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Abstract

Background: Taxonomic classification based on the 16S rRNA gene sequence is important for the profiling of
microbial communities. In addition to giving the best possible accuracy, it is also important to quantify uncertainties
in the classifications.

Results: We present an R package with tools for making such classifications, where the heavy computations are
implemented in C++ but operated through the standard R interface. The user may train classifiers based on specialized
data sets, but we also supply a ready-to-use function trained on a comprehensive training data set designed
specifically for this purpose. This tool also includes some novel ways to quantify uncertainties in the classifications.

Conclusions: Based on input sequences of varying length and quality, we demonstrate how the output from the
classifications can be used to obtain high quality taxonomic assignments from 16S sequences within the R computing
environment. The package is publicly available at the Comprehensive R Archive Network.
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Background
The profiling of microbial communities by the sequencing
of the 16S rRNA gene has become a standard approach in
metagenomics [1]. This means that collected DNA is sub-
ject to a targeted sequencing to extract a selected region
of the 16S gene from all organisms in the sample. The
actual content of the sample can then be described by
performing a large scale taxonomic classification of these
sequences, i.e. assign them to the proper taxonomic bin,
also referred to as binning [2]. Since 16S-based microbial
profiling has become such a widely adopted approach, it is
also important that the bioinformatics tools involved are
optimized to the highest standard. A widely used tool for
this job is the RDP-classifier [3]. It is beyond doubt a good
tool for this job, but at the same time it is not perfect, and
in a systematic testing of this and other approaches we
found there were always other methods that performed
better [4]. Alternative tools are a benefit to the scientific
community, and here we present a software to be used
within the popular R computing environment [5].
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There are some issues that must be considered when it
comes to making tools for the binning of 16S sequences.
First, the pattern recognition algorithm itself must be
capable of recognizing the, sometimes small, differences
in DNA that separates taxa. It must also handle the huge
amount of bins or categories we are facing here, thousands
rather than 2…3 which is often the case in textbook liter-
ature. Precision also very much depends on the quality of
the training data [6]. Due to the ever expanding taxonomy
of prokaryotes, there are no comprehensive gold standard
data sets available. Along with themicroclass pack-
age described here, we also supply themicrocontax
R data package, containing designed data sets based on
a consensus taxonomy assignment among several data
repositories. This is probably the closest we get to a gold
standard today.

Speed is another issue. With today•s sequencing tech-
nology and low prices, a data set may easily contain
millions of reads. Some procedures for OTU (Operational
Taxonomic Unit) picking will start out by classifying reads
to pre-defined taxa [7]. Thus, the number of sequences to
classify may be huge. Other procedures cluster the reads
before taxonomy assignments, defining OTU•s as •spheri-
cal• clusters in a space of evolutionary distances approxi-
mated by alignment percentage identity, and then classify
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only the cluster centroids [8]. In some applications, e.g. in
forensic applications [9], we are more interested in recog-
nizing specific taxonomic profiles rather than discovering
new taxa. In such cases the classification of all reads into
pre-defined bins is clearly what we seek.

Uncertainty is the third issue. In any collection of reads
there will be a number of sequences that cannot be given
a high-confidence classification. There are several rea-
sons for this. First, the taxonomy itself is not always well
defined, and sometimes even high-quality sequences fall
on the border between existing taxa, making the classi-
fication uncertain. Second, due to sequencing errors and
chimeras some reads may be difficult to recognize, and
third, some microbial communities will contain new taxa
not previously seen.

In the presented R-package we have implemented some
algorithms that have proved efficient and/or are much
used for 16S taxonomic classification. Efforts have been
made to make them both fast and memory-efficient. All
methods can be trained on new data, but we have also
supplied the package with a ready-to-use tool that is
already trained and optimized for thecontax.trim
data set from [10]. This tool also quantifies uncertain-
ties in a new way. Themicroclass R-package, as
well as its symbiotic data packagemicrocontax , are
freely available at the Comprehensive R Archive Network
(CRAN, [11]).

Implementation
The multinomial method
Based on our previous testing ofK-mer based classifica-
tion methods in [4] we found that the best overall results
were obtained by the algorithm denoted the multinomial
method [12]. Thus, we have focused the attention on this
method in this package. The functionmultinomTrain
is used to train a model of this type on any data set
containing FASTA-formatted sequences along with the
correct taxon assignments for each sequence. The func-
tion multinomClassify is then used to classify new
sequences based on a trained model.

Both training of a multinomial model and classification
of new sequences involves counting a large number ofK-
mers (overlapping words of lengthK) in the sequences.
The overhead when doing such operations is large, and
efficient vectorization is difficult to achieve. A direct
implementation would also require the computation of a
matrix product of size (N × 4K ) · (4K × M), whereN
and M are the number of sequences to classify and the
number of taxa in the training data, respectively. This
is a time consuming task for largeN , M and K . There-
fore, these computations have been implemented in C++
through the Rcpp [13] interface in R, and some short-
cuts are made, which will be explained in the following
paragraphs.

The nucleotide sequences are first converted to integer
vectors my mapping A, C, G and T (or U) to 0, 1, 2, and
3, while all other letters are mapped to -415. The latter
is done to easily discardK-mers including alien symbols
when counting. For training of a multinomial model, all
K-mers of each taxon are counted. The counting itself is
done by sliding a window along the integer vector of each
sequence and computing a position as the inner product
between [4K−1, 4K−2, . . . , 4, 1] and the integers in the win-
dow. For each of the inner products, this position in the
taxon•s counting vector is increased by 1. The result is a
matrix, X, of size (M × 4K ) that holds the counts for all
K-mers in all taxa. Finally, each position in the matrix

is re-scaled to log2

(
xij−P/4K∑

xi·−P

)
, whereP is the number of

pseudo-counts added. This is stored in an (M×4K ) matrix
namedQ to represent multinomial log-probabilities with
pseudo-counts.

When classifying new sequences using the multinomial
method, we avoid the mentioned matrix product by com-
bining theK-mer counting with summing of multinomial
log-probabilities. For each countedK-mer, the corre-
sponding column in theQ matrix is added to the result,
thus never explicitly creating theK-mer count matrix or
performing the product with Q. As such we reduce from
(4K ·M) operations to ((n−K) ·M) for a new sequence of
lengthn. For full 16S sequences (withn ≈ 1500 bases) the
number of calculations will be lower forK > 5.27 and is
easily parallelized.

ThetaxMachine
Users often want a ready-to-use tool to classify (many)
16S sequences without having to perform all the train-
ing. Based on the work in [4] we have arrived at
an optimized tool for classifying 16S sequences, called
taxMachine in this package. ThetaxMachine is based
on using the multinomial method with a word length
of K = 8 and a pseudo count of 100. It has been
trained on full-length 16S sequences to recognize full or
partial (reads) sequences at the genus level, using the
designed and optimizedcontax.trim data set for train-
ing. See themicrocontax data package for details.
The taxMachine includes computations of classifica-
tion uncertainties that requires a detailed explanation.

Classification uncertainty
Uncertainty in a taxonomic classification can be split into
two types. The first type is when a sequence happens to be
very close to the decision boundary between two or more
taxa. We can be fairly certain it belongs to one of these
taxa, but it lacks the final discriminative power to safely
assign it to one of them. The second type of uncertainty
occurs when something completely new is seen. This is
not uncommon in metagenome samples, and should be
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flagged separately since it may indicate sequencing errors,
chimeras or some novel type of organism.

The d-score
The first type of uncertainty is measured by what we name
the d-score. Consider sequencei in a set of sequences
that we want to classify. In thetaxMachine the pre-
dicted genus of sequencei is found by computing the
posterior log-probability for every genus, and classifying
to the genus with maximum value. If we sort all posterior
log-probabilities for sequencei in descending order,pi,1
denotes this maximum, whilepi,2 is the second largest, etc.
These log-probabilities all depend on the sequence length,
since a longer sequence will in general contain more
unique K-mers, and the posterior log-probability will be
a sum with more (negative) terms. This is illustrated in
the left panel of Fig. 1. Here we have sampled fragments
of random length (> 100 bases) from all sequences in the
contax.trim data set, and then classified them, collect-
ing the pi,1 for sequencei = 1,. . . , 38 781. Thepi,1 values
are clearly biased by sequence length, and their variance is
also increasing for longer sequences.

We first normalize the posterior log-probability with
respect to sequence length. We fitted linear regression
models describing how both the mean and the standard
deviation of the data in the left panel of Fig. 1 varies by
sequence lengthl. Thus, if sequencei has lengthl it gets
the normalized posterior log-probability

p̃i,1 = pi,1 − p̂l
ŝl

(1)

where p̂l and ŝl are the predicted mean and standard
deviation at sequence lengthl, using the fitted regression

models. Note that pi,2 (and any other posterior log-
probability) can be normalized in the same way, using the
same fitted regression model.

The d-score of sequencei is simply the difference
between the largest and the second largest normalized
posterior log-probability:

di = p̃i,1 − p̃i,2 (2)

If we are near a decision boundary we expectdi ≈ 0
since the second best genus is almost as good as the best.
On the other hand, if di >> 0 it means the predicted
genus is much more likely than any other, and we have a
high confidence classification.

The r-score
The second type of uncertainty is high if we see some-
thing very different from what we have in the training data
set. Consider sequencei belonging to genusg with corre-
sponding normalized maximum posterior log-probability
p̃i,1 from (1). From all sequences belonging to genusg we
computed the sample mean and sample standard devi-
ation of the p̃i,1•s, denotedp̄g and sg respectively. The
r-score for sequencei is the standardized residual

ri = p̃i,1 − p̄g
s̄g

(3)

where s̄g is a smoothed version ofsg as explained below.
Thus, the r-score is a standardized measure of how differ-
ent a sequence is from its predicted genus centre.

Different genera have different sequence diversity,
which is reflected in different values of the sample stan-
dard deviation sg . However, many genera have too few
sequences to provide a reliable estimate of this stan-
dard deviation, some even have only 1 sequence making
sg impossible to compute. Thus, thēsg in (3) is based

Fig. 1 Posterior log-probability normalization. Theleft panel shows posterior log-probabilities for 38 781 sequences. The sequences are random
sub-sequences of thecontax.trim data set, spanning all lengths from 100 bases to more than 1500. Every sequence has been classified using
the multinomial model trained on the full-length data, and eachdot marks the maximum posterior log-probability for one sequence. There is clearly
a linear trend in the values, with larger variance for longer sequences. In theright panel the same values are plotted after the normalization
procedure described in the text



Lilandet al. BMC Bioinformatics (2017) 18:172 Page 4 of 9

on a simple smoothing. First, all sample standard devi-
ations where grouped by genus-size. In Fig. 2 we show
how smaller genera (few sequences) tend to have smaller
sample standard deviations. We used theloess method
[14] to estimate the size-specific sample standard devia-
tion, shown as black squares in Fig. 2. We denote thissn
wheren is the genus-size. If genusg has sizen we get the
genus-specific standard deviation estimate as

s̄g =
√

(n − 1)s2g + s2n
n

(4)

When a new sequence is classified, we do not know its
true genus. The predicted genus is then used as a plug-in
in (3), i.e. we usēpg and s̄g whereg is the predicted genus.
If the resulting ri has a large negative value, it means the
computed p̃i,1 is much smaller than the averagēpg for
genusg, and sequencei is unlikely to belong to this genus
even if this is where it maximizes the posterior probability.

Exactly how negative is ther-score for an un-recognized
sequence? To guide this decision we computed ther-
scores for all sequences in thecontax.full data set
[10], and from this we computed the empirical cumulative
distribution function. For any givenri value this gives us
the probability of having anr-score this small, or smaller,
given that the sequence was from the training data. A
very small probability means the sequence is very unusual
compared to the training data.

Other methods
The package also contains some alternatives to the
multinomial method, mostly for comparisons. The RDP-
classifier [3] is a popular tool used in many metagenome

Fig. 2 Smoothing genus standard deviation. The sample standard
deviations for every genus (grey rings) are plotted against genus size
(number of sequences). Theblack squares are the mean values for
each genus size, after loess-smoothing as described in the text

applications. The version implemented here is a stripped
version without the bootstrapping effort to quantify
uncertainties in the classifications. It has been imple-
mented in C++ and accelerated similarly to the multino-
mial method, see above for details.

A classification using BLAST is also included, since this
approach has been common. It is both slower and less
precise then the other methods. It requires the BLAST+
software to be installed on the system.

Results and discussion
The microclass package provides optimized tools for
taxonomic classification of 16S sequence data in the
R computing environment. Some well established and
proven methods are available to all users of R, with
the possibility to train all methods on new and special-
ized data sets. However, a ready-made classification tool,
taxMachine , is also supplied as an R-function. This has
been optimized in several ways to produce the most accu-
rate classifications at the genus level, without consuming
too much memory. Specifically, it employsK-mers of
length 8, where an increase toK = 9 or K = 10 comes
at high cost in computation time and memory consump-
tion compared to the small gain in accuracy for genus
classifications. Pseudo counts have been set to 100 in
the taxMachine as a robust compromise regardless of
sequence length (see Additional file 1: Figure S1).

The classification of 16S is the most fundamental
approach to profiling a microbial community, and due to
the explosion in metagenomic research activities, tools for
recognizing taxa from 16S sequences (reads) should be
tuned to their optimal performance. ThetaxMachine
R-function builds on a parallelized sparse-matrix imple-
mentation of the multinomial method that makes it effi-
cient both with respect to speed and memory usage. It
has been trained on thecontax.trim data set, con-
taining 38 871 full-length high-quality sequences covering
1774 genera, where all sequences have a consensus taxon-
omy, making it the closest we get to a well-balanced gold
standard training set.

The proposed implementation ofK-mer counting sim-
ply discards a word if it contains an ambiguous character.
The main reason for this is the added overhead to the
computations by introducing another layer of logic to han-
dle these symbols. For instance the occurrence of the letter
D in a sequence means that the base in question could be
a G, A or T. One could add 1/3 count to each of the three
resulting words, but this would require a substantially
slowerK-mer counting logic. Since informative ambigu-
ous characters (not N) are rarely seen in reads, we chose
to disregard these words and keep the speed advantage of
the integer logic.

As described in the Implementation section the
taxMachine provides information about classification
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uncertainty, based on the posterior probabilities of the
multinomial model. The very first step needed in these
computations is to remove the bias from sequence length
in the log-probabilities, as suggested in Eq. (1). The
right panel of Fig. 1 shows how the normalized posterior
log-probabilities have no apparent trends over sequence
length, as opposed to the raw-values in the left panel.
This normalization makes it possible to compute uncer-
tainty/reliability scores to sequences regardless of their
exact lengths.

The proposedd-score for a sequence is the difference
in score between the most likely and the second most
likely taxon. A d-score close to 0 means the sequence is
close to a decision border, being almost equally similar to
both taxa, and more likely to be mis-classified. To visu-
alize this, we classified fragments of all sequences in the
contax.trim data set using thetaxMachine . We con-
sidered fragments of typical read-lengths; 120…150 and
270…300 bases, which is typical for Illumina HiSeq and
MiSeq raw data, and 450…500 bases, which is typical for
Roche 454 and merged (paired-end) Illumina MiSeq data.
From each of the original 38 871 sequences we sampled 10
such fragments at random locations along each sequence.

Comparing the predicted genus to the assigned genus,
the error percentages were 1% for 450…500 bases reads,
3% for 270…300 bases and 11% for 120…150 bases,
respectively, when the sequences from which the reads
were generated were included in the model training (see
Additional file 2: Table S1 for cross-validated success

Fig. 3 ROC analysis ofd-scores. Based on the classification of
read-length fragments, each sequence was either correctly or
incorrectly classified. Each sequence also has ad-score. Ranking by
d-score produced a separation of incorrect and correct classifications
as indicated by the ROC-curves and the corresponding AUC statistics.
Each curve is based on results for 387 810 sequences

Fig. 4 Histogram ofd-scores. The histograms show the proportions of
d-scores for the mis-classified sequences only, in the range from 0 to
2.0. This is from the same results as Fig. 3, with three different
read-lengths

rates). Thed-score should ideally be small for the mis-
classified sequences, and large for the others. In Fig. 3 we
show a ROC analysis where all sequences are ranked by
their d-score. Based on the large AUC statistics (0.92−
0.93) we conclude that a smalld-score is an effective cri-
terion for identifying mis-classified sequences. In Fig. 4
we show how thed-score distributes for the mis-classified
sequences. Clearly, the majority has ad-score below 1.0
and the shorter the reads the more thed-scores are con-
centrated near 0. The probability of mis-classification will
in general never exceed that of correct classification even
for d-score almost at 0, but at 0 there is a 50− 50 chance
of making a mistake. Various applications will require dif-
ferent strictness, but a classification withd-score above
1.0 can in general be considered safe. Based on the results

Fig. 5 Densities ofr-scores. Based only on correctly classified
sequences, the densities show how ther-scores distribute. The
densities were estimated by a non-parametric kernel smoother in R.
Only negativer-scores are of interest, since a (very) negative value
indicates a (very) unusual sequence
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in Fig. 4 we found that among all classifications with a
d > 1 there were 1.1, 0.7 and 0.3% errors for input
sequences of lengths 120…150, 270…300 and 450…500
bases, respectively.

We face a different type of uncertainty when we col-
lect sequences very different from what we have seen in
the training data set. In the Implementation section we
describe ther-score to detect this. A negativer-score
means the sequence has a lower probability than average
for the assigned taxon. But how much lower than the aver-
age is critical? To investigate this we used the same results
as mentioned above, classifying sub-sequences of typical
read-lengths, but in addition we also included full-length
sequences. We then computed ther-score for all correctly
classified sequences. Figure 5 shows ther-score densities
for the various cases. It is the heavy left tail of the densities
that is of interest. First, we notice there is some difference
between densities for sequences of different lengths. Next,
we see that even for correctly classified sequences, a very
negativer-score occurs in a few cases. Anr-score below

−4 to −5 is rare for correctly classified sequences, and
indicates an unusual sequence. ThetaxMachine also
provides a probabilistic measure related to ther-score.
Based on thecontax.full data set (664 199 sequences)
we computed densities similar to those in Fig. 5, and
from these the empirical cumulative distribution func-
tions. The probability Pr(r < ri|trainingdata) is found
from this distribution, for any given ri. This probability
reflects how unusual a sequence is compared to the train-
ing data, and if this is very small, its classification is not
reliable.

In Fig. 6 we demonstrate how ther-score histograms
change when faced with sequences from unknown taxa.
Here we have only focused on sub-sequences of lengths
450− 500, but the results were similar for other sequence
lengths as well. We used a taxon-wise cross-validation,
i.e. in each iteration we leave out all sequences from
a taxon, train the model on the rest, and classify the
sequences of the left-out taxon. This means all classi-
fied sequences are from an unknown taxon, not part

Fig. 6 Effect of unknown taxa onr-scores. The four histograms show distribution ofr-scores. The colors are:Green for all positiver-scores andblack
for scores more negative than ever observed in thecontax.full data set. The transition fromyellow to red indicates gradually smaller
probabilities (from around 10−1 at yellow to 10−8 atdark red) of observing the correspondingr-score in the training set.Red colors are probabilities
below 10−5. Theupper left panel arer-scores where all classified taxa are present in the training data, i.e. no unknown taxa. In theupper right panel
each genus is unknown, i.e. when classifying a sequence from genus A, there are no sequences from this genus in the training data. In thelower
panels the same procedure has been repeated but the training data lack sequences from the same order and phylum, respectively



Lilandet al. BMC Bioinformatics (2017) 18:172 Page 7 of 9

of the training data. The upper left panel shows, for
comparison, how the distribution looks like without this
cross-validation (meanr-score−0.1). In the upper right
panel each genus has been left out, i.e. the training data
contains no sequences from the genus of the classified
sequence. Ther-scores in general become more negative
even if some are still quite large, even positive (meanr-
score−13.5). This is not surprising, since many genera
are quite similar, and a sequence from the neighboring
genus may not look very unusual. In the lower panels
we have cross-validated over order and phylum (meanr-
scores−17.0 and−19.5), making the classified sequences
gradually more distant from those of the training data.
The lower left tail of the histograms seems thinner, but
a substantial number of sequences got very negativer-
scores well outside the range of the plots. The proportion
of sequences in the green-yellow region (larger-scores) is
gradually smaller.

Figure 7 illustrates, in a similar way, the effect of
sequencing errors. The sequences from the upper-left
panel of Fig. 6 have been corrupted with random substi-
tution errors at two levels, and then classified. The results
are seen in the upper panels of Fig. 7. A 1% substitution

error level will distort the r-scores, but still the majority
of sequences are recognized to an acceptable level, withr-
scores above−6. In total, more than 98% of the sequences
are correctly classified. At 5% substitution error the major-
ity of the reads haver-scores well into the red and even
black region, indicating unrecognised sequences. Still,
more than 90% of them are correctly classified, mostly
those with the larger r-scores. With NGS technologies
like Illumina or PacBio (circular consensus), the substitu-
tion error rate is usually well below 1% [15, 16]. In the
lower panels of Fig. 7 we have corrupted the sequences
by insertions and/or deletions in a similar way. For illu-
mina reads indels are virtually non-existing [15], while
for PacBio reads they occur at the same rate as substitu-
tions [16]. We see that even with insertions or deletions
of length 10, the effect on the R-score is small. The clas-
sification accuracy is around 98% for both length 5 and
10 indels, and only slightly smaller than for 1% substitu-
tion error. This is as expected, sinceK-mer methods like
the ones we have here benefit from having the sequencing
errors concentrated as a few indels rather then many sub-
stitution errors scattered at random along the sequence.
We conclude that classifications of thetaxMachine is

Fig. 7 Effect of sequencing error. Histograms ofr-scores similar to those in Fig. 6. Reads of lengths 450− 500 bases were corrupted at random
before classification. In theupper panels 1% and 5% of the bases in each read were corrupted with a base different from the correct one. In thelower
panels insertions and/or deletions of lengths 5 and 10 bases were distributed randomly at 1% of the positions in each read
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largely unaffected by the sequencing error levels we expect
from current NGS technology.

Chimera sequences will also result in sequences that
are different in K-mer composition from its source
sequences. In Additional file 3: Figure S2 we show an
example of such a mixture, includingd- and r-scores.

The r-score, and/or its corresponding probability, may
be used to discard sequences that appear unusual. As
always, the strictness of this procedure will depend on the
application. For most applications we would not discard
reads unless they are in the lower 1% or 0.1% quantile,
at least (probabilities smaller than 10−2 − 10−3). Instead
of fixing some threshold, and discarding reads, one may
also use these probabilities as weights, and give reads with
small r-scores less weight. When tabulating read-counts
into a taxonomic profile, this seems like a natural proce-
dure. Conservative estimates of the expected success rates
in classifying new reads and full sequences can be found
in Additional file 2: Table S1.

The heavy computations of themicroclass pack-
age are performed in optimized, parallelized C++. This
means that the users can comfortably work in R, know-
ing that reasonably large data can be processed on a
personal computer. Larger problems can be tackled in
a further parallelized fashion on computational clusters,
simply by splitting data into blocks for separate process-
ing. As the package has an open GPL 2/3 licence, reuse
of the code in other, possibly pure C++, implementations
is allowed as long as the licencing is correct and proper
acknowledgements are used.

Conclusions
The packagemicroclass offers tools for taxonomic
classification based on 16S rRNA sequence data to the
R community. There are function for training classifiers
on your own, specialised data sets, and for using these
classifiers to classify new sequences. ThetaxMachine
function has synthesized the designed training data from
the microcontax data package with the methods of this
package, and is our suggested tool for general classifi-
cations. It also implements some novel ways to express
uncertainties in the classifications, indicating if the input
sequences are difficult to recognize.

Additional files

Additional file 1: Supplementary Figure 1 Effect of pseudo-counts. The
fraction of mis-classified sequences after 10-fold cross-validation, using
various number of pseudo-counts in the training of the multinomial
models (horizontal axes). This is based on thecontax.trim data set,
and models have been trained at all levels of the taxonomy, from domain
to genus (panels). The effects of different choices of pseudo-counts are
modest, and at the genus-level the use of 100 pseudo-counts is a
reasonable compromise for all types of input sequence lengths. The
amplicon sequences are obtained by using the primer pair 515F

(GTGYCAGCMGCCGCGGTAA) and 806rB (GTGYCAGCMGCCGCGGTAA) to
extract subsequences, in general matching the V3-V4 region of the 16S
gene. (PDF 5 kb)

Additional file 2: Supplementary Table 1 Performance of the multinomial
classifier. A table with results describing the performance of the
multinomial classifier. (PDF 14 kb)

Additional file 3: Supplementary Figure 2 Chimera example. We
constructed a chimera sequence by mixingSalmonella andEnterococcus.
Both sequences have 1503 bases, and the chimera starts asSalmonella and
ends asEnterococcus. The horizontal axis shows the number ofSalmonella
bases, i.e. if then first bases areSalmonella then the 1503− n last bases are
Enterococcus. The blue axis/dots shows how thed-score changes as we
gradually mix the two sequences, and the tan axis/dots similar for the
r-score. The red/yellow/green band at the top shows the classification at
each chimera level. On the left side, when only a minority of the sequence
isSalmonella, it is recognized asEnterococcus (green region). In the middle,
it is misclassified asEscherichia (yellow region), which is a fairly close
relative ofSalmonella, but as theSalmonella-part gets majority it is
recognized asSalmonella (red region). Notice the lowd-score values in the
middle section, indicating uncertain classifications. Ther-scores also drop
in the middle region. The •jumps• inr-score are due to the dependency of
the classified genus. The posterior log-probabilities do not change
abruptly, but ther-score is related to what we expect for the assigned
genus, and the latter causes the switches. (PDF 37 kb)

Abbreviations
BLAST: Basic local alignment search tool; CRAN: Comprehensive R archive
network; OTU: Operational taxonomic unit; RDP: Ribosomal database project

Acknowledgements
Not applicable.

Funding
This paper is a part of the PhD-project of HV, and this project has been 100%
financed by the Norwegian University of Life Sciences.

Availability of data and material
The R package is available for free from The Comprehensive R
Archive Network [11]. It is most easily obtained by starting R and running
install.packages("microclass",repos="http://cran.r-
project.org/") in the console window. All data used in this paper are
also publicly available, in the R-packagemicrocontax , at [11].

Authors• contributions
Authors KHL, HV and LS have all contributed significantly to the programming
and documentation of the software, and to the preparation and writing of this
manuscript. All authors read and approved the final manuscript.

Competing interests
The non-profit corporation Nofima - Norwegian Institute of Food, Fisheries
and Aquaculture Research has no competing interests related to this
publication or the presented software. The authors declare that they have no
competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher•s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Chemistry, Biotechnology and Food Sciences, Norwegian
University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway.2Nofima -
Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1,
N-1430, Ås, Norway.

http://dx.doi.org/10.1186/s12859-017-1583-2
http://dx.doi.org/10.1186/s12859-017-1583-2
http://dx.doi.org/10.1186/s12859-017-1583-2


Lilandet al. BMC Bioinformatics (2017) 18:172 Page 9 of 9

Received: 21 August 2016 Accepted: 3 March 2017

References
1. Özlem Ta¸stanBishop, (ed). Bioinformatics and Data Analysis in

Microbiology. Rhodes University Bioinformatics, Department of
Biochemistry, Microbiology and Biotechnology, Rhodes University, South
Africa: Caister Academic Press; 2014.

2. Schloss PD, Westcott SL. Assessing and improving methods used in
operational taxonomic unit-based approaches for 16s rrna gene
sequence analysis. Appl Environ Microbiol. 2011;77(10):.

3. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve bayesian classifier for
rapid assignment of rrna sequences into the new bacterial taxonomy.
Appl Environ Microbiol. 2007;73:5261…7.

4. Vinje H, Liland KH, Almøy T, Snipen L. Comparing k-mer based methods
for improved classification of 16s sequences. BMC Bioinformatics.
2015;16(1):205.

5. R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. http://www.R-project.org/.

6. Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso
JG, Angenent LT, Knight R, Ley RE. Impact of training sets on classification
of high-throughput bacterial 16s rrna gene surveys. ISME J. 2012;6:94…103.

7. Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman F, Costello
E, Fiere N, Pena A, Goodrich J, Gordon J, Huttley, S GA and Kelley,
Knights D, Koenig J, Lozupone C, McDonald D, Muegge B, Pirrung M,
Reeder J, Sevinsky J, Turnbaugh P, Walters W, Widmann J, Yatsunenko T,
Zaneveld J, Knigh R. Qiime allows analysis of high-throughput community
sequencing data. Nat Methods. 2010. doi:10.1038/nmeth.f.303.

8. Edgar R. Uparse: highly accurate otu sequences from microbial amplicon
reads. Nat Methods. 2013;10:996…8.

9. Leake S, Pagni M, Falquet L, Taroni F, Greub G. The salivary microbiome
for differentiating individuals: proof of principle. Microbes Infect. 2016;18:
399…405.

10. Microcontax R Package. https://cran.r-project.org/package=microcontax.
11. Comprehensive R Archive Network. https://cran.r-project.org/.
12. Liu K, Wong T. Naïve bayesian classifiers with multinomial models for rrna

taxonomic assignment. IEEE/ACM Trans Comput Biol Bioinformatics.
2013;10(5):1334…9.

13. Eddelbuettel D, Francois R. Rcpp: Seamless r and c++ integration. J Stat
Softw. 2011;40(8):1…18.

14. Cleveland WS, Grosse E, Shyu WM. Statistical Models in S In: Chambers
JM, Hastie TJ, editors.. Wadsworth & BrooksCole; 1992. p. 8.

15. Schirmer M, Ijaz UZ, D•Amore R, Hall N, Sloan WT, Quince. Insight into
biases and sequencing errors for amplicon sequencing with the illumina
miseq platform. Nucl acid Res. 2015;43(6):.

16. Schloss PD, Jenior ML, Koumpouras CC, Westcott SL, Highlander SK.
Sequencing 16s rrna gene fragments using the pacbio smrt dna
sequencing system. PeerJ. 2016;4:e1869.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://www.R-project.org/
http://dx.doi.org/10.1038/nmeth.f.303
https://cran.r-project.org/package=microcontax
https://cran.r-project.org/

