame-
ters (λ∗,α∗). Let ρ̂

ij
(λ,α) be the (i, j)-th estimate of partial

correlation for given λ and α. The GIC-type criterion is
defined as

GIC(λ,α) =
p∑

i=1

{
n · logRSSi + log log n log(p − 1)

×
∣
∣
∣
{
j : j �= i, ρ̂ij

λ,α �= 0
}∣∣
∣
}
,

where RSSi =
∥
∥
∥
∥
∥
Xi −∑

j �=i
ρ̂
ij
(λ,α)Xj(i)

∥
∥
∥
∥
∥

2

2
and |A| denotes a car-

dinality of a setA.We choose the tuning parameters which
minimize the GIC-type criterion,

(λ∗,α∗) = argmin
λ,α

GIC(λ,α).

Simulation studies
Simulation settings
In this simulation, we consider four real protein-protein
interaction (PPI) networks used in a comparative study
[24], which were partially selected from the human pro-
tein reference database [47]. As mentioned earlier, genes
whose degrees are greater than 7 and above the 0.95
quantile of the degree distribution are thought of as hub
genes. Figure 2 shows the four PPI networks and their
hub genes. Let p be the number of nodes in a network.
We consider the number of samples as p/2 and p and

a b

c d

Fig. 2 The network structures of the four simulated networks. The structure of the real protein-protein interaction networks [47] were used to
construct networks of different sizes by varying the number of references required to support each connection. In the degree distribution, the 0.95
quantile is 7 (connections), so the nodes with more than 7 connections were defined as hub nodes, which are represented as black nodes in the
network structure. a 52 edges among 44 nodes (3 hubs), b 103 edges among 83 nodes (3 hubs), c 290 edges among 231 nodes (8 hubs) and d 837
edges among 612 nodes (33 hubs)

https://sites.google.com/site/dhyeonyu/software
https://sites.google.com/site/dhyeonyu/software
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generate samples from the multivariate normal distribu-
tion with mean 0 and covariance matrix � defined with
(�)ij = (�−1)ij/

√
(�−1)ii(�−1)jj, where � is a concentra-

tion matrix corresponding to a given network structure.
To generate a positive definite concentration matrix, we
use the following procedure as described in [18]:

Step G1: For a given edge set E, we generate an initial
concentration matrix �̃ = (ω̃ij)1≤i,j≤p with

ω̃ij =
⎧
⎨

⎩

1 i = j
0 i �= j, (i, j) /∈ E
∼ Unif (D) i �= j, (i, j) ∈ E

,

where D =[−1,−0.5]∪[0.5, 1].
Step G2: For positive definiteness and symmetry of
the concentration matrix, we define a concentration
matrix � = (ωij)1≤i,j≤p as

� = 1
2

(
A + AT

)
,

where A = (aij)1≤i,j≤p, aij = ω̃ij/(1.5 · di) and
di = ∑

k �=i
|ω̃ik| for i = 1, 2, . . . , p.

Step G3: Set ωii = 1 for i = 1, 2, . . . , p and ωij =
0.1 · sign(ωij) if 0 < |ωij| < 0.1.

With these four networks, we have conducted the
numerical comparisons of the ESPACE and the SPACE
methods, as well as seven other methods including the
other reviewed existing methods and EGLASSO. For the
purpose of fair comparison, we select the optimal model
by the GIC for SPACE, ESPACE, GLASSO, GLASSO-
SF, and EGLASSO. Since there is no specific rule for the
model selection in the other methods, we set the level
α = 0.2 for GeneNet and NS, and the threshold α = 0.03
for PCACMI and CMI2NI. Note that the pre-determined
level α = 0.2 is a default of the GeneNet package and
used in [35]. The pre-determined threshold α = 0.03 was
used in [21, 22].
Note that all the existing methods need O(p2) memory

space to store and calculate values corresponding to the
interactions between variables. We can reduce this mem-
ory consumption when the whole variables can be divided
into several conditionally independent blocks by using the
condition described in [16].

Sensitivity analysis on randomnoise in the observed data
To investigate the effect of the random noise contained in
the observed data, we consider sensitivity analysis for the
variance of the random noise. To be specific, suppose that
a random vector X = (X1,X2, . . . ,Xp)T follows the mul-
tivariate normal distribution with mean 0 and covariance
matrix � , a vector of random noise ε = (ε1, ε2, . . . , εp)T
follows the multivariate normal distribution with mean 0
and covariance matrix σ 2

ε I, and X and ε are independent,

where I is the identity matrix. Furthermore, we assume
that an observed random vector Z = (Z1,Z2, . . . ,Zp)T

such that

Z = X + ε. (17)

Thus, the covariance matrix of Z becomes � + σ 2
ε I,

which may have a different conditional dependent struc-
ture to one of X.
For example, if we consider σ 2

ε = 0.5 and the following
� and �Z

� =
⎛

⎝
15/11 −8/11 2/11
−8/11 16/11 −4/11
2/11 −4/11 12/11

⎞

⎠ , �Z = � +σ 2
ε I, (18)

then the inverse matrices of � and �Z are calculated as

�−1 =
⎛

⎝
1 0.5 0

−0.5 1 0.25
0 0.25 1

⎞

⎠ and

�−1
Z =

⎛

⎝
0.63 0.23 −0.02
0.23 0.62 0.12

−0.02 0.12 0.66

⎞

⎠ , respectively.

(19)

Thus, we can see that Z1 and Z3 are conditionally
dependent given Z2 while X1 and X3 are conditionally
independent given X2. Moreover, the nonzero partial cor-
relations decrease when the variance of the random noises
increases. From these observations, the performance of
the estimation becomes worse if the variance of the ran-
dom noise increases.
In this sensitivity analysis, we consider σ 2

ε =
0, 0.01, 0.1, 0.25, 0.5 and p = 231 and n = 115, 231 with
the same network structure as the one of p = 231 in Fig. 2.
To focus on the proposed method, we apply the SPACE
and the ESPACE methods to the 50 generated datasets
containing random noise having variance σ 2

ε .

Performancemeasures
To investigate the gains from the extension, we use
five performance measures: sensitivity (SEN), specificity
(SPE), false discovery rate (FDR), mis-specification rate
(MISR) and Matthews correlation coefficients (MCC).
Note that the MCC, which lies between −1 and +1, has
been used to measure the performance of binary classifi-
cation, where +1, 0, and −1 denote a perfect classifica-
tion, a random classification, and a total discordance of
classification, respectively. Let ρ and ρ̂λ,α be (p(p− 1)/2)-
dimensional vectors of the true and estimated partial
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correlation, respectively. The above five measures are
defined as
SEN ≡ TP/(TP + FN), SPE ≡ TN/(TN + FP),
FDR ≡ FP/(TP + FP), MISR ≡ (FN + FP)/ (p(p − 1)/2) and
MCC ≡ TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
,

where TP = ∑
i<j I(ρij �= 0)I(ρ̂ij

λ,α �= 0), FP =
∑

i<j I(ρij = 0)I(ρ̂ij
λ,α �= 0), FN =∑i<j I(ρij �= 0)I(ρ̂ij

λ,α =
0) and TN =∑i<j I(ρij = 0)I(ρ̂ij

λ,α = 0).

Application to Escherichia coli dataset
We applied the ESPACE method to the largest pub-
lic Escherichia coli (E.coli) microarray dataset available
from the Many Microbe Microarrays database (M3D)
[48]. The M3D contains 907 microarrays measured under
466 experimental conditions using Affymetrix GeneChip
E.coli genome arrays. Microarrays from the same exper-
imental conditions were averaged to derive the mean
expression. The data set (“E_coli_v4_Build_6” from the
M3D) contains the expression levels of 4297 genes from
446 samples. In the E.coli genome, a number of studies
have been conducted to identify transcriptional regula-
tions. The RegulonDB [49] curates the largest and best-
known information on the transcriptional regulation of
E.coli. To combine the information from the above two
databases, we focus on the 1623 genes reported in both the
M3D and the RegulonDB. As mentioned before, the TFs
are known to regulate many other genes in the genome
and can be considered potential hubs. To incorporate
the information about the potential hubs, we used a list
of 180 known TF-encoding genes from the RegulonDB.
The RegulonDB also provides 3811 transcriptional inter-
actions among the 1623 genes, which were used as the
gold standard to evaluate the accuracy of the constructed
networks.

Application to lung cancer adenocarcinoma dataset
Lung cancer is the leading cause of death from cancer,
both in the United States and worldwide; it has a 5-year
survival rate of approximately 15% [50]. The progression
and metastasis of lung cancer varies greatly among early
stage lung cancer patients. To customize treatment plans
for individual patients, it is important to identify prog-
nostic or predictive biomarkers, which allows for more
precise classification of lung cancer patients. In this study,
we applied the extended SPACE method to reconstruct
the gene regulatory network in lung cancer. Exploring net-
work structures can facilitate comprehension of biological
mechanisms underlying lung cancer and identification
of important genes that could be potential lung can-
cer biomarkers. We constructed the gene network using
microarray data from 442 lung cancer adenocarcinoma
patients in the Lung Cancer Consortium study [51]. For

detail about preprocessing this dataset, please refer to [7].
First, univariate Cox regression was used to identify the
genes whose expression levels are correlated with patient
survival outcomes, after adjusting for clinical factors such
as study site, age, gender, and stage. The false discov-
ery rate (FDR) was then calculated using a Beta-Uniform
model [52]. By controlling the FDR to less than 10%, we
identified 794 genes that were associated with the sur-
vival outcome of lung cancer patients. Among these 794
genes, 22 were found to appear among the 236 carefully
curated cancer genes of the FoundationOneTM gene panel
(Foundation Medicine, Inc.). Current biological knowl-
edge indicates genes from this panel play a key role in
various types of cancer. These 22 genes were then input as
known hub genes to the ESPACE method.

Results and discussion
Simulation results
Comparison results for existingmethods
For each network, we generated 50 datasets and recon-
structed the network from each dataset using nine dif-
ferent network construction methods, including both the
SPACE and the ESPACE methods. In addition to the five
performance measures, we also measure the computation
time (Time) of each method to compare the efficiency.
Note that all methods are executed on R software [53] for
the purpose of fair comparison. We implemented the R
codes for PCACMI and CMI2NI using the authors’ MAT-
LAB codes. The computation times are measured in CPU
time (seconds) by using a desktop PC (Intel Core(TM)
i7-4790K CPU (4.00 GHz) and 32 GB RAM).
Tables 1, 2, 3 and 4 report the averages and standard

errors of the number of the estimated edges, the five
performance measures of the estimation of the network
structures and computation times with the optimal tun-
ing parameter λ∗ for SPACE, GLASSO, GLASSO-SF; the
optimal tuning parameters α∗ and λ∗ for ESPACE and
EGLASSO; and the pre-determined α for GeneNet, NS,
PCACMI, and CMI2NI.
Overall, ESPACE has the best performance in estimat-

ing network structures in terms of theMCC and theMISR
except for the case (p, n) = (83, 41), where ESPACE has
the second smallest FDR while the MCC and the MISR
of ESPACE show the moderate performance among all
methods. In the case (p, n) = (83, 41), the CMI-based
methods have better performance than the others in terms
of the MCC and the MISR, but the CMI-based meth-
ods also have the large FDRs (≈ 41%) more than double
of those of the other methods. As we described in the
Methods Section, the MCC has been used to measure
the performance of binary classification and the MISR
denotes the total error rate. Thus, this comparison results
show that ESPACE is favorable for the identification of
edges for the networks with high-dimensional data.
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Table 1 The averages of the number of estimated edges, the five performance measures and the computation time (sec.) over 50
datasets

p n Method |Ê| SEN SPE FDR MISR MCC Time

44 22 GeneNet 0.80 1.00 99.97 4.38 5.47 3.25 0.02

(|E| = 52) (0.31) (0.37) (0.02) (2.05) (0.01) (1.06) (0.00)

NS 0.66 1.19 100.00 2.50 5.44 6.65 0.03

(0.13) (0.23) (0.00) (2.05) (0.01) (1.16) (0.00)

SPACE 10.48 12.50 99.55 33.38 5.23 24.58 0.01

(1.21) (1.32) (0.07) (3.40) (0.05) (1.69) (0.00)

ESPACE 12.06 16.50 99.61 23.62 4.96 31.46 0.00

(1.12) (1.33) (0.06) (2.52) (0.05) (1.67) (0.00)

GLASSO 6.64 6.88 99.66 33.86 5.44 17.98 0.00

(0.95) (0.66) (0.08) (4.12) (0.06) (1.19) (0.00)

GLASSO-SF 7.14 6.77 99.60 32.51 5.51 17.39 0.04

(1.20) (0.70) (0.10) (4.11) (0.07) (1.12) (0.00)

EGLASSO 6.34 8.65 99.79 26.36 5.22 22.14 0.00

(0.74) (0.96) (0.04) (3.47) (0.04) (1.49) (0.00)

PCACMI 55.60 33.15 95.71 68.93 7.73 27.98 0.21

(0.62) (0.73) (0.07) (0.65) (0.08) (0.71) (0.01)

CMI2NI 59.34 35.38 95.42 68.92 7.88 28.97 0.50

(0.73) (0.70) (0.07) (0.57) (0.08) (0.63) (0.07)

44 GeneNet 9.28 13.58 99.75 12.19 4.99 29.73 0.02

(1.32) (1.48) (0.07) (2.11) (0.05) (1.61) (0.00)

NS 4.16 7.65 99.98 3.48 5.10 25.92 0.03

(0.23) (0.42) (0.01) (1.26) (0.02) (0.75) (0.00)

SPACE 27.28 37.38 99.12 25.79 4.27 48.78 0.01

(1.50) (1.73) (0.08) (1.47) (0.07) (1.71) (0.00)

ESPACE 23.12 34.38 99.41 20.03 4.16 50.01 0.00

(1.20) (1.36) (0.07) (1.47) (0.06) (0.94) (0.00)

GLASSO 11.32 13.12 99.50 26.48 5.25 27.20 0.00

(1.35) (1.08) (0.10) (3.03) (0.05) (0.99) (0.00)

GLASSO-SF 13.62 14.38 99.31 30.92 5.36 26.77 0.04

(1.52) (1.23) (0.11) (3.22) (0.07) (1.16) (0.00)

EGLASSO 14.34 22.38 99.70 16.31 4.55 39.94 0.00

(1.10) (1.63) (0.04) (1.81) (0.07) (1.73) (0.00)

PCACMI 26.70 34.00 98.99 33.39 4.58 45.47 0.18

(0.44) (0.70) (0.05) (1.28) (0.07) (0.89) (0.00)

CMI2NI 28.84 35.50 98.84 35.75 4.64 45.54 0.27

(0.48) (0.67) (0.04) (0.96) (0.06) (0.74) (0.01)

The reported values for the SEN, SPE, FDR, MISR and MCC were multiplied by 100. Numbers in the parentheses denote the standard errors
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Table 2 The averages of the number of estimated edges, the five performance measures and the computation time (sec.) over 50
datasets

p n Method |Ê| SEN SPE FDR MISR MCC Time

83 41 GeneNet 6.04 5.32 99.98 6.57 2.88 19.21 0.05

(|E| = 103) (0.61) (0.52) (0.00) (1.64) (0.01) (1.46) (0.00)

NS 2.36 2.21 100.00 2.83 2.96 13.29 0.09

(0.20) (0.19) (0.00) (1.42) (0.01) (0.82) (0.01)

SPACE 4.62 4.04 99.99 6.41 2.92 16.18 0.03

(0.79) (0.64) (0.00) (2.36) (0.02) (1.40) (0.00)

ESPACE 7.28 6.37 99.98 5.75 2.86 21.04 0.01

(0.94) (0.78) (0.01) (1.38) (0.02) (1.55) (0.00)

GLASSO 11.40 8.78 99.93 16.81 2.83 25.48 0.00

(0.87) (0.59) (0.01) (2.05) (0.01) (0.88) (0.00)

GLASSO-SF 9.90 7.53 99.94 16.30 2.86 23.44 0.12

(0.81) (0.53) (0.01) (2.08) (0.01) (0.84) (0.00)

EGLASSO 11.28 8.89 99.94 15.36 2.82 25.93 0.00

(0.86) (0.59) (0.01) (1.86) (0.01) (0.88) (0.00)

PCACMI 48.44 27.24 99.38 41.86 2.80 38.52 0.54

(0.82) (0.55) (0.02) (1.00) (0.03) (0.68) (0.01)

CMI2NI 48.72 27.88 99.39 40.82 2.77 39.35 0.54

(0.85) (0.55) (0.02) (0.96) (0.03) (0.65) (0.01)

83 GeneNet 34.74 31.17 99.92 7.05 2.16 52.97 0.06

(0.83) (0.61) (0.01) (0.74) (0.02) (0.50) (0.00)

NS 15.14 14.52 99.99 1.07 2.59 37.20 0.15

(0.43) (0.41) (0.00) (0.38) (0.01) (0.55) (0.01)

SPACE 51.84 41.03 99.71 16.81 2.07 56.67 0.05

(1.95) (1.28) (0.02) (1.06) (0.03) (1.11) (0.00)

ESPACE 52.34 42.45 99.74 15.42 2.00 58.82 0.03

(1.46) (0.86) (0.02) (0.96) (0.02) (0.54) (0.00)

GLASSO
27.98 23.24 99.88 12.57 2.44 43.63 0.00

(1.33) (0.96) (0.02) (1.32) (0.03) (0.97) (0.00)

GLASSO-SF 28.04 22.82 99.86 14.53 2.47 42.86 0.13

(1.31) (0.90) (0.02) (1.41) (0.02) (0.89) (0.00)

EGLASSO 30.06 26.17 99.91 8.91 2.33 47.48 0.00

(1.33) (1.03) (0.01) (1.15) (0.03) (1.01) (0.00)

PCACMI 28.44 25.96 99.95 6.09 2.29 48.66 0.56

(0.44) (0.49) (0.01) (0.79) (0.02) (0.61) (0.00)

CMI2NI 28.66 26.76 99.97 3.85 2.25 50.02 0.54

(0.45) (0.46) (0.01) (0.61) (0.02) (0.53) (0.01)

The reported values for the SEN, SPE, FDR, MISR and MCC were multiplied by 100. Numbers in the parentheses denote the standard errors
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Table 3 The averages of the number of estimated edges, the five performance measures and the computation time (sec.) over 50
datasets

p n Method |Ê| SEN SPE FDR MISR MCC Time

231 115 GeneNet 115.98 38.39 99.98 3.94 0.69 60.46 0.56

(|E| = 290) (1.27) (0.39) (0.00) (0.26) (0.00) (0.30) (0.01)

NS 54.28 18.71 100.00 0.04 0.89 42.99 0.34

(0.85) (0.29) (0.00) (0.04) (0.00) (0.34) (0.01)

SPACE 160.38 46.90 99.91 14.78 0.67 62.85 0.36

(2.39) (0.43) (0.01) (0.69) (0.00) (0.28) (0.01)

ESPACE 172.74 49.41 99.89 16.95 0.66 63.74 0.13

(1.58) (0.39) (0.00) (0.41) (0.00) (0.31) (0.00)

GLASSO 85.78 28.26 99.99 3.87 0.80 51.25 0.03

(3.64) (1.12) (0.00) (0.41) (0.01) (1.03) (0.00)

GLASSO-SF 76.64 25.19 99.99 4.03 0.83 48.31 1.06

(3.26) (1.01) (0.00) (0.46) (0.01) (0.98) (0.02)

EGLASSO 86.50 28.63 99.99 3.51 0.79 51.71 0.04

(3.54) (1.11) (0.00) (0.39) (0.01) (1.05) (0.00)

PCACMI 73.42 25.14 100.00 0.72 0.82 49.70 4.16

(0.94) (0.33) (0.00) (0.14) (0.00) (0.34) (0.05)

CMI2NI 73.42 25.17 100.00 0.62 0.82 49.75 6.25

(0.94) (0.33) (0.00) (0.13) (0.00) (0.34) (0.07)

231 GeneNet 173.78 56.66 99.96 5.38 0.51 72.99 0.74

(1.21) (0.28) (0.00) (0.30) (0.00) (0.18) (0.01)

NS 128.10 44.15 100.00 0.05 0.61 66.22 0.97

(0.54) (0.19) (0.00) (0.03) (0.00) (0.14) (0.01)

SPACE 235.54 68.37 99.86 15.62 0.49 75.68 0.60

(2.20) (0.35) (0.01) (0.50) (0.00) (0.22) (0.00)

ESPACE 235.86 69.35 99.87 14.55 0.47 76.72 0.23

(1.99) (0.32) (0.01) (0.49) (0.00) (0.23) (0.01)

GLASSO 222.38 64.97 99.87 15.00 0.51 74.00 0.07

(2.62) (0.47) (0.01) (0.54) (0.00) (0.20) (0.00)

GLASSO-SF 176.66 56.42 99.95 7.12 0.52 72.13 0.70

(2.11) (0.35) (0.01) (0.52) (0.00) (0.24) (0.02)

EGLASSO 222.86 65.68 99.88 14.26 0.50 74.74 0.09

(2.57) (0.46) (0.01) (0.54) (0.00) (0.21) (0.01)

PCACMI 74.28 25.61 100.00 0.02 0.81 50.36 6.23

(0.79) (0.27) (0.00) (0.02) (0.00) (0.27) (0.13)

CMI2NI 74.28 25.61 100.00 0.02 0.81 50.36 7.99

(0.79) (0.27) (0.00) (0.02) (0.00) (0.27) (0.11)

The reported values for the SEN, SPE, FDR, MISR and MCC were multiplied by 100. Numbers in the parentheses denote the standard errors
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Table 4 The averages of the number of estimated edges, the five performance measures and the computation time (sec.) over 50
datasets

p n Method |Ê| SEN SPE FDR MISR MCC Time

612 306 GeneNet 597.72 55.42 99.93 22.24 0.27 65.49 3.91

(|E| = 837) (4.89) (0.22) (0.00) (0.41) (0.00) (0.15) (0.03)

NS 343.52 41.00 100.00 0.10 0.26 63.91 5.72

(0.86) (0.10) (0.00) (0.03) (0.00) (0.08) (0.07)

SPACE 781.04 66.72 99.88 28.21 0.27 69.02 16.57

(8.90) (0.31) (0.00) (0.55) (0.00) (0.22) (0.14)

ESPACE 765.50 67.36 99.89 26.22 0.25 70.35 3.69

(5.95) (0.29) (0.00) (0.41) (0.00) (0.22) (0.05)

GLASSO 1097.32 65.66 99.71 49.86 0.45 57.15 4.86

(6.08) (0.18) (0.00) (0.25) (0.00) (0.17) (0.37)

GLASSO-SF 1069.56 60.67 99.70 52.38 0.48 53.45 29.36

(14.93) (0.64) (0.01) (0.29) (0.00) (0.27) (1.85)

EGLASSO 1042.64 67.86 99.74 45.43 0.40 60.63 7.59

(8.54) (0.34) (0.00) (0.28) (0.00) (0.18) (0.65)

PCACMI 272.08 27.40 99.98 15.70 0.35 47.94 42.09

(0.99) (0.11) (0.00) (0.24) (0.00) (0.14) (1.41)

CMI2NI 297.72 29.12 99.97 18.12 0.35 48.70 68.89

(1.19) (0.11) (0.00) (0.22) (0.00) (0.13) (1.71)

612 GeneNet 727.94 68.80 99.92 20.80 0.22 73.69 5.56

(4.53) (0.20) (0.00) (0.32) (0.00) (0.13) (0.06)

NS 453.50 54.14 100.00 0.08 0.21 73.47 25.69

(1.19) (0.14) (0.00) (0.02) (0.00) (0.10) (0.38)

SPACE 983.38 84.01 99.85 28.39 0.22 77.43 62.72

(6.38) (0.24) (0.00) (0.34) (0.00) (0.17) (1.41)

ESPACE 983.84 84.96 99.85 27.66 0.21 78.28 17.86

(4.88) (0.19) (0.00) (0.27) (0.00) (0.14) (0.63)

GLASSO 1467.52 85.61 99.60 51.15 0.47 64.47 29.86

(5.04) (0.11) (0.00) (0.17) (0.00) (0.12) (1.21)

GLASSO-SF 1615.16 85.60 99.52 55.61 0.55 61.42 117.78

(6.56) (0.13) (0.00) (0.17) (0.00) (0.13) (3.68)

EGLASSO 1385.60 87.87 99.65 46.89 0.40 68.14 38.67

(5.37) (0.12) (0.00) (0.20) (0.00) (0.14) (1.35)

PCACMI 273.22 27.68 99.98 15.20 0.35 48.33 39.25

(0.98) (0.11) (0.00) (0.17) (0.00) (0.12) (0.59)

CMI2NI 298.38 29.55 99.97 17.10 0.34 49.37 59.62

(0.97) (0.09) (0.00) (0.11) (0.00) (0.09) (0.84)

The reported values for the SEN, SPE, FDR, MISR and MCC were multiplied by 100. Numbers in the parentheses denote the standard errors
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In addition, we made several interesting observations
from the results of the our simulation study. First, ESPACE
and EGLASSO improve SPACE and GLASSO in terms
of the FDR, the MISR, and the MCC for almost scenar-
ios, respectively. The only exception is the case (p, n) =
(231, 115) for the ESPACE and the SPACE methods.
In this case, although the FDR of ESPACE increases
2.17% compared to one of SPACE, ESPACE still improves
SPACE in terms of the SEN, the MISR, and the MCC.
This suggests that our proposed strategy, which incorpo-
rates the previously known hub information, can reduce
the errors in estimating network structures compared
to the existing method without considering known hub
information. Second, GeneNet controls the FDR relatively
close to the given level α while the FDRs of NS are con-
trolled conservatively. For instance, the FDRs of GeneNet
are measured between 3.94 and 22.24% and NS has the
FDRs less than 3.48%. Note that GeneNet and NS control
the FDR under 20% (α = 0.2) in this simulation study.
Third, all methods except the CMI-based methods (the
PCACMI and the CMI2NI) have similar efficiency for the
relatively low dimensions (p = 44, 83). The CMI-based
methods are relatively slower than the other methods for
all the scenarios except for the case (p, n) = (612, 612),
where GLASSO-SF is the slowest and 1.4 times slower
than CMI2NI. CMI2NI is slightly slower than PCACMI
for the relatively high dimensions (p = 231, 612). Finally,
even though ESPACE is not the fastest method among
the nine methods we consider, there is no overall winner
and ESPACE is the third best in terms of the computa-
tion time for p = 231, 612 except for the case (p, n) =
(612, 612)where ESPACE is faster than SPACE, GLASSO-
SF, PCACMI and CMI2NI.

To investigate the other property of the proposed
approach, we depict barplots of the averages of degrees of
known hub genes over 50 datasets for ESPACE and SPACE
in Fig. 3. Figure 3 shows that ESPACE tends to find more
edges connected to known hub genes than SPACE. The
only exception is the case (p, n) = (612, 306), where the
average by the ESPACE is 0.57 less than that by SPACE.
We conjecture this is simply due the difference in the
number of estimated edges, which by ESPACE is 15.54 less
than that of SPACE on average. This property is due to
the result that the averages of α∗ selected by the GIC in
the ESPACE method lie between 0.76 and 0.97 for all the
scenarios, which indicates that ESPACE has incorporated
prior information about the hub genes and reduced the
penalty on edges connected to known hub genes.

Results of sensitivity analysis on randomnoise
Table 5 reports the averages of the number of the esti-
mated edges and the five performancemeasures. From the
results in Table 5, we can see that the performance of esti-
mation decreases when the variance of the random noises
increases in both the SPACE and the ESPACE. For a rela-
tively small sample size (n = 115), both the SPACE and the
ESPACE are more sensitive to the variance σ 2

ε compared
to the case of n = 231. Even though the performance of
twomethods decreases by similar amounts as the variance
σ 2

ε increases, the ESPACE has better performance than
the SPACE in terms of the MCC and the MISR.

Comparison of the identified GRNs in Escherichia coli
dataset
In this study, we compared the performance of network
construction using the SPACE and the ESPACE methods
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Fig. 3 Plots of the averages of degrees of hub nodes over the simulated 50 datasets. Vertical lines denote 95% confidence intervals of the averages
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Table 5 The averages of the number of estimated edges and the five performance measures over 50 datasets

p n σ 2
ε Method |Ê| SEN SPE FDR MISR MCC

231 115 0 SPACE 160.38 46.90 99.91 14.78 0.67 62.85

(|E| = 290) (2.39) (0.43) (0.01) (0.69) (0.00) (0.28)

ESPACE 172.74 49.41 99.89 16.95 0.66 63.74

(1.58) (0.39) (0.00) (0.41) (0.00) (0.31)

0.01 SPACE 156.00 45.97 99.91 14.06 0.68 62.45

(2.79) (0.57) (0.01) (0.66) (0.00) (0.33)

ESPACE 153.16 45.79 99.92 12.85 0.67 62.78

(2.64) (0.55) (0.01) (0.67) (0.00) (0.34)

0.1 SPACE 106.08 32.61 99.96 9.15 0.78 53.07

(5.11) (1.41) (0.00) (0.80) (0.01) (1.21)

ESPACE 104.30 32.31 99.96 8.64 0.78 53.15

(4.96) (1.37) (0.00) (0.73) (0.01) (1.10)

0.25 SPACE 44.76 14.81 99.99 3.63 0.94 37.27

(1.75) (0.54) (0.00) (0.42) (0.01) (0.62)

ESPACE 49.14 16.12 99.99 4.59 0.92 38.79

(1.47) (0.45) (0.00) (0.41) (0.00) (0.53)

0.5 SPACE 55.88 14.97 99.95 22.20 0.98 33.81

(0.90) (0.25) (0.00) (0.72) (0.00) (0.37)

ESPACE 57.34 15.32 99.95 22.49 0.97 34.14

(1.03) (0.31) (0.00) (0.69) (0.00) (0.44)

231 0 SPACE 235.54 68.37 99.86 15.62 0.49 75.68

(2.20) (0.35) (0.01) (0.50) (0.00) (0.22)

ESPACE 235.86 69.35 99.87 14.55 0.47 76.72

(1.99) (0.32) (0.01) (0.49) (0.00) (0.23)

0.01 SPACE 230.90 67.54 99.87 15.00 0.49 75.50

(2.11) (0.34) (0.01) (0.46) (0.00) (0.21)

ESPACE 231.86 68.54 99.87 14.05 0.47 76.49

(2.21) (0.33) (0.01) (0.55) (0.01) (0.24)

0.1 SPACE 214.30 62.28 99.87 15.48 0.54 72.25

(2.22) (0.37) (0.01) (0.53) (0.00) (0.25)

ESPACE 214.04 63.22 99.88 14.07 0.52 73.41

(2.33) (0.35) (0.01) (0.56) (0.00) (0.22)

0.25 SPACE 184.76 54.10 99.89 14.77 0.61 67.57

(2.38) (0.43) (0.01) (0.60) (0.00) (0.27)

ESPACE 181.02 54.52 99.91 12.53 0.58 68.78

(1.42) (0.27) (0.00) (0.42) (0.00) (0.21)

0.5 SPACE 112.28 35.38 99.96 7.89 0.74 56.55

(3.23) (0.82) (0.00) (0.61) (0.01) (0.54)

ESPACE 123.06 38.58 99.96 8.48 0.71 58.98

(2.80) (0.65) (0.00) (0.60) (0.00) (0.37)

The reported values for the SEN, SPE, FDR, MISR and MCC were multiplied by 100. Numbers in the parentheses denote the standard errors
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for the model selected by the GIC. We report the num-
ber of estimated edges and the true positives, which are
matched to the transcriptional interactions in the Reg-
ulonDB, in Table 6. The SPACE method estimated 368
edges among 524 genes, which contain 16 TF-encoding
genes, and identified 16 transcriptional interactions as
true positives. In comparison, the ESPACE method esti-
mated 349 edges among 478 genes containing 29 TF-
encoding genes and found 45 transcriptional interactions
in the RegulonDB. The ESPACE method found more
interactions than the SPACE method and increased the
ratio of the number of TPs versus the number of estimated
edges as 8.55%. Figure 4 shows the number of TPs vs. the
number of estimated edges for various λ values with α∗
in Table 6. The number of TPs of the ESPACE method is
consistently greater than those of the SPACE method at
similar sparsity. These results clearly indicate that incor-
porating potential hub gene information improves the
accuracy of network construction.

Comparison of the identified GRNs in lung cancer
adenocarcinoma dataset
We again compared the performances of network con-
struction using the SPACE and the ESPACE methods. An
overview of the networks constructed using both meth-
ods is shown in Fig. 5. The SPACE method estimated 234
edges between 114 genes and the ESPACE method found
272 edges between 132 genes. Although the numbers of
estimated edges from both the SPACE and ESPACEmeth-
ods are quite similar, 16.7 and 28.3% of the estimated
edges in networks by the SPACE and the ESPACE are
different, respectively. We identified hub genes using the
criterion mentioned at the beginning of this paper. The
lists of hub genes identified in both networks are reported
in Table 7. Interestingly, all hub genes identified by the
SPACE method were also found using ESPACE. Note that
this is not the usual case. For instance, if we define a
hub as a node whose degree is greater than 5, the set of
hub genes identified by the SPACE is not a subset of the
hub genes identified by the ESPACE. To investigate the
gains of the ESPACE method, therefore, we focused on
the hub genes identified only by ESPACE (AURKA, APC,
CDKN3), among which, AURKA and APC are among the
22 pre-specidifed hub genes while CDKN3 is not.

Table 6 Summary of the estimated networks using the SPACE
and ESPACE methods from the E.coli dataset. We denote a set of
estimated edges and a set of the interactions from the
RegulonDB by Ê and T, respectively

Method α∗ λ∗ |̂E| |̂E⋂ T| |̂E⋂ T|/|̂E|
SPACE 1 806.6 368 16 4.35%

ESPACE 0.85 835.2 349 45 12.89%
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Fig. 4 Plot of the number of the TPs vs. the number of the estimated
edges for various λs with α∗ in Table 6

The CDKN3 (Cyclin-Dependent Kinase Inhibitor 3)
protein coded by the CDKN3 gene is a cyclin-dependent
kinase inhibitor. Recent studies [54, 55] show that CDKN3
overexpression was associated with poorer survival
outcomes in lung adenocarcinoma, but not in lung
squamous cell carcinoma. We validated that CDKN3 is
associated with the prognosis of lung adenocarcinoma
patients in two independent datasets (see Fig. 6). The
CDKN3 expression allowed us to separate the lung ade-
nocarcinoma patients into high CDKN3 and low CDKN3
groups with significantly different survival outcomes: in
the GSE13213 dataset [56] (n = 117), hazard ratio = 2.02
(high CDKN3 vs. low CDKN3), p=0.0146; in the GSE1037
dataset [57] (n = 61), hazard ratio= 3.39 (high CDKN3 vs.
lowCDKN3), p=0.0126. Note that we divided patients into
“high” and “low” groups by their gene expression levels
with the K-means clustering method.
APC (Adenomatous Polyposis Coli) is a tumor suppres-

sor gene, and is involved in the Wnt signaling pathway
as a negative regulator. It has been identified as one of
the key mutation genes in lung adenocarcinoma by a
comprehensive study on the somatic mutations in lung
adenocarcinoma [58]. AURKA (aurora kinase A) is a
protein-coding gene found to be associated withmany dif-
ferent types of cancer. Aurora kinase inhibitors have been
studied as a potential cancer treatment [59]. Using the
GSE42127 dataset [7] (n = 209), we found that AURKA
expression can predict lung cancer patients’ response to
chemotherapy. The dataset contains expression profiles
and treatment information for 209 lung cancer patients
from MD Anderson Cancer Center, among whom 62
received adjuvant chemotherapy (ACT group) and the
remaining 147 did not (no ACT group). The AURKA gene
expression allowed us to separate the 209 patients into a
low AURKA group (n = 104) and high AURKA group
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Fig. 5 Estimated networks structure using the SPACE and ESPACE methods. The nodes with more than 7 connections (the 0.95 quantile in the
degree distribution) were defined as hub nodes, which are represented as black nodes in the network structure. The details of hub genes are
reported in Table 7. a SPACE (114 nodes, 234 edges) and b ESPACE (132 nodes, 272 edges)

(n = 105) using the median AURKA expression as a
cut-off. The patients in the low AURKA group (Fig. 7a)
showed significant improvement in survival after ACT:
hazard ratio = 0.289 (ACT vs. no ACT) and p value =
0.0312. The patients in the high AURKA group (Fig. 7b),
on the other hand, showed no significant survival benefit
after ACT: hazard ratio = 0.679 (ACT vs. no ACT) and p

Table 7 Hub genes from the estimated graphs using the SPACE
and ESPACE methods

SPACE ESPACE

No. Gene Degree No. Gene Degree

1 PRC1 26 1 AURKA 36

2 RRM2 17 2 NKX2-1 35

3 GPR116 16 3 RRM2 18

4 NKX2-1 16 4 CYP2B7P1 16

5 CYP2B7P1 15 5 GPR116 16

6 SFTPB 15 6 SFTPB 15

7 HOP 13 7 HOP 12

8 C1orf116 12 8 HSD17B6 11

9 HSD17B6 12 9 PRC1 11

10 TFF1 12 10 TFF1 11

11 CD302 10 11 C1orf116 10

12 FMO5 10 12 CD302 10

13 TPX2 8 13 FMO5 10

14 UBE2C 10

15 APC 8

16 CDKN3 8

17 TPX2 8

Bold font denotes the genes only identified by the modified method

value = 0.241. These results indicate that AURKA expres-
sion could potentially be a predictive biomarker for lung
cancer adjuvant chemotherapy, since only patients with
low AURKA expression benefit from the treatment, while
those with high AURKA expression are less likely to bene-
fit. In addition, it is possible that Aurora kinase inhibitors,
which suppress the expression of AURKA genes, may syn-
ergize the effect of adjuvant chemotherary, i.e. improve
the chance that a patient responds to adjuvant chemother-
apy. In fact, a recent study has demonstrated that Aurora
kinase inhibitors may synergize the effect of adjuvant
chemotherapy in ovarian cancer, which is consistent with
our results in lung cancer.

Conclusions
We have demonstrated incorporating hub gene informa-
tion in estimating network structures by extending SPACE
with an additional tuning parameter. Our simulation study

Fig. 6 Kaplan-Meier curves for the CDKN3 gene from GSE13213 and
GSE1037 datasets. For each gene, we divide patients into two groups,
“High” and “Low”, by their gene expression levels with the K-means
clustering method. Red solid lines denote the “High” group and black
dashed lines denote the “Low” group. a CDKN3 (GSE13213 dataset)
and b CDKN3 (GSE1037 dataset)
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Fig. 7 Kaplan-Meier curves for low and high groups of the AURKA
gene expression in GSE42127 dataset [7]. The AURKA expression
separates the 209 lung cancer patients into two groups. In the AURKA
low expression group (left panel), lung cancer patients with ACT
(green line) have significantly longer survival time than patients
without ACT (observational group, purple line). In the AURKA high
expression group (right panel), patients with ACT do not have
significant survival benifit compared to patients without ACT. a lower
expression group. b high expression group

shows that the ESPACEmethod reduces errors in the con-
struction of networks when the networks have previously-
known hub nodes. Through two applications, we illustrate
that the ESPACEmethod can improve the SPACEmethod
by using the information about the potential hub genes.
Although we adopted the GIC to select the optimal tuning
parameters in this paper, the ESPACEmethod can directly
be applied with other model selection criteria. The perfor-
mance of the ESPACE method varies with the chosen cri-
terion. However, the performance of the ESPACE method
is at least comparable to the SPACE method since the
ESPACE includes the SPACE as a reduced case.
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