
SOFTWARE Open Access

A fast and efficient python library for
interfacing with the Biological Magnetic
Resonance Data Bank
Andrey Smelter1,2, Morgan Astra5 and Hunter N. B. Moseley3,4,5,6*

Abstract

Background: The Biological Magnetic Resonance Data Bank (BMRB) is a public repository of Nuclear Magnetic
Resonance (NMR) spectroscopic data of biological macromolecules. It is an important resource for many researchers
using NMR to study structural, biophysical, and biochemical properties of biological macromolecules. It is primarily
maintained and accessed in a flat file ASCII format known as NMR-STAR. While the format is human readable, the
size of most BMRB entries makes computer readability and explicit representation a practical requirement for almost
any rigorous systematic analysis.

Results: To aid in the use of this public resource, we have developed a package called nmrstarlib in the popular
open-source programming language Python. The nmrstarlib’s implementation is very efficient, both in design and
execution. The library has facilities for reading and writing both NMR-STAR version 2.1 and 3.1 formatted files, parsing
them into usable Python dictionary- and list-based data structures, making access and manipulation of the
experimental data very natural within Python programs (i.e. “saveframe” and “loop” records represented as
individual Python dictionary data structures). Another major advantage of this design is that data stored in
original NMR-STAR can be easily converted into its equivalent JavaScript Object Notation (JSON) format, a
lightweight data interchange format, facilitating data access and manipulation using Python and any other
programming language that implements a JSON parser/generator (i.e., all popular programming languages).
We have also developed tools to visualize assigned chemical shift values and to convert between NMR-STAR
and JSONized NMR-STAR formatted files. Full API Reference Documentation, User Guide and Tutorial with
code examples are also available.
We have tested this new library on all current BMRB entries: 100% of all entries are parsed without any errors
for both NMR-STAR version 2.1 and version 3.1 formatted files. We also compared our software to three currently
available Python libraries for parsing NMR-STAR formatted files: PyStarLib, NMRPyStar, and PyNMRSTAR.

Conclusions: The nmrstarlib package is a simple, fast, and efficient library for accessing data from the BMRB. The
library provides an intuitive dictionary-based interface with which Python programs can read, edit, and write NMR-STAR
formatted files and their equivalent JSONized NMR-STAR files. The nmrstarlib package can be used as a library for
accessing and manipulating data stored in NMR-STAR files and as a command-line tool to convert from NMR-STAR file
format into its equivalent JSON file format and vice versa, and to visualize chemical shift values. Furthermore, the
nmrstarlib implementation provides a guide for effectively JSONizing other older scientific formats, improving the
FAIRness of data in these formats.

Keywords: Biological Magnetic Resonance Bank, Nuclear magnetic resonance, NMR-STAR, JSON, nmrstarlib, Python

* Correspondence: hunter.moseley@uky.edu
3Department of Molecular and Cellular Biochemistry, University of Kentucky,
Lexington, KY 40356, USA
4Markey Cancer Center, University of Kentucky, Lexington, KY 40356, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Smelter et al. BMC Bioinformatics (2017) 18:175
DOI 10.1186/s12859-017-1580-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1580-5&domain=pdf
mailto:hunter.moseley@uky.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Background
The Biological Magnetic Resonance Data Bank (BMRB)
is a free, publicly-accessible repository of data on pep-
tides, proteins, and nucleic acids obtained through NMR
Spectroscopy [1], that is part of the worldwide Protein
Databank (wwPDB) [2]. It currently consists of more
than 11,000 individual NMR-STAR file entries, contain-
ing a wide range of NMR spectral data, experimental de-
tails, and biochemical data collected from thousands of
biological samples. The NMR-STAR format is based on
the Self-defining Text Archival and Retrieving (STAR)
flat file database format [3], with some modifications
specific to the BMRB. STAR provides a hierarchical dic-
tionary structure for storing arbitrary data. In NMR-
STAR, the format specifies top-level dictionaries called
“saveframes”, which are used to categorize the data and
meta-data about the experiment. Inside each saveframe
is an arbitrarily number of key-value pairs and tables of
records (loops). The key-value pairs store a single piece
of information under a descriptive variable name. Each
loop stores a table of records, each record containing a

set of values representing individual fields in the record.
There are currently two active versions of the BMRB:
version 2.1 and version 3.1. While they both use the
same NMR-STAR format at the most general level, the
layout of the data in the two formats is different.
Python is a free, open-source scripting language which

runs on all major operating systems [4, 5]. It is designed
to facilitate the development and maintenance of simple,
efficient, and readable code. Python has object-oriented
programming facilities and includes several high-level
data structure objects in its standard library. Among
these are the dictionary, a data structure implemented
via the dict class that stores data as a set of key-value
pairs (specific mappings between keys and values). The
OrderedDict class is identical to the dict class ex-
cept that the order of inserted keys-value pairs is re-
membered. This is particularly useful for categorical
data with sequential relationships. The dictionary data
structure is the most straightforward mechanism for
representing and using data from NMR-STAR files,
which have a nested, mostly dictionary-like structure

Fig. 1 Organization of the nmrstarlib package version 1.1.0. a UML package diagram of the nmrstarlib library; b UML class diagram of the
bmrblex.py (bmrblex.pyx) module; c UML class diagram of the nmrstarlib.py module; d UML class diagram of the converter.py module; e UML class
diagram of the csviewer.py module

Smelter et al. BMC Bioinformatics (2017) 18:175 Page 2 of 12

themselves. However, to our knowledge no NMR-STAR
parsing library using this design exists. The newest
major version of Python (version 3.0.0), was initially re-
leased on 2008-12-03, however many software libraries
and utilities written in Python still use Python version
2.x exclusively. As Python version 3.1 brings many sub-
stantial improvements over Python 2.x (including the
addition of the OrderedDict class, which was later
back-ported to Python version 2.7 [6]). As of Python ver-
sion 3.5 OrderedDict is implemented in C which
makes it much faster than the Python 2.7 implementa-
tion of OrderedDict. Moreover in Python 3.6, the
dict data structure implementation becomes ordered
by default and dict and OrderedDict are more effi-
cient than in any previous versions of Python. While we
provide support for Python 2.7 for use by legacy code, we
believe that researchers will prefer libraries and tools writ-
ten in latest version of Python in order to develop main-
tainable codebases, especially as Python version 2.x
becomes less supported over time. Moreover, Python ver-
sion 2.7 will no longer be maintained after Spring of 2020
[7]. Two publically available Python libraries for parsing
NMR-STAR format files PyStarLib [8] and NMRPyStar [9]
both require Python version 2.7. PyNMRSTAR [10] works
with both major versions of Python (2.7 and 3.3+).

Implementation
The nmrstarlib package consists of several modules:
nmrstarlib.py, bmrblex.py, converter.py, and
csviewer.py (Fig. 1a). The nmrstarlib module
(Fig. 1c) provides the StarFile class, which implements
a nested Python dictionary/list representation of a BMRB
NMR-STAR file. Once a NMR-STAR formatted file is proc-
essed into a StarFile object, experimental data can be
accessed directly from the StarFile object, using bracket
accessors as with any regular Python dict object. The
nmrstarlib module relies on the bmrblex module
(Fig. 1b) for processing of tokens. The bmrblex module
provides the bmrblex generator – BMRB lexical analyzer
(parser). We provide two versions of the bmrblex module:
a pure Python version (bmrblex.py) and a Python +C
extension (bmrblex.py, cbmrblex.c) for faster per-
formance. The compiled C extensions are implemented in
the Cython programming language [11], which we will call
the Cython implementaion. If the Cython implementation
of bmrblex fails for any reason, the library will use
the Python implementation, ensuring that the library
always works.
The library creates an internal representation of the

NMR-STAR format as a nesting of OrderedDict objects
with the top-level object StarFile inheriting from the

Fig. 2 Diagram showing what function calls are made during the process of StarFile object creation

Smelter et al. BMC Bioinformatics (2017) 18:175 Page 3 of 12

OrderedDict class (Fig. 1c). This allows the user to ac-
cess data in its original NMR-STAR organization using
familiar Python dictionary syntax. The library provides fa-
cilities to read data from NMR-STAR formatted files into
an internal StarFile object, to access and make modifi-
cations to this StarFile object, and to save the resulting
StarFile object as a new NMR-STAR formatted file. It
is also possible to create NMR-STAR files from scratch
using this library; however, this requires the user to adhere
to the recommended layout for NMR-STAR formatted
files by adding keys and values to the StarFile object in
the appropriate order.

The nmrstarlib module provides a memory-effi-
cient read_files() generator function (Fig. 1c) that
yields (emits) StarFile objects, one at a time for each
file parsed. When reading an NMR-STAR formatted file
(Fig. 2, Additional files 1 and 2), the read_files()
generator function first opens the file and passes a file-
handle to the StarFile.read() method that reads
the text into Python as a string and passes that string
into the bmrblex object that then splits the text into
tokens. As the bmrblex lexical analyzer keeps emitting
valid tokens, the StarFile object is constructed se-
quentially. The StarFile object decides what type of

Fig. 3 Internal StarFile object representation and correspondence to NMR-STAR format without comments: a An example of a NMR-STAR formatted
file; b StarFile dictionary representation equivalent to the NMR-STAR formatted file and the JSONized version of the NMR-STAR file

Fig. 4 Example of output file: chemical shifts organized by amino acid residue type produced by csviewer module

Smelter et al. BMC Bioinformatics (2017) 18:175 Page 4 of 12

token it is dealing with and chooses which internal
method to call in order to construct itself, i.e. calls to
StarFile._build_starfile(), Starfile._-
build_saveframe(), or StarFile._buil-
d_loop(). For example, Fig. 2 shows the function
call diagram during the StarFile object creation: the
_build_saveframe() method is called 25 times
and _build_loop() is called 37 times, meaning
that the NMR-STAR file consists of 25 different save-
frame categories and 37 loops. The total number of
tokens processed is equal to 36,155 = 27 (from
_build_starfile) + 786 (from _build_save-
frame) + 35,342 (from _build_loop).
Each saveframe category is also an OrderedDict

data structure that can be accessed by saveframe name
as the key from the top-level StarFile object. Once a
saveframe dictionary is constructed and populated with
key-value pairs, it descends further into each loop and
constructs a tuple of two lists: the first list corre-
sponding to loop field keys (loop field names); the second
list consists of OrderedDict objects corresponding
to loop rows (loop records) in the original NMR-STAR
file. By the end of parsing, a single nested dictionary/list
structure in the form of a StarFile dictionary object
(Fig. 3b) is constructed, emulating the structure of the

original NMR-STAR formatted file (Fig. 3a). In addition,
comments can be parsed and included as additional key-
value pairs within the nested dictionary structure.
The nmrstarlib module provides a GenericFi-

lePath (Figs. 1c and 2) object that is used by the
read_files() generator function in order to open
NMR-STAR formatted files from many different sources:
a single file on a local machine; a URL address of a sin-
gle file; a directory of files on a local machine; an archive
of files on a local machine; a URL address of an archive
of files; or the BMRB id of a single file.
To write from a StarFile object to an NMR-STAR

formatted file, the library recursively crawls through the
StarFile dictionary structure, formatting and printing
each of the keys and corresponding values sequentially.
This allows nmrstarlib to recall the sequential order
of the original NMR-STAR formatted file, due to the
stored ordering of key insertion from the underlying
OrderedDict objects. Using Python’s json library,
the entire StarFile dictionary structure can be saved
as JSON (JavaScript Object Notation), which is an open,
human-readable, lightweight data exchange format that
is readable by most programming languages via opti-
mized parsing libraries. This JSON conversion of Star-
File objects greatly facilitated the implementation of

Table 1 The nmrstarlib library performance test against NMR-STAR formatted files using pure Python and Python with C extension
and against JSONized NMR-STAR files using the standard Python library json parser and the UltraJSON (ujson) 3rd party library

NMR-STAR
2.1

NMR-STAR
3.1

JSONized NMR-STAR
2.1

JSONized NMR-STAR
3.1

Number of files 11,270 11,244 11,270 11,244

Total size of files, GB 1.1 1.8 4.6 22.0

Time, sec Pure Python json 326 1,100 30 130

Python with C extension aujson 320 423 27 126

Average reading speed, KB/sec Pure Python json 3,290 1,700 158,549 176,479

Python with C extension aujson 3,351 4,421 176,166 182,082
aWe added support for the ujson library for versions of Python starting with Python 3.6, because the ujson library does not provide methods to keep the dict
data structure in order when parsing from JSON files; however, starting with Python 3.6, the dict data structure is ordered by default

Fig. 5 Graph showing the dependency of loading time into StarFile object from the size of file: a Loading times for NMR-STAR 3.1 formatted files;
b Loading times for JSONized NMR-STAR 3.1 files

Smelter et al. BMC Bioinformatics (2017) 18:175 Page 5 of 12

the converter module which converts original NMR-
STAR formatted files into their equivalent JSONized
NMR-STAR files and vice versa. The converter mod-
ule (Fig. 1d) consists of a single Converter class which
can convert in both one-to-one (single file) and many-
to-many (directory or archive of files) modes. See “The
nmrstarlib API Reference” documentation of the
converter module for the full list of available conver-
sion options (Additional file 3).
In order to simplify access to assigned chemical shift

data, we created the csviewer module (Fig. 1e) that in-
cludes the CSViewer class that can access both the
NMR-STAR version 2.1 and version 3.1 assigned chemical
shifts loop and visualize (organize) chemical shift values
by amino acid residue type, and save this visualization as
an image file or a pdf document (Fig. 4). The csviewer
module requires the graphviz Python library [12] in
order to create an output file. In addition to visualizing
chemical shift values, the csviewer module provide
code example for utilizing the nmrstarlib library.
Overall, the nmrstarlib package can be used in two

ways: 1) as a library for accessing and manipulating data
stored in NMR-STAR formatted files, converting be-
tween NMR-STAR and its equivalent JSON format, and
visualizing assigned chemical shift values; or 2) as a stan-
dalone command-line tool for converting files in bulk
and visualizing assigned chemical shift values. We used
the docopt Python library [13] to create the nmrstar-
lib package command-line interface.

Results
Performance on NMR-STAR formatted files
As part of nmrstarlib’s development process, we
tested our library extensively against the entire BMRB
(as of December 11, 2016) for both NMR-STAR version
2.1 and version 3.1 [14]. To measure the performance
speed of the nmrstarlib library, we used a simple
program that accesses NMR-STAR files from local direc-
tory one file at a time, which then creates a StarFile
object and records how much time in seconds it took to
create the object. Table 1 shows that our library was able
to read the entire BMRB for both NMR-STAR version
2.1 and version 3.1 without any errors. With the pure
Python implementation, it took 1,110 s (~18.3 min) and
326 s (~5.4 min) to read NMR-STAR version 3.1 and
NMR-STAR version 2.1, respectively. With the more ef-
ficient Cython implementation, it took 423 s (~7 min)
and 320 s (~5.3 min) to read NMR-STAR version 3.1
and NMR-STAR version 2.1, respectively. We used the
metric kilobytes per second (KB/sec), because files/sec
would be a misleading metric due to widely varying files
sizes in the BMRB and because read times scale almost
linearly (Fig. 5) with file size. As such, we found that
nmrstarlib’s average reading speed is 1,700 KB/sec
(NMR-STAR 3.1) and 3,290 KB/sec (NMR-STAR 2.1) for
the Python implementation and 4,421 KB/sec (NMR-
STAR 3.1) and 3,351 KB/sec (NMR-STAR 2.1) for the
Cython implementation on the hardware used for test-
ing. The NMR-STAR 3.1 is more comprehensive than

Table 2 Converting NMR-STAR formatted files into their equivalent JSON format

Directory zip archive tar.gz archive tar.bz2 archive

Format NMR-STAR 2.1 NMR-STAR 3.1 NMR-STAR 2.1 NMR-STAR 3.1 NMR-STAR 2.1 NMR-STAR 3.1 NMR-STAR 2.1 NMR-STAR 3.1

Number of files 11,270 11,244 11,270 11,244 11,270 11,244 11,270 11,244

Time, min 8 20 9 22 12 27 15 68

Total size, MB 4,756 22,942 230 470 200 409 131 222

Fig. 6 Frequency polygon of loading times for NMR-STAR files: a Comparison of loading times between NMR-STAR 2.1 and JSONized NMR-STAR
2.1; b Comparison of loading times between NMR-STAR 3.1 and JSONized NMR-STAR 3.1

Smelter et al. BMC Bioinformatics (2017) 18:175 Page 6 of 12

NMR-STAR 2.1 and usually represents more experimen-
tal information and details. This additional complexity is
computationally harder to parse. However, for our
Cython implementation average reading speed for NMR-
STAR 3.1 was faster than for NMR-STAR 2.1 due to
multiline text pre-processing discussed in more detail in
the next section.

Performance on JSONized NMR-STAR files
Next, we converted both NMR-STAR version 2.1 and
version 3.1 files into their equivalent JSON format and
performed speed tests again (Table 1). We found that
read times of both JSONized NMR-STAR version 2.1
and version 3.1 were significantly faster than read times
of the original NMR-STAR formatted files: 130 s
(~2.2 min) and 30 s (~0.5 min) for NMR-STAR version
3.1 and NMR-STAR version 2.1, respectively, for the en-
tire BMRB data set. The average read speed was
176,479 KB/sec and 158,549 KB/sec for version 3.1 and
version 2.1, respectively. Next, we tested performance
using another compiled JSON parsing third-party library,
UltraJSON (ujson) [15]. We found that reading times
and average reading speeds of JSONized NMR-STAR
files were slightly faster than using the built-in json
parser: 127 s (182,082 KB/sec) and 27 s (176,166 KB/
sec) for version 3.1 and version 2.1 respectively (Table 1).
Table 2 shows how much time it took to convert the
entire BMRB into its JSONized version and how much
disk space it occupied as uncompressed directory and as
compressed zip and tar archives. Compressed zip and
tar formats represent the entire BMRB database in a sin-
gle file and save disk space. In order to simplify access,
our library provides facilities to directly read NMR-
STAR files from zip and tar archives without the re-
quirement to manually decompress and separate the
archive into separate files first. Frequency polygons of
loading times on Fig. 6 show that the majority of NMR-
STAR and JSONized NMR-STAR files can be loaded

into StarFile object in less than 1 s per file and JSO-
Nized NMR-STAR files can be loaded much faster than
the original NMR-STAR files. Figure 6a and b show that
the fastest reading times were for parsing JSONized
NMR-STAR files using the ujson and json parsers.
However on Fig. 6a, it is clear that the pure Python
implementation outperformed the Cython implemen-
tation for some of the NMR-STAR 2.1 files (e.g.
BMRB ID: 17192, 16692). This is because those files
contain saveframe categories deposited as very large
multiline blocks of text and the majority of time is
spent to pre-process them, equivalent NMR-STAR 3.1
files have those saveframes properly formatted and do
not require extra time to pre-process multiline text
blocks. For NMR-STAR 3.1 formatted files (Fig. 6b),
the Cython implementation outperformed pure Py-
thon implementation in all cases.

Comparison to similar existing software
Using the entire BMRB, we performed and compared
speed performance tests between our nmrstarlib
package and the three other publically available Py-
thon libraries for reading NMR-STAR formatted files:
PyStarLib [8], NMRPyStar [9], and PyNMRSTAR [10].
For each of these libraries, we wrote a simple Python

Table 3 Performance comparison of nmrstarlib to other Python libraries

nmrstarlib PyStarLib NMRPyStar PyNMRSTAR

Parsing NMR-STAR 2.1

Number of files 11,270 11,270 11,270 11,270

Time, sec Pure Python 326 239 N/A 547

Python with C Extension 320 N/A N/A 144

Success rate, % 100 99.57 0 100

Parsing NMR-STAR 3.1

Number of files 11,244 11,244 11,244 11,244

Time, sec Pure Python 1,100 796 56,569 2,354

Python with C Extension 423 N/A N/A 538

Success rate, % 100 95.92 100 100

Table 4 Common usage patterns for the nmrstarlib module

Usage Example

Reading: sf_gen = nmrstarlib.read_
files(‘path’)
starfile = next(sf_gen)

Access/Modification: starfile[‘saveframe’][‘key’]
starfile[‘saveframe’][‘key’] =
new_value

Writing: starfile.write(fileobj,
fileformat=‘nmrstar’)
starfile.write(fileobj,
fileformat=‘json’)

Smelter et al. BMC Bioinformatics (2017) 18:175 Page 7 of 12

program that loads a NMR-STAR formatted file from
a directory, creates an object representation, and then
reports how much time it took to process each file.
Results of these comparisons are summarized in
Table 3. For the pure Python implementation, PyStar-
Lib showed the fastest reading time: 239 s (~4 min)
and 796 s (~13.3 min) for NMR-STAR version 2.1
and version 3.1 respectively, but it was not able to
parse 0.43% (48 files) NMR-STAR version 2.1 and
4.08% (459 files) NMR-STAR version 3.1. All errors
occurred inside a function that is responsible for pro-
cessing multiline quoted text, which uses regular ex-
pressions to collapse multiline quoted text into a
single token. The most probable cause for these er-
rors is a regular expression that is not capable of
handling all edge cases. Examples of failures include
files where: i) multiline quoted text included a semi-
colon character inside the text; ii) multiline quoted
text that is not followed by the new line character;
and iii) multiline quoted text followed by a loop (see
Additional files 4, 5, 6, and 7 for list of failed files as
of December 11, 2016 and particular fragments of
files where the failure occurred for both NMR-STAR
2.1 and NMR-STAR 3.1 formatted files).

The pure Python implementation of the nmrstar-
lib package was the second fastest method 326 s
(~5.4 min) and 1,110 s (~18.3 min) and, more import-
antly, parsed 100% of files for both NMR-STAR 2.1 and
NMR-STAR 3.1, respectively. The NMRPyStar library
showed the slowest results, taking 56,569 s (~15.7 h) to
process NMR-STAR version 3.1 and was not able to
read any of the NMR-STAR version 2.1 files (error sta-
tus code was reported by the program during execu-
tion). Both the nmrstarlib and PyNMRSTAR
provide Python + C extension implementations in order
to speed up the tokenization process. The nmrstar-
lib performed faster than PyNMRSTAR on NMR-
STAR 3.1 files: 423 s (~7 min) versus 538 s (~9 min).
However, PyNMRSTAR was faster than nmrstarlib
on NMR-STAR 2.1 files: 144 s (~2.4 min) versus 320 s
(~5.3 min). Overall, the nmrstarlib (Python +C exten-
sion implementation) was the fastest method to read
NMR-STAR 3.1 files, and PyNMRSTAR (Python +C exten-
sion implementation) was the fastest method to read
NMR-STAR 2.1 files. However, when using the JSONized
versions of NMR-STAR files with the nmrstarlib library,
parsing speed can be further improved to 30 s for NMR-
STAR 2.1 and 130 s for NMR-STAR 3.1 (see Table 1).

Table 5 The nmrstarlib library command-line interface

Command Description Example

convert Convert between NMR-STAR and JSON formats $ python3 -m nmrstarlib convert bmr18569.str 18569.json \
–from_format=nmrstar –to_format=json
$ python3 -m nmrstarlib convert 18569.json bmr18569.str \
–from_format=json –to_format=nmrstar

csview View assigned chemical shifts $ python3 -m nmrstarlib csview 18569 \
–csview_outfile=18569_cs_all
–csview_format=png
$ python3 -m nmrstarlib csview 18569 \
–aminoacids=GLU,THR –atoms=CA,CB,CG,CG2 \
–csview_outfile=18569_cs_GLU_THR_CA_CB_CG_CG2 \
–csview_format=png

Table 6 Comparison of nmrstarlib to other Python libraries

Feature nmrstarlib PyStarLib NMRPyStar PyNMRSTAR

Read NMR-STAR 2.1 Yes Yes No Yes

Read NMR-STAR 3.1 Yes Yes Yes Yes

Supported Python version 2.7, 3.4+ 2.7 2.7 2.6, 2.7, 3.3+

API Reference documentation Yes No No Yes

Tutorial documentation Yes No No Yes

PDF of documentation Yes No No Yes

User Guide documentation Yes No Yes No

Up to date online documentation Yes No No No

Open Source Yes
(GitHub)

Yes
(SourceForge)

Yes
(GitHub)

Yes
(GitHub)

Smelter et al. BMC Bioinformatics (2017) 18:175 Page 8 of 12

All tests were performed on a single workstation desk-
top computer with Intel(R) Core(TM) i7-4930 K CPU @
3.40GHz processor, 64 GB memory, and a solid-state
drive. The latest stable version of Python (Python 3.6.0)
was used to compare libraries. Python version 2.7 was
used for libraries that do not support the latest version
of Python.

Discussion
The nmrstarlib interface
To use nmrstarlib as a library, first import the li-
brary. Next, create a StarFile generator that will
return StarFile instances one at a time from many

different file sources: a local file, URL address of a
file, directory, archive, BMRB id. Next, the Star-
File object can be utilized like any built-in Python
dict object. Table 4 shows common usage patterns
for reading NMR-STAR files into StarFile objects,
accessing and manipulating data using bracket acces-
sors, and writing StarFile objects back to both
NMR-STAR and JSONized NMR-STAR formats. For
more detailed examples, see “The nmrstarlib Tutorial”
documentation (Additional file 3).
The nmrstarlib command-line interface provides two

commands: convert in order to convert between NMR-
STAR format and its equivalent JSON format; the csview

Fig. 7 Code example showing how to access data from JSONized NMR-STAR files using R programming language

Fig. 8 Code example showing how to access data from JSONized NMR-STAR files using JavaScript programming language

Smelter et al. BMC Bioinformatics (2017) 18:175 Page 9 of 12

command for quick access to assigned chemical shift data
of a single StarFile, organizing chemical shifts by amino
acid residue type. Table 5 shows common usage examples
for the convert and csview commands. For a full
list of available conversion options and more detailed

examples see “The nmrstarlib API Reference” and
“The nmrstarlib Tutorial” documentation. Figure 4
shows example output of the csview command.
We also have developed the “User Guide”, “The

nmrstarlib Tutorial” and “The nmrstarlib API

Fig. 9 Code example showing how to access data from JSONized NMR-STAR files using C++ programming language

Smelter et al. BMC Bioinformatics (2017) 18:175 Page 10 of 12

Reference” documentation that is available as a PDF file
(Additional file 3) and up-to-date online documentation
(Table 6).

Advantages of using nmrstarlib and JSONized NMR-STAR
version
One of the main advantages of our library is that it pro-
vides a one-to-one mapping between each of the follow-
ing representations of BMRB entries: NMR-STAR
format, internal Python OrderedDict- and list-
based objects, and JSONized NMR-STAR format. This
makes the library more Python-idiomatic, providing a
very intuitive programming interface for accessing and
manipulating NMR data. Another benefit of our
nmrstarlib package is that the bmrblex lexical ana-
lyser module is written in a generic fashion, making it
easy to adapt for parsing data from other STAR-related
formats, for example, the Crystallographic Information
File (CIF) and its closely related macromolecular CIF
(mmCIF) format.
JSON is an open, programming language independent,

human-readable, data exchange standard that represents
data objects in a nested dictionary/list ASCII format.
JSON is one of the most common formats for asyn-
chronous browser/server communication as an alterna-
tive to XML (Extensible Markup Language). We selected
the JSON object representation, because it has a smaller
overhead compared to common XML object representa-
tions, making it faster to parse and more human-
readable when formatted for this purpose. But more
importantly, it facilitates a one-to-one mapping with
both nested Python data structures and BMRB’s nested
data representations of their entries. While XML is more
flexible, it is not easily represented by a nesting of stand-
ard Python data structures that would produce an intui-
tive programming interface. Also, JSONization of the
original NMR-STAR files provides several advantages: i)
much faster reading times (see Table 1) and ii) makes
the data stored in BMRB entries easily accessible to
other programming languages that have JSON parsers,
i.e. all modern programming languages, scripting as well
as compiled, without requiring to write a specific parser
for the specialized NMR-STAR format. Figures 7, 8, and 9
show code examples for accessing data from JSONized
NMR-STAR files using R with the jsonlite library
[16], JavaScript with the jQuery library [17], and C++
with the RapidJSON library [18] (Additional file 8
provides output of C++ example after compilation and
execution), respectively.
But one disadvantage of using JSON format is that it is

more verbose in comparison to the original NMR-STAR
format. As a result, uncompressed JSONized NMR-
STAR files occupy more disk space (Table 2). However,
the nmrstarlib library offers the ability to read NMR-

STAR files in both uncompressed (directory of files) and
compressed (zip and tar archives) forms, making storage
and access of JSONized NMR-STAR files very efficient.

Conclusions
The nmrstarlib package is a useful Python library,
providing classes and other facilities for parsing, acces-
sing, and manipulating data stored in NMR-STAR and
JSONized NMR-STAR formats. Also, nmrstarlib pro-
vides a simple command-line interface that can convert
from the NMR-STAR file format into its equivalent
JSON file format and vice versa, as well as accessing and
visualizing assigned chemical shift values. The library
has an easy-to-use, idiomatic dictionary-based interface,
usable in programs written in Python. The library also
has extensive documentation including the “User
Guide”, “The nmrstarlib Tutorial”, and “The
nmrstarlib API Reference”. Furthermore, the easy
conversion into the JSONized NMR-STAR format facili-
tates utilization of BMRB entries by programs in any
programming language with a JSON parser. This same
basic approach can be used to quickly JSONize other
older text-based scientific data formats, making the
underlying scientific data easily accessible in a wide var-
iety of programming languages. As demonstrated in this
study, many available JSON parsers are highly optimized
and typically much more efficient than specialized
parsers for scientific data formats. Thus, JSONization of
older scientific data formats provides easy steps for
reaching Interoperability and Reusability goals of FAIR
guiding principles [19].

Additional files

Additional file 1: Function call diagram of nmrstarlib. (PNG 1167 kb)

Additional file 2: Profile of nmrstarlib execution. (TXT 27 kb)

Additional file 3: Documentation for nmrstarlib. (PDF 256 kb)

Additional file 4: List of failed NMR-STAR 2.1 files for PyStarLib.
(JSON 917 bytes)

Additional file 5: List of failed NMR-STAR 3.1 files for PyStarLib.
(JSON 8 kb)

Additional file 6: Fragments of failed NMR-STAR 2.1 files for PyStarLib.
(TXT 16 kb)

Additional file 7: Fragments of failed NMR-STAR 3.1 files for PyStarLib.
(TXT 149 kb)

Additional file 8: Output of C++ example from Fig. 9. (TXT 1 kb)

Abbreviations
NMR: Nuclear magnetic resonance; BMRB: Biological Magnetic Resonance
Data Bank; STAR: Self-defining text archival and retrieving; JSON: JavaScript
Object Notation; XML: Extensible markup language; UML: Unified modeling
language

Acknowledgements
We want to acknowledge the constant work and effect that the BMRB staff
have done over the years to maintain and expand the BMRB public repository
of NMR data.

Smelter et al. BMC Bioinformatics (2017) 18:175 Page 11 of 12

dx.doi.org/10.1186/s12859-017-1580-5
dx.doi.org/10.1186/s12859-017-1580-5
dx.doi.org/10.1186/s12859-017-1580-5
dx.doi.org/10.1186/s12859-017-1580-5
dx.doi.org/10.1186/s12859-017-1580-5
dx.doi.org/10.1186/s12859-017-1580-5
dx.doi.org/10.1186/s12859-017-1580-5
dx.doi.org/10.1186/s12859-017-1580-5

Funding
This work was supported by National Science Foundation grant NSF 1252893
(Hunter N.B. Moseley); however, they played no role in the design or conclusions
of this study.

Availability of data and materials
The nmrstarlib package is available at http://software.cesb.uky.edu, at
GitHub (https://github.com/MoseleyBioinformaticsLab/nmrstarlib) and at
PyPI (https://pypi.python.org/pypi/nmrstarlib) under the MIT license.
Project documentation is available online at ReadTheDocs (http://
nmrstarlib.readthedocs.io/) and also as a pdf file (Additional file 3).
Profiling of nmrstarlib package (Additional file 2) and full function
call diagram (Additional file 1) are also available.
Requirements: Python 2.7, 3.4+, docopt Python library for command-line
interface functionality, graphviz Python library for chemical shift visualization
functionality.
All NMR-STAR datasets analyzed in this manuscript are available from
the Biological Magnetic Resonance Bank at http://www.bmrb.wisc.edu/.

Authors’ contributions
AS, MA, and HNBM worked together on the design of the library and its API.
AS and MA implemented the library. HNBM helped troubleshoot implementation
issues. AS created library documentation. AS tested the library and compared
performance to other libraries. AS and HNBM wrote the manuscript. All authors
have read and approved the manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of Interdisciplinary and Graduate Studies, University of Louisville,
Louisville, KY 40292, USA. 2Department of Computer Engineering and
Computer Science, University of Louisville, Louisville, KY 40292, USA.
3Department of Molecular and Cellular Biochemistry, University of Kentucky,
Lexington, KY 40356, USA. 4Markey Cancer Center, University of Kentucky,
Lexington, KY 40356, USA. 5Center for Environmental and Systems
Biochemistry, University of Kentucky, Lexington, KY 40356, USA. 6Institute for
Biomedical Informatics, University of Kentucky, Lexington, KY 40356, USA.

Received: 14 August 2016 Accepted: 3 March 2017

References
1. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M,

Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent
Wenger R, Yao H, Markley JL. BioMagResBank. Nucleic Acids Res.
2008;36 Suppl 1:D402–8.

2. Berman H, Henrick K, Nakamura H, Markley JL. The worldwide Protein Data
Bank (wwPDB): Ensuring a single, uniform archive of PDB data. Nucleic
Acids Res. 2007;35 Suppl 1:D301–3.

3. Hall SR. The STAR file: a new format for electronic data transfer and archiving.
J Chem Inf Model. 1991;31(2):326–33.

4. Van Rossum G, Drake FL Jr. The Python Language Reference. Technical
report, Python Software Foundation; 2014.

5. Van Rossum G, Drake FL. The Python Library Reference, October.
2010. p. 1–1144.

6. Ronacher A, Hettinger R. PEP 372—Adding an ordered dictionary to
collections. [Online]. Available: https://www.python.org/dev/peps/pep-0372/.
Accessed June 2008.

7. Python 2.7 Countdown. [Online]. Available: https://pythonclock.org/.

8. Doreleijers J. PyStarLib. [Online]. Available: https://sourceforge.net/projects/
pystarlib/. Accessed Oct 2014.

9. Fenwick M. NMRPyStar. [Online]. Available: https://github.com/mattfenwick/
NMRPyStar. Accessed Dec 2014.

10. Wedell J. PyNMRSTAR. [Online]. Available: https://github.com/uwbmrb/
PyNMRSTAR. Accessed Mar 2017.

11. Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. Cython:
The best of both worlds. Comput Sci Eng. 2011;13(2):31–9.

12. graphviz Python library. [Online]. Available: http://graphviz.readthedocs.io/
en/latest/index.html. Accessed 2017.

13. docopt Python Library for creating command-line interfaces. [Online].
Available: http://docopt.readthedocs.io/en/latest/. Accessed Apr 2016.

14. Biological Magnetic Resonance Bank. [Online]. Available: http://www.bmrb.
wisc.edu/. Accessed Mar 2017.

15. UltraJSON. UltraJSON is an ultra fast JSON encoder and decoder written
in pure C with bindings for Python 2.5+ and 3. [Online]. Available:
https://github.com/esnme/ultrajson. Accessed Feb 2017.

16. Ooms J, Lang TD, Lloyd H. jsonlite: A Robust, High Performance JSON Parser
and Generator for R. [Online]. Available: https://cran.r-project.org/web/
packages/jsonlite/index.html. Accessed Feb 2017.

17. jQuery is a cross-platform JavaScript library. [Online]. Available: http://jquery.
com/. Accessed Jan 2017.

18. Yip M. RapidJSON - A fast JSON parser/generator for C++ with both SAX/
DOM style API. [Online]. Available: http://rapidjson.org/. Accessed Mar 2017.

19. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A,
Blomberg N, Boiten J-W, da Silva Santos LB, Bourne PE, Bouwman J, Brookes
AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R,
Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa J, ’t
Hoen P a, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A,
Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S-A,
Schultes E, Sengstag T, Slater T, Strawn G, Swertz M a, Thompson M, van
der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P,
Wolstencroft K, Zhao J, Mons B. The FAIR Guiding Principles for scientific
data management and stewardship. Sci Data. 2016;3:160018.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Smelter et al. BMC Bioinformatics (2017) 18:175 Page 12 of 12

http://software.cesb.uky.edu/
https://github.com/MoseleyBioinformaticsLab/nmrstarlib
https://pypi.python.org/pypi/nmrstarlib
http://nmrstarlib.readthedocs.io/
http://nmrstarlib.readthedocs.io/
http://www.bmrb.wisc.edu/
https://www.python.org/dev/peps/pep-0372/
https://pythonclock.org/
https://sourceforge.net/projects/pystarlib/
https://sourceforge.net/projects/pystarlib/
https://github.com/mattfenwick/NMRPyStar
https://github.com/mattfenwick/NMRPyStar
https://github.com/uwbmrb/PyNMRSTAR
https://github.com/uwbmrb/PyNMRSTAR
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://docopt.readthedocs.io/en/latest/
http://www.bmrb.wisc.edu/
http://www.bmrb.wisc.edu/
https://github.com/esnme/ultrajson
https://cran.r-project.org/web/packages/jsonlite/index.html
https://cran.r-project.org/web/packages/jsonlite/index.html
http://jquery.com/
http://jquery.com/
http://rapidjson.org/

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Results
	Performance on NMR-STAR formatted files
	Performance on JSONized NMR-STAR files
	Comparison to similar existing software

	Discussion
	The nmrstarlib interface
	Advantages of using nmrstarlib and JSONized NMR-STAR version

	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s note
	Author details
	References

