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Abstract

Background: The rapid progress of high-throughput DNA sequencing techniques has dramatically reduced the
costs of whole genome sequencing, which leads to revolutionary advances in gene industry. The explosively
increasing volume of raw data outpaces the decreasing disk cost and the storage of huge sequencing data has
become a bottleneck of downstream analyses. Data compression is considered as a solution to reduce the
dependency on storage. Efficient sequencing data compression methods are highly demanded.

Results: In this article, we present a lossless reference-based compression method namely LW-FQZip 2 targeted at
FASTQ files. LW-FQZip 2 is improved from LW-FQZip 1 by introducing more efficient coding scheme and parallelism.
Particularly, LW-FQZip 2 is equipped with a light-weight mapping model, bitwise prediction by partial matching model|,
arithmetic coding, and multi-threading parallelism. LW-FQZip 2 is evaluated on both short-read and long-read data
generated from various sequencing platforms. The experimental results show that LW-FQZip 2 is able to obtain
promising compression ratios at reasonable time and memory space costs.

Conclusions: The competence enables LW-FQZip 2 to serve as a candidate tool for archival or space-sensitive
applications of high-throughput DNA sequencing data. LW-FQZip 2 is freely available at http://csse.szu.edu.cn/staff/
zhuzx/LWFQZip2 and https.//github.com/Zhuzxlab/L W-FQZip2.
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Background

The rapid progress of high-throughput DNA sequencing
techniques has dramatically reduced the costs of whole
genome sequencing, which leads to revolutionary ad-
vances in gene industry [1, 2]. Genome studies have pro-
duced tremendous volume of data that poses great
challenges to storage and transfer. Data compression
becomes necessary as a silver-bullet solution to ease the
dilemma [3-6]. Nevertheless, the popular generic com-
pression tools, such as gzip (http://www.gzip.org/) and
bzip2 (http://www.bzip.org), cannot obtain satisfactory
performance on high-throughput DNA sequencing data,
because they do not utilize the biological characteristics of
the data like repeat fragments and palindromes. Efficient
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compression methods oriented to high-throughput DNA
sequencing data are highly demanded.

Many specialized compression methods have been pro-
posed for sequencing data in raw FASTQ format [7-11],
sequencing reads (DNA nucleotides only) [12-15] and/or
aligned SAM/BAM format [16]. Depending on whether
extra reference genomes are required, these compression
methods normally can be classified into reference-based
and reference-free methods.

Reference-based methods align the targeted sequences
to some external reference sequence(s) for identifying
the similarity between them. The variances of the align-
ment are encoded instead of the original targeted se-
quences. Reference-based methods generally obtain better
compression ratios with more time consumption by involv-
ing a sequence alignment pre-processing. Representative
state-of-the-art reference-based methods include CRAM
[17], Quip [11], and DeeZ [18]. CRAM [17], working with
BAM-based input, records the variances of reads and a
reference genome with Huffman coding. Quip [11] with -1’
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option compresses SAM/BAM data in a standard
reference-based scheme and employs highly optimized
statistical models for various SAM fields, thus leading to
compromising compression rate. It is also applicable to
reference-based FASTQ compression in ‘-a’ mode where a
de novo assembly procedure is introduced to construct ref-
erences in the target data rather than using existing refer-
ences. DeeZ [18] lowers the cost of representing common
differences among the reads’ mapping results by implicitly
assembling the underlying donor genome in order to en-
code these variants only once.

Reference-free methods compress the raw sequencing
data, mainly in FASTQ format, directly based on their
natural statistics. For example, FQZcomp [8] uses an
order-k context model to predict the nucleotide se-
quences in FASTQ format followed by arithmetic coding
based compression. DSRC [10] partitions input FASTQ
data into blocks enabling independent compression of
them using LZ77 and Huffman encoding schemes.
DSRC 2 [19] is an improvement of DSRC by introducing
threaded parallelism and more efficient coding scheme.
LFQC [20] preforms data transformation to the four
fields of the sequencing records in an FASTQ file separ-
ately, followed by regular data compressor namely zpaq
and lpaq8. LEON [21] first builds a reference as a prob-
abilistic de Bruijn graph based on bloom filter, and then
records the reads and quality scores as mapped paths in
the graph using arithmetic encoding. SCALCE [22] reor-
ganizes reads in an FASTQ file that share common ‘core’
substrings into groups, and then compacts the groups
using gzip or LZ77-like tools. SeqDB [23] coordinates
sequences bases and their corresponding quality scores
into 2D byte arrays and compresses them with an existing
multithreaded compressor Blosc. Quip [11], in addition to
the reference-based compression mode, also provides
reference-free compression using arithmetic coding based
on high order Markov chains. Instead of exploiting the
redundancy of homologous sequences, reference-free
methods put more effort into predictive model and coding
scheme, which tends to improve the time efficiency by
sacrificing compression ratio to some degree [24].

This work focus on long-term archiving and space-
sensitive scenarios, where superior compression ratio is
pursued and reference-based methods are more favourable.
In our previous work [25], we have proposed a self-
contained reference-based method, namely LW-FQZip 1,
to compress high-throughput DNA sequencing data in raw
FASTQ format. LW-FQZip 1 introduces a light-weight
mapping model to efficiently align short reads against the
reference sequence based on a k-mer indexing strategy.
The light-weight mapping model distinguishes LW-FQZip
1 from other reference-based methods for not relying on
any external alignment software. Nevertheless, LW-FQZip
1 is far from satisfactory in terms of compression efficiency.
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LW-FQZip 2 is an improved version of LW-FQZip 1
by introducing parallelism and more efficient coding
schemes. Especially, LW-FQZip 2 is equipped with light-
weight mapping model, bitwise prediction by partial
matching (PPM), arithmetic coding, and multi-threading
parallelism. It can support various FASTQ files gener-
ated from the most well-known high-throughput se-
quencing platforms and obtain superior compression
ratios at reasonable time and memory space costs.

Implementation

The general framework of LW-FQZip 2 is shown in
Fig. 1. Firstly, LW-FQZip 2 splits an input FASTQ file
into three data streams (i.e.,, metadata, nucleotide se-
quences, and quality scores) and then the nucleotide
sequences (also known as reads) are divided into equal-
sized sub-blocks which are simultaneously fed to the
light-weight mapping model implemented with multi-
threading. After the sequence mapping, the matching
results (i.e., the mapped position, palindrome flag, match
length, and match type) and mismatch values are re-
corded in different intermediate files. Secondly, the
metadata and quality scores are simultaneously pro-
ceeded by abridging the consecutive repeats with incre-
mental encoding and run-length-limited encoding,
respectively. Finally, the intermediate files generated
from the metadata, nucleotide sequences, and quality
scores streams are compacted with a combination of
bitwise order-32 PPM model and arithmetic coder in
parallel, except that the intermediate file storing mis-
match values is compressed by a distinct bitwise order-
28 arithmetic coder. In best compression ratio mode,
i.e., LW-FQZip 2 with a ‘—g’ option selected, the quality
scores and mismatch values are compacted using the
zpaq tool (http://mattmahoney.net/dc/zpaq.html) and
the other intermediate files encoded with lpaq9m (http://
mattmahoney.net/dc/texthtml#1440). LW-FQZip 2 is
available at http://csse.szu.edu.cn/staff/zhuzx/LWFQZip2
and https://github.com/Zhuzxlab/LW-FQZip2. The
pseudo-code of LW-FQZip 2 is provided in Algorithm 1,
Additional file 1. The key components of LW-FQZip 2 are
described as follows.

Compression of metadata and quality scores
In LW-FQZip 2, the metadata are pre-processed with in-
cremental encoding, with which the variances of one
metadata to its previous neighbour is stored rather than
the original data. The quality scores are pre-processed
with run-length-limited encoding. More details of the in-
cremental encoding and run-length-limited encoding are
available in [25].

After pre-processing, the processed data can be com-
pressed with Ipaq9m (if ‘-g’ option is selected) or a com-
bination of PPM model and arithmetic coder. In the
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Fig. 1 The general framework of LW-FQZip 2. Firstly, the input FASTQ file is split into three data streams of metadata, bases, and quality scores.
Secondly, the quality scores and metadata are compacted with run-length-limited encoding and incremental encoding, respectively. The nucleotide
bases are partitioned and mapped to an external reference sequence based on the light-weight mapping model. Finally, the processed intermediate
files from the three streams are compressed with arithmetic coder and/or other specific coding schemes
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latter case, a binary tree is established to store the pre-
dictive context information. The pre-processed meta-
data and quality scores are transformed into binary
streams to train an order-32 PPM model, i.e., prediction
based on a 4-byte context (higher order can improve
the compression ratios by promoting the predictive
accuracy but it consumes more memory space and run-
ning time. A trade-off order 32 is adopted in this
study). The binary quality scores are matched against
the predicted results per bit by producing ‘0’ or ‘1’, and
then the context prediction model is updated accord-
ingly. Finally, the prediction results are recorded using
arithmetic coder or zpaq (if ‘-g’ option is selected).
The pseudo-code of the compression with PPM pre-
diction model and arithmetic coding/zpaq is provided
in Algorithm 2, Additional file 1.

Reference-based compression of nucleotide sequences
using light-weight mapping model

The target nucleotide sequences are mapped to an exter-
nal reference sequence based on the light-weight map-
ping model [25] and the mapping results are recorded
instead of the original sequences.

To make this article self-contained, the light-weight
mapping model is briefly introduced in this subsection.
The mapping model is designed to implement fast align-
ment by indexing the k-mer substrings within the refer-
ence. A hash table I is firstly established to save all

positions of k-mer substrings in the reference with some
predefined prefix, e.g., ‘CG’. On mapping a read of nu-
cleotide bases X to the reference, the model identifies all
k-mer substring included in Ir and selects the valuable
k-mer substrings served as seeds, where some restric-
tions are predefined to eliminate the low-quality k-mer
substrings (e.g., minimum seed length L, mismatch tol-
erance rate e). Based on the selected seeds, multiple
local alignments are performed to identify the maximum
matches. The mapping results of X including the
mapped position, palindrome flag, match length, match
type and mismatch values are recorded in some inter-
mediate files. If no k-mer substring in X is identified in
I, the palindrome of X undergoes the same mapping
procedure. In the case neither X nor its palindrome is
mapped to the reference, the plain X is output for en-
coding directly.

To improve the matching rate, the unmapped parts
of reads are further partitioned into shorter segments
and realigned against the reference where palindrome
match is considered. The mismatched nucleotide bases
are composed exclusively of four characters (i.e., {A,
‘C’, ‘G’, ‘T’}), which are much easier to encode than
quality scores. Therefore, a simpler yet efficient model
based on the bitwise order-28 arithmetic coder (http://
cs.fit.edu/~mmahoney/compression/text.html#2212) or
zpaq is adopted. If no proper reference is available,
LW-FQZip 2 also provides an option ‘-a’ to generate a
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reference by assembling a portion of reads that contain
the predefined prefix.

Blocking and multithreading

Parallelism is introduced to LW-FQZip 2 to improve the
computational efficiency using the Pthreads library. In
the mapping procedure, the input FASTQ file is parti-
tioned into b (empirically set to 10 in this study) equal-
sized blocks. Accordingly, b threads are simultaneously
executed with each running a light-weight mapping
model for a corresponding block. Afterward, a new sin-
gle thread is created to collect the mapping results of
the previous b threads and dispatch the results into dif-
ferent intermediate files. After the three data streams,
i.e., metadata, quality scores, and nucleotide sequences
are properly processed, multiple threads are created to
compress the six intermediate files with the correspond-
ing encoding schemes as shown in Fig. 1.

In summary, LW-FQZip 2 improves LW-FQZip 1 by
introducing multi-threading for the time-consuming read
mapping and using more efficient encoding schemes
based on PPM model, arithmetic coders, lpag9m and/or
zpaq. The implementation details of LW-FQZip 2 are
provided in the Additional file 1.

Results and discussion

LW-FQZip 2 is verified using ten representative real-
world FASTQ files (five short-read data and five long-read
data) on a platform running 64-bit Red Hat 4.4.7-16 with
four 8-core Intel(R) Xeon(R) E7-8837 CPUs (@2.67GHz
with Hyper-Threading Technology). These data sets,
generated from various well-known high-throughput
DNA sequencing platforms, were downloaded from the
Sequence Read Archive of the National Centre for Bio-
technology Information (NCBI) [26]. Details of these data
sets are provided in Table 1.
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LW-FQZip 2 is compared with the other state-of-the-
art lossless FASTQ compressors namely Quip [11],
DSRC 2 [19], FQZcomp [8], CRAM [17], LEQC [20],
LEON [21] and SCALCE [22]. The general-purpose
compression tools, i.e., gzip and bzip2, as well as the ori-
ginal LW-FQZip 1 are also included in the comparison
as baselines. All compared methods are configured to
obtain the best compression ratio (the parameter set-
tings of all methods and the software version informa-
tion are provided in the Additional file 1). LW-FQZip 2
is evaluated on two modes, i.e., the normal mode (‘LW-
FQZip 2, using arithmetic coders to compress the inter-
mediate files) and the best compression ratio mode
(‘LW-FQZip 2 (-g)’, using lpaq9m and zpaq to compress
the intermediate files). Quip is also executed in two
modes, i.e., the reference-based compression (‘quip -r’)
and the assembly-based compression (‘quip -a’, a refer-
ence is assembled with a portion of reads, and then a
reference-based compression is conducted using the
generated reference). Quip, CRAM, and LW-FQZip 1
fall within reference-based scheme. The other methods
are reference-free methods.

The performance of the methods is evaluated in
terms of compression ratio, speed, and memory con-
sumption. The compression ratios of all compared
methods on the ten FASTQ data sets are tabulated in
Table 2. The average compression and decompression
speeds of all methods are plotted in Fig. 2. The mem-
ory sizes consumed by the compared methods on
each data set are reported in Table 3. More details of
the data sets and experimental studies are provided in
Additional file 1: Tables S1-S13. The average CPU
utilization and version information of all compared
methods are provided in Additional file 1: Tables S14
and S17, respectively.

From Table 2, it is shown that LW-FQZip 2 and LW-
FQZip 2 (-g) successfully work on all test data sets.

Table 1 The ten real-world FASTQ data sets used for performance evaluation

Datasets Platforms Species Read length (bp) Size (MB) GC content
Long-read SRR2916693 454GS Pseudomonas moraviensis 67-1201 425 58.8%
SRR2994368 lllumina Miseq Escherichia coli 70-502 4688 49.7%
SRR3211986 Pacbio RS Homo sapiens 2-62746 1759 39.6%
ERR739513 MinlON Phage 5-246140 871 47.9%
SRR3190692 lllumina MiSeq Escherichia coli 70-602 11379 52.3%
Short-read ERR385912 lllumina Hiseq 2000 Escherichia coli 51 641 43.5%
ERR386131 lon Torrent PGM Capsicum baccatum 151 1371 50.5%
SRR034509 lllumina Analyzer || Escherichia coli 101 5247 52.6%
ERR174310 lllumina Hiseq 2000 Homo sapiens 202 105122 N.A.
ERR194147 lllumina Hiseq 2000 Homo sapiens 101 202631 40.3%

Note: The long-read data sets have variable-length reads, while the short-read data sets have fixed-length reads
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Table 2 The compression ratios of the compared methods on ten test data sets

Page 5 of 8

LW-FQZip LW-FQZip2  LW-FQZip Quip Quip DSRC  CRAM FQZcomp LFQC LEON SCALCE bzip gzip

2 (-9 1 (-a) (=n 2 2
Long- SRR2916693  16.7% 15.3% 18.1% 209%  205%  202% 21.9% 21.6% 12.7% 195% 172%° 242% 29.6%
read SRR2994368 17.3% 16.0% 17.9% 20.1%  N/A 232% 264% N/A N/A 231% 173%° 285% 34.2%
SRR3211986 33.3% 32.3% N/A 33.3% N/A N/A 339% N/A 323% N/A  334%° 364% 426%
ERR739513  352% 34.8% N/A N/A N/A N/A 356% N/A 349% N/A  N/A 39.7% 454%
SRR3190692 12.7% 11.7% 13.2% 16.5%  N/A 203% 223% N/A N/A 18.1% 127% 244% 29.5%
Short- ERR385912  6.4% 5.0% 6.6% 7.2% N/A 78% N/A  N/A 58% 70% 66% 13.9% 17.9%
read ERR386131  16.5% 16.0% 18.7% 17.7% 166% 168% 255% 24.6% 15.5% N/A  166%° 215% 260%
SRR034509  23.7% 22.7% 25.0% 251%  249%  2610% 274% 261% 237% 27.9% 245%° 315% 36.9%
ERR174310  21.0% 20.1% N/A 20.0% N/A 202% N/A - N/A N/A 253% 196%° 262% 31.7%
ERR194147  20.1% 14.3% N/A 20.0% N/A 20.3% N/A N/A N/A 203% 154%° 197% 236%

Compressed Ratio: the compressed file size divided by the original file size; ‘N/A": the program cannot work on the data, some error occur in program, such as
loses fidelity after decompression or decompression failed; : the read order is changed after decompression; The best results are highlighted in bold

LW-FQZip 2 (-g) tends to obtain superior compression
ratios to the other methods especially on long-read data.
DSRC 2, Quip, FQZcomp, LEON, SCALCE and LW-
FQZip 1 suffer from some issues like incompatibility and
fidelity-loss on the long-read data generated from Pacbio
RS and MinIlON platforms. LW-FQZip 1, CRAM,
FQZcomp and LFQC also fail on some short-read data
sets of large size. LFQC obtains comparable compression
ratios to LW-FQZip 2 and LW-FQZip 2 (-g) in the data
sets it works out. We made an extra comparison analysis

between LW-FQZip 2, LW-FQZip (-g) and LFQC in
terms of compression ratio, memory usage, and time
consumption in a radar chart in Fig. 3. The results show
that LW-FQZip (-g) and LFQC attain slightly better
compression ratios than LW-FQZip 2 at the cost of
memory usage and time consumption, respectively.
Nevertheless, LW-FQZip 2 achieves better compromise
over all metrics than the other two methods.

In terms of compression and decompression speeds,
LW-FQZip 2 outperforms other reference-based methods

m Reference based

LW-FQZip 1
Quip (-1)
CRAM
LW-FQZip 2 (-g)
LW-FQZip 2
Quip (-a)
LFQC

gzip

bzip 2
SCALCE
LEON
FQZcomp
DSRC 2

100 80
Compression speed (MB/s)

Fig. 2 The average compression and decompression speeds of the compared methods on ten test data sets. The compression speed is calculated as
the original file size divided by the compression time. The decompression speed is calculated as the original file size divided by the decompression time
J

m Assembly based m Reference free

2 8.1

100
Decompression speed (MB/s)
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Table 3 The memory usage (MB) of the compared methods on ten test data sets
LW- LW- LW- Quip Quip DSRC2 CRAM FQZcomp LFQC SCALCE LEON bzip 2 gzip
FQZip2 FQZip2(-g) FQZip1 (-a) (-1
SRR2916693  compression 1605 4420 459 759 391 582 784 312 3965 1380 1722 7.6 1.6
decompression 1598 4127 37 756 389 601 620 314 3932 1050 696 48 1.5
SRR2994368 compression 1582 14158 1048 2801 389 6175 1355 N/A N/A 4073 5435 76 1.6
decompression 1579 13154 69 2198 387 7234 652 N/A N/A 1050 2623 4.8 1.5
SRR3211986 compression 1190 12935 N/A 1098 N/A  N/A 5777 N/A 4768 2158 N/A 76 1.6
decompression 1528 5657 N/A 1109 N/A N/A 2381 N/A 4320 1035 N/A 48 1.5
ERR739513  compression 1283 11511 N/A N/A - N/A N/A 3694 N/A 5108 N/A N/A 76 1.6
decompression 1403 11079 N/A N/A N/A - N/A 1455  N/A 4748 N/A N/A 48 1.5
SRR3190692 compression 1726 14560 1058 3552 391 14157 1363 N/A N/A 5219 6776 76 1.6
decompression 1725 13329 69 2898 386 14794 661 N/A N/A 1055 3217 48 1.5
ERR385912  compression 1603 2793 410 772 389 911 N/A N/A 3140 1422 1717 7.6 1.6
decompression 1603 2655 69 770 392 908 N/A N/A 3060 1040 504 48 1.5
ERR386131  compression 1691 12443 1033 771 389 1844 1318 322 5175 1961 N/A 76 1.6
decompression 1721 12165 39 768 384 1950 651 319 4835 1049 N/A 48 1.5
SRR034509  compression 1748 14670 1073 1531 383 6683 1351 324 5352 4151 4139 76 1.6
decompression 1752 7042 71 1218 391 7736 653 309 4859 1050 1799 4.8 1.5
ERR174310  compression 1886 16270 N/A 5333 N/A 5558 N/A N/A N/A 5333 7797 7.6 1.6
decompression 1865 11239 N/A 1156 N/A 18487 N/A N/A N/A 1045 5106 48 1.5
ERR194147  compression 1953 17771 N/A 782 N/A 20271 N/A N/A N/A 5380 7192 76 1.6
decompression 1963 13908 N/A 780  N/A 24284  N/A N/A N/A 1057 5322 48 1.5
Note: The best results are highlighted in bold
as shown in Fig. 2. It is worth highlighting that LW-  reference-based methods. Among the reference-free

FQZip 2 outperforms LW-FQZip 1 in terms of compati-
bility, compression ratio, and speed, which suggests a
substantial improvement of LW-FQZip 2 to LW-FQZip 1.
As expected, reference-free methods tend to be faster than

methods, DSRC 2 compresses the fastest with compromis-
ing compression ratio by taking full advantage of multi-
threading. Quip and LEON manage to obtain some
trade-offs between the three evaluation criteria.

Decompression Memory

Compression Memory

——LW-FQZip 2

Compression Ratio

——LW-FQZip 2 (-g)

Fig. 3 Comparison between LW-FQZip 2, LW-FQZip 2 (—g) and LFQC in a radar chart in terms of average compression ratio, compression time,
decompression time, compression memory usage, and decompression usage. In each criterion, the results of the three methods are normalized
to the range of [0, 1] and a smaller value, i.e, closer to the centroid, indicates a better performance

Compression Time

Decompression Time

LFQC
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SCALCE is a very efficient tool by introducing a
boosting scheme based on locally consistent parsing
(LCP) technique to sort the reads, which enables
SCALCE to compress similar reads together and at-
tain competitive compression ratios at high speed.

We also try to adopt the LCP technique in our method
as the framework shown in Additional file 1: Figure S2.
In this attempt, the successfully mapped reads are still
compressed with the original LW-FQZip 2, whereas the
unmapped reads undergo the LCP boosting and gzip
compression. LCP is applied to only a small portion of
the reads, yet the results shown in Additional file 1:
Table S21, suggest that LCP can improve the compres-
sion ratio. Indeed, re-sorting the reads according to their
similarity is really an efficient option to improve the
compression ratio, especially for archiving-oriented ap-
plications. However, since the order of the reads is chan-
ged, it inevitably imposes extra cost if random access of
the archive is the concern in the downstream analysis.
LW-FQZip 2 is designed to preserve the original read
order to facilitate the implementation of random access
in the future extension of this tool.

The compared methods are also tested on the bench-
mark data sets suggested by the MPEG working group
on genomic compression (https://github.com/sfu-comp
bio/compression-benchmark/blob/master/samples.md).
The results are presented in Additional file 1: Tables
S$18-S20, where the proposed method shows consistent
efficiency.

The experimental results suggest that all specialized
methods outperform the general-purpose tools in terms
of compression ratio but use more memory space. The
reference-based methods tend to be slower than the
reference-free methods, due to the extra running time
involved in the sequence alignment preprocessing. Dif-
ferent methods are designed with different strengths and
can be used for different purposes. There is no single
method dominates other methods in all criteria.

The effect of palindrome handling is investigated in
the Additional file 1: Tables S15 and S16. With palin-
drome handling more reads can be mapped to the refer-
ence at a higher speed (the mapping is stopped once the
first match is identified), thus the compression ratio and
speed are improved slightly, while the extra memory
consumption is eligible.

The effect of thread number is studied in Additional
file 1: Figure S1. The compression speed is affected not
only by the number of threads but also the disk 1/O speed.
As a result, the compression might not be speeded
up proportionally as the number of threads increases
(as shown in Additional file 1: Figure S1). Using fas-
ter disk system like solid state disk (SSD) can help to
speed up both compression and decompression (see
in the Additional file 1: Table S22).
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Conclusions

This article presents a specialized compression tool LW-
FQZip 2 for FASTQ files. LW-FQZip 2 shows superior
compression ratios and compatibility with reasonable
(de) compression speed and memory space consumption.
It could serve as a candidate tool for archival or storage
space-sensitive applications of sequencing data.

The emerging long-read technologies, e.g., Single Mol-
ecule Real Time (SMRT) sequencing [27] and Nanopore
sequencing [28], produce much longer DNA sequences,
reportedly providing a more complete picture of genome
structure. They are deemed to be a complementary solu-
tion to overcome the shortages of short-read sequencing.
The exponentially increasing long-read sequencing data
poses new great challenges to the existing specialized
compression methods. LW-FQZip 2 shows good compati-
bility to long-read sequencing data. The current work is
hoped to provide insights into the storage problems of
new sequencing data. More efficient alignment models for
long-read data will be developed in the future work.

Additional file

Additional file 1: This document provides the implementation details
of LW-FQZip 2 and the detailed experimental results of each compared
algorithm in the related comparison study. Algorithm 1. The main
procedure of LW-FQZip 2. Algorithm 2. Compression with PPM prediction
model and arithmetic coding. Table S1. The performance of LW-FQZip 2.
Table S2. The performance of LW-FQZip 2 (—g). Table S3. The performance
of LW-FQZip 1. Table S4. The performance of Quip (—a). Table S5. The
performance of Quip (—r). Table S6. The performance of DSRC 2. Table S7.
The performance of CRAM. Table S8. The performance of FQZcomp. Table
S9. The performance of LFQC. Table $10. The performance of LEON. Table
S11. The performance of SCALCE. Table S12. The performance of bzip 2.
Table S13. The performance of gzip. Table S14. The average number of
CPU cores used by the compared methods. Table S15. The compression
ratios and time consumptions of LW-FQZip 2 w/o complementary palindrome
mapping. Table S16. The memory usage of the LW-FQZip 2 w/o
complementary palindrome mapping. Table S17. The version information of
all compared methods. Table $18. The compression ratios of the compared
methods on benchmark data provided by MPEG working group on genomic
compression. Table S19. The performance of LW-FQZip 2 on benchmark data
provided by MPEG working group on genomic compression. Table S20. The
performance of LW-FQZip 2 (—g) on benchmark data provided by MPEG
working group on genomic compression. Table S21. The compression ratios
of LW-FQZip2 + LCP, LW-FQZip2 -g + LCP, SCALCE, and LW-FQZip 2 on seven
representative data sets. Table $22. The comparison of compression speed of
LW-FQZip 2 using SSD and HDD disk systems. Figure S1. The compression
speeds of LW-FQZip 2 using different number of threads on five representative
data sets. Figure S2. The framework of LW-FQZip 2 with LCP technique.
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