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Abstract

Background: The unveiling of long non-coding RNAs as important gene regulators in many biological contexts has
increased the demand for efficient and robust computational methods to identify novel long non-coding RNAs from
transcripts assembled with high throughput RNA-seq data. Several classes of sequence-based features have been
proposed to distinguish between coding and non-coding transcripts. Among them, open reading frame,
conservation scores, nucleotide arrangements, and RNA secondary structure have been used with success in literature
to recognize intergenic long non-coding RNAs, a particular subclass of non-coding RNAs.

Results: In this paper we perform a systematic assessment of a wide collection of features extracted from sequence
data. We use most of the features proposed in the literature, and we include, as a novel set of features, the occurrence
of repeats contained in transposable elements. The aim is to detect signatures (groups of features) able to distinguish
long non-coding transcripts from other classes, both protein-coding and non-coding. We evaluate different feature
selection algorithms, test for signature stability, and evaluate the prediction ability of a signature with a machine
learning algorithm. The study reveals different signatures in human, mouse, and zebrafish, highlighting that some
features are shared among species, while others tend to be species-specific. Compared to coding potential tools and
similar supervised approaches, including novel signatures, such as those identified here, in a machine learning
algorithm improves the prediction performance, in terms of area under precision and recall curve, by 1 to 24%,
depending on the species and on the signature.

Conclusions: Understanding which features are best suited for the prediction of long non-coding RNAs allows for
the development of more effective automatic annotation pipelines especially relevant for poorly annotated genomes,
such as zebrafish. We provide a web tool that recognizes novel long non-coding RNAs with the obtained signatures
from fasta and gtf formats. The tool is available at the following url: http://www.bioinformatics-sannio.org/software/.
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Background
The recent advances in whole transcriptome sequenc-
ing offers new opportunities for discovering novel func-
tional transcript elements. In past decades only 2% of
mammalian genome have been identified as coding for
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proteins, while it is now known that a significant amount
of the genome can be transcribed into different families
of non-coding RNAs (ncRNAs) [1]. Such a high amount
of transcripts demanded for the development of meth-
ods able to detect functional ncRNAs, and, among them,
long non-coding RNAs (lncRNAs) which have emerged as
important regulators of gene expression at several levels
[2]. LncRNAs have been described in all taxa including
plants, animals, prokaryotes, yeasts, and viruses [3] and
their sequence conservation is usually lower than that
of coding RNAs. Historically, they have been classified
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with respect to an arbitrary length size of more than
200 nucleotides and, according to their genomic location,
are divided into four sub classes: long intergenic ncRNA
(lincRNA), long antisense ncRNA, long sense overlap-
ping ncRNA, and long sense intronic ncRNA [4]. The
availability of robust machine learning methods for the
identification of lncRNAs, which take into account the
species-specific features, is crucial in the development of
automatic annotation pipelines especially for less anno-
tated genomes, such as zebrafish.

Several methods have been used to distinguish lncR-
NAs from other kinds of transcripts [5, 6], some of which
are part of automatic annotation pipelines in Ensembl1
and UCSC2. For the purpose of this study, we separate
methods into three main categories: i) feature-based clas-
sification tools, ii) coding potential detection tools, and iii)
integrative pipelines for large scale annotation.

The first category includes tools based on a classi-
fier trained with a set of features extracted from tran-
script sequences. The classifier is then used to predict
new potential lncRNAs. The most relevant tools in this
category are: IseeRNA – limited to the subclass of lincR-
NAs and is based on a Support Vector Machine classi-
fier trained with conservation score, open reading frame
length, and di/tri-nucleotide sequence frequencies [7];
PLEK – uses a Support Vector Machine trained with
an improved k-mer scheme to distinguish lncRNAs from
messenger RNAs (mRNAs) in the absence of genomic
sequences or annotations [8]; lncRNA-MFDL – uses a
deep learning algorithm with multiple features of the open
reading frame, k-mer, secondary structure, and the most-
like coding domain sequence [9]; and Lv et al. – uses
LASSO regularization trained with genomic and chro-
matin features [10].

The second category of tools focuses on detecting
the coding potential of a transcript and is generally
used to discard coding transcripts in lncRNA identifi-
cation pipelines. However, recently it has been demon-
strated that transcripts previously classified as lncRNAs
are indeed coding and represent a source of new pep-
tides [11, 12]. The most prominent tools in this category
are: CPC – evaluates the coding potential by using a
Support Vector Machine trained with six biological fea-
tures such as, BLAST similarity with known proteins,
ORF length, and frame integrity [13]; CPAT – computes
the coding potential with a logistic regression based on
open reading frame and nucleotide arrangement metrics
[14]; PhyloCSF – adopts a statistical phylogenetic codon
models to evaluate whether a sequence is likely to repre-
sent a conserved protein coding region or not [15]; and
RNAcode – relies on evolutionary signatures, including
synonymous/conservative mutations and conservation of
the reading frame, to predict protein coding regions in a
set of homologous nucleotide sequences [16].

The third category includes pipelines supporting large
scale analysis and annotation of novel lncNRAs in avail-
able genomes or in trascriptomes assembled from RNA-
seq experiments. They integrate pre/post filtering steps
with one or more of the approaches mentioned previously,
in some cases, exploiting also other kind of data, such as
ss expression level and histone modification. Cabili et al.
produced a reference catalog of ∼ 8200 human lincR-
NAs using structural, expression, evolutionary features,
and PhyloCSF to remove de novo assembled transcripts
with high coding potential [17]. Sebnif uses IseeRNA and
applies post filtering steps based on expression level data
[18]. Annocript combines information of protein coding
transcripts stored in genome databases to annotate novel
lncRNAs in a whole transcriptome scale [19]. Li et al. use
the Codon Substitution Frequency score to identify lin-
cRNAs from de novo assembled transcripts in chicken
skeletal muscle [20]. Pauli et al. use a pipeline based on
PhyloCSF, ORF length, and protein homologs identified
with BLASTP and HMMER to perform a large scale study
of lncRNAs in zebrafish [21]. Ulitsky et al. use a filter-
ing based pipeline to identify lincRNAs in zebrafish using
3P-seq, ChIP-seq, poly(A) sites, and H3K4me3 peaks [22].
Kaushik et al. use a pipeline to identify tissue specific
lncRNAs in zebrafish based on ORF, coding potential, and
protein Ref-Seq features [23].

In this study, we assemble several features used by
the first category of tools to systematically evaluate their
ability to recognize novel lncRNAs. We use different fea-
ture selection algorithms, test for feature stability, group
features into signatures, and evaluate the prediction capa-
bility of a signature with a machine learning algorithm.
We also include in the study a new category of genomic
features based on repeats contained in transposable ele-
ments, motivated by the work of Jonson et al. [24].
Transposable elements represent the most abundant and
functionally relevant class of repeats [25, 26] and it has
been shown that non-coding genes, especially miRNAs
and lncRNAs, are derived from these elements [27]. We
show that such features are often selected by algorithms
and each species seems to exhibit its own relevant sub-
category of transposable elements. We show that there
are different combinations of features that exhibit similar
predictive performance. We collect them into signatures
for three different species, human, mouse, and zebrafish,
illustrating that some features are shared among species,
while others are peculiar to a single species. The pre-
dictive performance of the obtained signatures compared
with the current state of the art shows an improvement
ranging from 1 to 24%, depending on the signature and
on the species. The most significant improvement can be
observed in zebrafish, the least annotated genome used in
the study. This suggests that the method proposed in this
paper has the potential to support the annotation of new
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and poorly characterized genomes in order to discover
novel lncRNA candidates.

Methods
Genomic features
We collect 125 to 130 genomic features, depending on
species, and grouped them into 5 different categories:
Basic features (3 features), Open reading frame metrics (3
features), Conservation scores (3–6 features), Nucleotide
compositions and arrangements (80 features). Moreover,
we also use some novel features based on repeat elements
(31–36 features). Additional file 1: Table S1 summarizes
all the considered features.

• Basic features (BASIC). A transcript is defined as a
single model annotated on a genome sequence with a
set of coordinates that correspond to an exonic
structure. We consider three features: the number of
exons (TxNex), the transcript length (TxLen), and
the mean exons’ length (TxExLenAvg).

• Open reading frame (ORF). Open reading frame is
the portion of DNA that occurs between a start
codon and a termination codon which has the
potential to code for a protein. We consider three
features in this category, i.e. ORF length (OrfLen),
ORF proportion (OrfProp), and KOZAK motif score
(KOZAK), which is an indicator of valid ORF [28].
We compute the ORF length with an approach
similar to UCSC txCdsPredict utility. ORF proportion
is computed dividing ORF length by transcript length
and KOZAK motif score is computed with the
consensus matrices proposed in Grzegorski et al. [29].

• Conservation score (CONS). Various studies report
that lncRNAs are less conserved as compared to
protein coding [3, 22]. We use two approaches to
score the conservation level of each nucleotide,
phastCons [30] and phyloP [31]. We rely on the
conservation scores pre calculated by the UCSC
database (https://genome.ucsc.edu). In particular, we
use the following UCSC tracks: PhastCons and PhyloP
100 and 20 ways for Human (ph100, py100, ph20, and
py20), PhastCons and PhyloP 60 ways for Mouse
(ph60, py60), and PhastCons and PhyloP 8 ways for
Zebrafish (ph8, py8). We average the scores among
each exon sequence and take, for each transcript, the
mean, the maximum, and the minimum among the
averaged exon scores (eg. ph8m, ph8mx, ph8mn).

• Nucleotide compositions and arrangements
(NUCLEO). Many studies like iSeeRNA [7], Sebnif
[18], CPAT [14], RNAcon [32], and lncRNA-MFDL
[9] have considered mono, di- and tri-nucleotide
frequencies as important features for distinguishing
ncRNA classes from protein coding. There are 16
di-nucleotide combinations and 64 tri-nucleotide

combinations. We use the frequency compositions,
i.e. occurrence divided by the transcript length, of
these 80 different combinations to represent the
nucleotide composition of a transcript. In addition,
we use the Fickett score [33] which is reported as an
important feature for distinguishing ncRNA from
protein coding in CPAT [14]. Basically, the Fickett
score measures the coding potential based on
compositional bias between codon positions by
estimating how asymmetric is the distribution of
nucleotides at the three triplet positions in the
sequence [34].

• Repeat elements (REPS). It has been shown that
almost half of the human genome consists of repeated
sequences (repeats), patterns of DNA or RNA that
occur in multiple copies [25, 26]. Among these,
transposable elements (TEs) represent the most
abundant and functionally relevant class of repeats. It
seems that non coding genes, especially miRNAs and
lncRNAs, derive from transposable elements [24, 27].
In particular, lncRNAs are enriched in ∼ 83% of their
sequence by TEs, against 39% of protein coding
sequences [35]. As highlighted in the “RIDL
hypothesis” [24], TEs act in lncRNA as functional
binding domains and it seems that the presence of
TEs allows lncRNA folding thermodynamically more
stable. We consider transposable elements computed
with the RepeatMasker tool available in the UCSC
genome database. We consider only a subset of 81
relevant repeat families belonging to DNA and
Rolling-circle transposons, LINE, SINE, LTR and
Retrotransposons. Additional file 2: Table S2 reports
all the collected families of repeats detected by
RepeatMasker and summarizes for each family their
relevance in each species. Each repeat family
represents a feature that is computed for each
transcript by considering its overlapping proportion
within the transcript sequence.

Feature selection and ranking
Feature selection is the process of identifying subsets of
relevant features within a dataset [36]. The basic assump-
tion is that data may contain redundant features. We filter
out constant features, cluster together highly correlated
features, and then we use feature selection algorithms to
rank features according to their relevance.

Detecting highly correlated features
Multicollinearity refers to the non-independence of fea-
tures so that the relationship of those features with the
independent variables is distorted by the relationship
between them. For prediction tasks, multicollinearity is
not a problem as the predictions will still be accurate.
Instead, in investigating which are the most important
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features in a classification problem, highly related features
could compete for the same rank. We perform multi-
collinearity detection by computing the absolute Pearson
correlation among all pairs of standardized features. Stan-
dardization, i.e. subtracting the mean and dividing by the
standard deviation, of each feature is performed to avoid
high correlation due to different scales of values. Then,
we hierarchically cluster features by using the inverse
absolute correlation distance and complete linkage. Clus-
ters with a minimum intra absolute correlation greater
than 0.8 are considered highly correlated clusters of fea-
tures. Features belonging to a highly correlated cluster are
replaced with a proxy feature chosen by those, in the clus-
ter, that exhibit the highest univariate predictive value for
the response class. To avoid dependence on small data
perturbation, we use a hierarchical clustering strategy that
assesses the uncertainty for each cluster via multiscale
bootstrap re-sampling [37]. This technique allowed us to
include only stable clusters of features, i.e. those that do
not depend on small perturbation of data (p-value < 0.05).

Multivariate feature ranking
We use 11 different feature selection approaches spanning
three main categories [36, 38]: filter based, wrapper based,
and embedded. We further add ensemble methods which
have gained attention in several contexts [39, 40].

• Filter based methods, also known as univariate filter
methods, rank all variables in terms of relevance, as
measured by a score which depends on the method.
A signature of size k can be obtained by taking the
top k features according to the score. We consider
Wilcox test (WT), Information Gain (IG), Gain Ratio
(GR), and Relief Feature Elimination (RFS) [36].

• Wrapper based methods embed a classifier model
hypothesis and attempt to jointly select sets of
features with good predictive power for that classifier.
We consider Recursive Feature Elimination (RFE)
with a Support Vector Machine (SVM) classifier [36]
and Greedy Forward Selection (GFS) with least
squares regression [41]. In Recursive Feature
Elimination algorithms, the worst feature is
eliminated at each iteration so a signature of size k
can be obtained by considering the last k eliminated
features. Instead, in Greedy Forward Selection, at
each iteration the best feature, i.e. the one which
minimizes the sum of squares, is added to the model
so a signature of size k can be obtained by
considering the first k features added.

• Embedded methods search for an optimal subset of
features during the training process of a classifier. We
consider Lasso regression (LR) [42], Elastic Net (EN)
[43], and Random Forest (RF) [44]. In Lasso
regression and Elastic Net a signature of size k can be

obtained by fixing λ, the parameter that controls the
sparsity of a solution (i.e., the number of features
selected), to the smallest value which gives a
signature of k [45]. In Random Forest, the values for
each feature are randomly shuffled and classified. The
difference between the average margin of
non-shuffled and shuffled instances provides a quality
estimate of the attribute. The algorithm returns a
scored list of features so a signature of fixed size k
can be obtained by taking the top k features
according to the score.

• Ensemble methods merge the outcomes of different
algorithms so that the advantage of one algorithm
could complete the weaknesses of another [46]. We
aggregate the outcomes of B different feature
selection algorithms by computing a score Sf for each
feature f as an average function of its rank rb

f in the
b -th experiment. We consider two functions of the
rank for aggregation:

1. Ens-mean (EFmn), average of the ranks of a
feature over all outcomes, Sf = 1/B

∑B
b=1 rb

f ;
2. Ens-voting (EFmd), mode of the ranks of a feature

over all outcomes, Sf = mode
{

rb
f

}B

b=1
.

Feature stability
Feature selection methods are known to be sensitive
to small perturbations of the training data, resulting in
unstable signatures. This may affect the interpretation of
results by focusing on features that have been selected
just by chance. Some methods, such as Random Forest
and Ensemble, embed strategies to reduce the dependence
from small perturbations. We evaluate the stability of each
signature in order to identify those that exhibit a greater
stability. To assess the stability of a signature S of size k,
we compare that signature with those estimated on differ-
ent subsamplings of the training set

{
S′

1, S′
2, . . . , S′

n
}

. We
randomly subsample with 80% of sample overlap, estimate
a signature of size k on each subset S′

i, and compute the
overlap between S and S′

i as the fraction of shared features,(
S ∩ S′

i
)
/k. The random sampling of subsets is repeated

100 times, and the stability values are averaged over all
subsets. We also verify whether the stability of an algo-
rithm can be improved with an ensemble procedure, so we
aggregate the outcomes of a feature selection algorithm
applied on B random subsamples of the training data (i.e.,
draw the 80% of samples with replacement B times) by
using the two aggregation function introduced above.

Predictive accuracy of a signature
Feature selection algorithms that exhibit high stabil-
ity rates do not guarantee that the generated signa-
tures will also exhibit high discriminative capabilities.
Thus we perform a set of experiments to evaluate the
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prediction capability of a signature adopting three dif-
ferent supervised machine learning algorithms: Support
Vector Machine (SVM) [47] (Gaussian radial kernel and
C=1), Random Forest (RForest) [44], and Naive Bayes
(NBayes) [48]. Each algorithm is trained with signatures
with an increasing number of features and is evaluated in
a 10-fold cross validation scheme.

Predictions are compared against the gold standard
described in the next section. We use Precision-Recall
(PR) measures, in addition to the area under ROC curves
(AUC), because they give a more informative picture of
performance when dealing with highly skewed datasets
[49]. In our case, the number of negative examples greatly
exceeds the number of positives, therefore a large change
in the number of false positives can lead to a small change
in the false positive rate used in ROC analysis. In partic-
ular, we use a normalized version of the area under the
PR curve (AUPR) that takes into account the unachiev-
able region in PR space by using the method proposed in
Boyd et al. [50]. This allows for comparing performance
estimated on datasets with different class skews.

In addition to multivariate feature ranking, we evaluate
also the ability, measured in terms of AUPR, of a sin-
gle feature to correlate with the lncRNA class (univariate
feature ranking).

The diversity in occurrence of each class in the train-
ing dataset can have a negative impact on model fitting.
To avoid this problem, we apply to the training dataset
the sampling approach proposed in ROSE [51] that down-
samples the majority class and synthesizes new examples
in the minority class.

Comparison with other tools
To compare the prediction accuracy of a signature against
state of the art methods, we consider two lncRNA predic-
tion tools, IseeRNA and PLEK, and two coding potential
detection tools, CPC and CPAT. As some of such tools
(CPC and CPAT) are only available on-line, we perform a
repeated (20 times) holdout validation by selecting, from
the gold standard, a random test set of 100 transcripts in
each class and evaluate the prediction accuracy of each
tool. The same test set of transcripts is classified with
a SVM classifier trained with signatures obtained with a
training set where the used test set has been removed. The
outcome predictions are evaluated in terms of Accuracy,
Precision, and Recall.

Gold–standard datasets
Annotated transcripts
We collect the annotated transcripts of three different
species: human (hg38), mouse (mm10), and zebrafish
(zv9/danRer7). Table 1 shows the distribution of col-
lected transcripts, in Ensembl and Vega, among different
categories, protein coding transcript (PCT), long ncRNA

Table 1 Distribution of different class of transcripts among
Human, Mouse, and Zebrafish in Ensembl and Vega annotation
databases

Ensemble Vega with KNOWN status

Class Human Mouse Zebrafish Human Mouse Zebrafish

PCT 79851 50607 41695 71030 41569 11051

LincRNA 13473 5362 1039 13365 4711 1004

Intronic 977 277 58 973 277 57

Overlapping 343 47 9 342 45 9

Antisense 11186 3208 711 11141 3122 699

Pseudogene 14537 9442 261 14491 9066 199

Other ncRNA 78167 43609 11664 68265 37421 5703

IG/TR genes 434 642 413 496

Total 198968 113194 55437 180020 96707 18722

(lincRNA, intronic, overlapping, and antisense), pseu-
dogene, other ncRNA, and IG/TR genes [52, 53]. The
Pseudogene category includes transcripts predicted by the
automated annotation procedure of Ensembl, while in
the other ncRNA category we include: microRNA, piwi-
interacting RNA, ribsosomal RNA, small interfering RNA,
small nuclear RNA, small nucleolar RNA, transfer RNA,
and vaultRNA. For the purpose of this study we consider
only transcripts with reliable annotations – i.e. transcripts
annotated in Vega (owning a Vega ID) and transcripts with
a KNOWN status (reported in other external databases,
such as Entrez and HGNC for human, MGI for mouse
and ZFIN for zebrafish). Those selected reliable anno-
tated transcripts are not necessary the outcome of typical
automatic lncRNA annotation pipelines but are the result
of manual inspections performed by the Havana group
and are supported by strong experimental evidence. We
filtered out pseudogenes because of their unstable anno-
tation and divided the dataset in two classes: lncRNA
(positive class) and Other (negative class), including in the
latter category all reliable annotated transcripts that are
not lncRNA (i.e. PCT + other ncRNA + IG/TR genes). The
class skewness, i.e. the ratio between positives and nega-
tives, is 0.18 (25821/139708) in human, 0.10 (8155/79486)
in mouse, and 0.10 (1769/16754) in zebrafish.

De novo assembled and non-annotated transcripts
The recent study of Pauli et al. [21] identified 1133 multi-
exonic lncRNAs from 56535 de novo transcripts assem-
bled with cufflinks and sculpture from nine RNA-seq
studies of embryogenesis and adult tissues in zebrafish (17
samples). As a case study we classify such transcripts by
using a SVM classifier trained with different combination
of features: all, zebrafish signatures (Table 5), and features
used in IseeRNA [7]. Transcripts scored with a probability
greater that 0.5 are considered new lncRNA candidates.
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We compare to which extent our prediction overlaps with
the outcome of Pauli et al. study. To evaluate the likeli-
hood of our prediction we perform two complementary
analyses:

1. Co-expression of predicted lncRNAs with their
neighbor protein-coding genes. Several studies
suggest that some lncRNAs can act in cis, by
affecting the expression of their neighbor
protein-coding transcripts (PCT), and that the
co-expression profile of lncRNAs versus their
neighbor PCT is higher than the co-expression
profile exhibited by PCT versus their neighbor PCT
[4, 17, 54, 55]. For example, in the 16 Human Body
Map tissues, the proportion of lncRNA and neighbor
PCTs having a Spearman correlation greater than 0.9
is higher than the proportion obtained from a
random sample of neighbor protein coding genes
(7.1% vs. 3.9%) [4]. Furthermore, in mouse the
expression profile of 5563 novel non-coding
transcripts revealed a co-expression with their
neighbor protein-coding genes that is on average
higher than the co-expression exhibited by coding
transcripts [55]. Given this assumption, we test if
such a correlation pattern is also valid for the novel
predicted lncRNAs in zebrafish. In particular, we test
whether the absolute Spearman correlation
computed between lncRNA–PCT is higher than the
absolute Spearman correlation computed between
PCT–PCT. Two genes are considered neighbors if
their genomic distance is less than a given threshold
measured in kb. To test for the optimal distance, we
consider three genomic windows, 20, 30, and 40 kb.
As a baseline comparison, we compute also the
absolute Spearman correlation between two random
non-neighbor protein-coding genes.

2. Ribosome profiling of predicted lncRNAs compared
with protein-coding RNAs. Ribosome profiling gives
an estimate of ribosome occupancy along transcripts
by digesting RNA and sequencing the portion that is
bound by 80S ribosomes [56]. When ribosome
profiling is applied to protein-coding transcripts, a
drastic drop in ribosome occupancy in 3’ UTR can be
observed. Instead, such a drop is not observed for
non-coding transcripts because, in such cases,
translational termination should not occur [57, 58].
On this basis, Guttman et al. introduced a metric,
Ribosome Release Score (RRS), to distinguish
between coding and non-coding transcripts showing
a great separation between known protein-coding
RNAs and known non-coding RNAs in mouse [58].
We use the same metric (RRS) to indirectly evaluate
the authenticity of predicted lncRNAs in zebrafish by
testing whether a significant RRS difference with

protein-coding transcripts can be observed. For this,
we use the GWIPS-viz database (http://gwips.ucc.ie),
which provides on-line tools for the analysis,
visualization, and download of a wide collection of
ribo-seq data obtained with the ribosome profiling
technique [59].

Results and discussions
In this section, we report the results obtained by apply-
ing the analysis workflow depicted in Fig. 1. All analyses
can be reproduced by using the R-scripts available as
Additional file 3.

Multicollinear features
Additional file 4: Table S3 shows the detected clusters
of highly correlated features. Some of them demonstrate
obvious associations, such as: transcript length (TxLen)
and ORF length (OrfLen), conservation scores computed
with alternative tools (PhyloP and PhasCons), and di-/tri-
nucleotides encoding similar information (TT vs TTT,
GG vs GGG, CC vs CCC, AA vs AAA, GC vs GCC,
TA vs ATA/TAT, GA vs AGA). Others refer to classes of
repeats grouped among species in a different way. Some
of these clusters have a clear biological interpretation.
In zebrafish and mouse, non-autonomous repeats fol-
low autonomous repeats (clusters DNA.P, LINE.RTE and
DNA.DNA, LINE.RTE.X, respectively). This is required
for the codification of enzymes necessary to the mech-
anism of transposition [60, 61]. In human, the only
cluster related to transposable elements (DNA.hAT.Tag1,
DNA.Merlin, DNA.TcMar) refers to hAT, Merlin and
Tc1/Mariner superfamilies which belong to the Sub-
class I according to the Transponable Element classifica-
tion and share the same “cut and paste" mechanism of
genomic insertion [62]. Similarly, in mouse, the trans-
posable element cluster (DNA.PiggyBac, LINE.Dong.R4
and RC.Helitron) includes superfamilies descending prob-
ably from the same ancestral transponable element called
“Ancestral Vertebrate Mobilome" [63], suggesting a com-
mon evolutionary origin.

Univariate feature ranking
Table 2 shows, for each species, the top 25 features
ordered by AUPR. An overall performance decrement
from human to mouse and then to zebrafish can be
observed. The overall low performance in zebrafish may
be related with lower annotation quality of its genome.
In each species, conservation score related features (Phy-
loP and PhasCons) are the top most predictive features
exhibiting an AUPR ranging between 0.43–0.62 in human,
0.25–0.43 in mouse, and 0.25–0.27 in zebrafish. This con-
firms that sequence conservation of lncRNAs is a peculiar
characteristic. Transcript length related features (TxLen

http://gwips.ucc.ie
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Fig. 1 Analysis workflow. The analysis workflow adopted to obtain
the signatures

and TxNEx) are more predictive in human and zebrafish
than in mouse.

Among other features, some tri-nucleotides occur in top
ranks for all three species. Such tri-nucleotides seem to
play a relevant role in the maintenance of secondary struc-
ture stability [64]. Many of them, like ACG, CCG, CGA,
CGG, CGT, GCG, TAA, TAC, TCG and TAG, have been
found in related studies for the classification of lincRNAs
[7, 32], reflecting their importance for biological func-
tions based on stable secondary structure. Furthermore,
KOZAK and Fickett score features are top-ranked in all
species, underscoring that the absence of the KOZAK
motif, known to be associated with efficient translation
[65] and lower coding potential based on nucleotide com-
position [33], are particularly important for identifying
long non-coding transcripts.

Multivariate feature ranking
Multiple features grouped together into a signature could
improve the prediction performance of single features
shown in Table 2. We compute the performance in terms
of AUPR increasing the size of the signature for differ-
ent feature selection algorithms and machine learning
algorithms. The complete results of such experiments
are shown in Additional files 5, 6 and 7, respectively
for human, mouse, and zebrafish. For SVM and RFor-
est, the maximum performance is almost asymptotically
reached with a signature size ranging from 10 to 20 in
all species, meaning that the first 10–20 features are the
most informative. NBayes performance is almost constant
or increases in the first top 20 features and then decreases,
sometimes drastically. This has already been described
in the literature: the NBayes classifier requires a number
of samples that is logarithmic in the number of features,
then at some point adding good features decreases test
accuracy [48]. Additional file 8: Table S4 reports the com-
plete list of features ranked by each algorithm for each
species.

To identify the most significant signatures, we evalu-
ated signature stability, chose signature size, and clustered
similar signatures by using Jaccard distance. Figure 2
shows signature stability at different signature size for
each feature selection algorithm, and for each species. The
stability of almost all algorithms becomes rapidly more
than 0.7, used as a threshold. We fix the size of a signa-
ture to 20, including the 20 top most informative features
according to each algorithm. To detect the best signature
overlap, we clustered the top 20 features of each algorithm
with hierarchical clustering using Jaccard distance and
complete linkage. Not all algorithms have been consid-
ered for clustering. RFE and EFmd were discarded because
they were very unstable in all species and, for zebrafish,
we discarded also GR, RF, and GFS because their stability
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Table 2 Univariate ranked features according to their AUPR (AUC)

Human Mouse Zebrafish

Feature AUPR (AUC) Feature AUPR (AUC) Feature AUPR (AUC)

1 ph100m 0.62 (0.92) phm 0.43 (0.90) py8m 0.27 (0.83)

2 ph20m 0.54 (0.91) py60m 0.36 (0.90) ph8m 0.25 (0.79)

3 ph20mx 0.52 (0.89) phmx 0.34 (0.87) TxLen 0.18 (0.72)

4 py100mx 0.52 (0.91) py60mx 0.32 (0.88) FickScore 0.17 (0.73)

5 py100m 0.48 (0.91) phmn 0.25 (0.81) TxNex 0.16 (0.77)

6 py20m 0.43 (0.89) CG 0.16 (0.70) GG 0.15 (0.66)

7 TxNex 0.26 (0.76) GCG 0.15 (0.68) TAA 0.15 (0.67)

8 ph20mn 0.25 (0.77) CGC 0.14 (0.67) AAT 0.15 (0.65)

9 CG 0.24 (0.69) CGA 0.14 (0.67) GAG 0.15 (0.65)

10 FickScore 0.23 (0.76) CCG 0.13 (0.67) GGA 0.14 (0.65)

11 CGA 0.22 (0.68) CGG 0.13 (0.68) KOZAK 0.14 (0.67)

12 TCG 0.21 (0.66) ACA 0.13 (0.63) GGC 0.13 (0.65)

13 CCG 0.21 (0.67) FickScore 0.13 (0.73) TCG 0.13 (0.63)

14 TxLen 0.19 (0.66) TCG 0.13 (0.65) ATT 0.13 (0.63)

15 KOZAK 0.17 (0.65) CGT 0.12 (0.63) CG 0.13 (0.62)

16 CGT 0.17 (0.62) GC 0.12 (0.65) TTG 0.13 (0.59)

17 ACA 0.17 (0.60) CAT 0.12 (0.59) TGG 0.13 (0.64)

18 ACG 0.17 (0.63) ACG 0.12 (0.64) CGG 0.13 (0.63)

19 ACT 0.16 (0.60) ACT 0.12 (0.61) CGA 0.13 (0.62)

20 TCT 0.16 (0.61) GGC 0.11 (0.64) CCG 0.12 (0.62)

21 TGG 0.15 (0.61) TxNex 0.11 (0.73) TT 0.12 (0.61)

22 AAT 0.15 (0.63) KOZAK 0.10 (0.65) TA 0.12 (0.62)

23 GTG 0.15 (0.60) CTA 0.10 (0.59) AG 0.12 (0.60)

24 GG 0.15 (0.62) TxLen 0.10 (0.64) AT 0.12 (0.62)

25 ATA 0.15 (0.61) AC 0.09 (0.59) CAG 0.12 (0.58)

is below 0.7 for signatures of size around 20. Additional
file 9: Figure S4 shows the obtained signature clusters for
each species. We group together signatures having at least
55% of features in common, cutting the hierarchical clus-
ter tree at 0.45 and thus obtaining 5 signatures in human,
6 in mouse, and 4 in zebrafish as shown respectively in
Tables 3, 4 and 5.

Each signature exhibits a AUPR prediction perfor-
mance ranging between 0.55–0.69 in human, 0.40–0.51
in mouse, and 0.32–0.41 in zebrafish. Compared to sin-
gle feature performance reported in Table 2, the predictive
performance obtained with group of features is higher,
making the feature selection strategy the most effective
for the classification of lncRNAs. This is evident espe-
cially in zebrafish (Signature 3) where the performance
in terms of AUPR is almost twice that of the top uni-
variate ranked feature, py8m (0.41 vs 0.27). In all species,
features related with transcript length and conservation
score are recurrent in almost all signatures. This basically

confirms what is currently known in literature: lncRNA
sequences are less conserved than protein-coding genes,
but more than introns or random intergenic regions
[3, 22, 66, 67]. ORF related features (KOZAK and Orf-
Prop) are also included in almost all signatures. They
probably take into account the low coding potential of
lncRNAs. In some signatures, the Fickett score feature is
selected in conjunction with other di-/tri-nucleotides fea-
tures, while in others appears alone. In the first case no
repeat features are selected, while in the latter a group
of repeat features are selected as an alternative. Di- and
tri-nucleotides considered in IseeRNA [7, 32] are also
present in our signatures. Their presence together with
repeat features captures the ability of a sequence to main-
tain a stable RNA structure [64], which is crucial for the
functioning of lncRNAs. Di-/tri-nucleotides and repeats
rarely appear together, and in most cases are mutually
excluded. We argue that this selection denotes simi-
lar information contents. Another consideration about
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Fig. 2 Signature stability. Stability of signatures averaged among 100 bootstraps for each feature selection algorithm (average stability on y-axis)

repeats is that some of them, such as LTR-ERVL/K,
are specific to human and mouse, while others, for
example LTR-DIRS, are found only in zebrafish. Simi-
larly, DNA transposons are more enriched in zebrafish
(75%) than in human and mouse (10%) [68], instead,

LINEs and SINEs are more predominant in human
and mouse than in zebrafish [60]. This could explain
why in human and mouse we see signatures containing
LINE/SINE and in zebrafish signatures containing DNA
transposons.

Table 3 Signatures detected in top 20 ranked features (Human)

Signatue # Algorithm groups BASIC CONS NUCLEO ORF REPS AUPR (AUC)

1 IG, RFS, TxExLenAvg, ph100m, AA, AAT, AT, KOZAK, DNA.TcMar.Tigger, 0.69 (0.94)
RF, TxLen, ph20m, ATA, CA, CC, OrfProp LINE.L1,
EFmn TxNex ph20mn, CCG, CG, LTR.ERV1,

ph20mx, CGA, CGT, LTR.ERVL,
py100m, FickScore, GC, LTR.ERVL.MaLR,
py100mx, GG, GT, GTG, SINE.Alu,
py20m TA, TAT, TCG, SINE.MIR

TT, TTA

2 GR TxExLenAvg ph100m, ATC, ATG, CA, DNA.DNA, 0.55 (0.92)
ph20m, CAC DNA.hAT.Blackjack,
ph20mx, DNA.MULE.MuDR,
py100m, DNA.PiggyBac,
py100mx, DNA.TcMar.Tc2,
py20m LINE.Penelope,

LTR.LTR,
RC.Helitron,
SINE.MIR

3 GFS TxExLenAvg, ph100m, AA, ACC, CA, KOZAK LINE.Penelope 0.67 (0.94)
TxLen, ph20mx, CAG, CTA,
TxNex py100m, FickScore,

py20m GAT, GT,
TAC, TAT,
TGG

4 LR, EN TxLen, ph100m, AA, AAT, ACA, KOZAK 0.66 (0.94)
TxNex ph20m, ACT, CA,

ph20mx, CAA, CAC,
py100m, CG, CGA,
py100mx FickScore, GG,

GT, GTG,
TAC, TCT,
TGA, TGG

5 5 WT TxExLenAvg, AAC, AAG, 0.66 (0.94)
TxNex AC, ACA,

ACC, ACG,
ACT, AGA,
AGC, AGT,
ATA, CA, CT,
GA, GT, TA,
TC, TG



Ventola et al. BMC Bioinformatics  (2017) 18:187 Page 10 of 16

Table 4 Signatures detected in top 20 ranked features (Mouse)

Signatue # Algorithm groups BASIC CONS NUCLEO ORF REPS AUPR (AUC)

1 IG TxNex phm, phmn, ACA, ACG, KOZAK 0.47 (0.92)
phmx, CCG, CG,
py60m, CGA, CGC,
py60mx CGG, CGT,

FickScore, GC,
GCG, TAA,
TCG

2 GR phm, phmn, ACA, AGA, DNA.hAT.Charlie, 0.40 (0.91)
phmx, AT, CA, CAA, LINE.RTE.BovB,
py60m, CAT, CG, TGA LINE.RTE.X,
py60mx LTR.ERVL.MaLR,

SINE.ID,
SINE.MIR,
SINE.tRNA

3 RFS TxExLenAvg, phm, phmn, AA, FickScore KOZAK, LINE.L1, 0.44 (0.92)
TxLen, phmx, OrfProp LTR.ERV1,
TxNex py60m, LTR.ERVK,

py60mx LTR.ERVL,
LTR.ERVL.MaLR,
SINE.Alu,
SINE.B2, SINE.B4

4 GFS, LR, TxExLenAvg, phm, phmn, AAC, AAG, KOZAK 0.51 (0.93)
EN TxLen, phmx, AC, ACA, ACT,

TxNex py60m, AGT, CAC,
py60mx CAG, CAT,

CGT, CTT,
FickScore,
GAT, GT,
GTA, GTC,
GTG, TAA,
TAC, TAT

5 RF, TxExLenAvg, phm, phmn, AA, AC, KOZAK 0.51 (0.93)
EFmn TxLen, phmx, ACA, AGA,

TxNex py60m, CAC, CAT,
py60mx CCG, CG,

CGC, CGG,
FickScore, GC,
GGC, GT,
TAA, TAT, TT

6 WT TxExLenAvg, AAC, AAG, 0.46 (0.92)
TxNex AAT, AC,

ACA, ACC,
ACG, ACT,
AGA, AGC,
AT, CA, CG,
CT, GT, TA,
TC, TG

Comparison with other tools
As a baseline comparison, we computed AUPR and AUC
performances obtained with IseeRNA, PLEK, CPC, and
CPAT. For IseeRNA, we used a SVM classifier trained with
the same features (PhastCons conservation score, ORF
length and proportion, and frequencies of GC, CT, TAG,
TGT, ACG, TCG) and the same settings reported in the
original paper [7]. For PLEK, we used the available Python
tool based on an improved k-mer scheme. For CPC and
CPAT, we used the available web tools with default set-
tings (respectively http://cpc.cbi.pku.edu.cn and http://
lilab.research.bcm.edu/cpat).

Table 6 shows the results obtained in these experiments.
Coding/non-coding tools (CPAT and CPC) and PLEX are

outperformed by supervised approaches in terms of accu-
racy. The improvement ranges from 16 to 21% in human,
from 13 to 24% in mouse, and from 12 to 23% in zebrafish.
The signature of IseeRNA is moderately outperformed by
SVM signatures in zebrafish (8% for Signature 3). Instead,
in human and mouse, the performances of IseeRNA and
SVM signatures are comparable.

Case study: prediction of novel lncRNAs in zebrafish
As a case study, we collected 56535 new zebrafish tran-
scripts assembled from RNA-seq experiments in the study
of Pauli et al. [21] who identified 1133 putative lncRNAs.
The pipeline basically filters out transcripts with high

http://cpc.cbi.pku.edu.cn
http://lilab.research.bcm.edu/cpat
http://lilab.research.bcm.edu/cpat
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Table 5 Signatures detected in top 20 ranked features (Zebrafish)

Signatue # Algorithm groups BASIC CONS NUCLEO ORF REPS AUPR (AUC)

1 IG TxExLenAvg, ph8m, py8m, AAT, ACG, KOZAK, 0.39 (0.90)
TxLen, py8mn ATT, CCG, OrfProp
TxNex CG, CGA,

CGC, CGG,
FickScore,
GAG, GG,
GGA, GGC,
TA, TAA,
TCG, TGG,
TT, TTG

2 RFS TxExLenAvg, ph8m, py8m, FickScore KOZAK, DNA.DNA, 0.32 (0.87)
TxLen, py8mn OrfProp DNA.hAT,
TxNex DNA.hAT.Ac,

DNA.hAT.Charlie,
DNA.hAT.Tip100,
DNA.Kolobok,
DNA.PiggyBac,
DNA.TcMar.Tc1,
LINE.L2, SINE.5S,
SINE.V

3 LR, EN, TxExLenAvg, ph8m, py8m, AA, AAT, ACA, KOZAK, 0.41 (0.90)
EFmn TxLen, py8mn ACT, AGT, OrfProp

TxNex CAT, CGC,
CTA, CTC,
FickScore,
GAG, GC,
GCC, GGA,
TAA, TAC,
TCC, TGA,
TGG, TTG

4 WT TxNex AAC, AAT, 0.36 (0.89)
ACA, ACC,
ACG, AG,
AGC, AGG,
AT, CAG,
CCA, CCG,
CG, CGA,
CG, CGA,
GG, TC

coding potential estimated with PhyloCSF, high ORF qual-
ity, and known protein homologs estimated with blastx,
blastp, and HMMER. We classified the same set of tran-
scripts by using a SVM classifier trained with the set of
annotated zebrafish transcripts (Table 1). Table 7 sum-
marizes the results obtained considering different combi-
nation of features: all, zebrafish signatures (Table 5), and
features used in IseeRNA [7]. The overlap with Pauli et al.
predictions reaches the maximum with Signature 3 (92%)
which is not far from Signature 1 and Signature 2 (88
and 91%) and a little more greater than Signature 4 and
the IseeRNA signature (85 and 84%). Using all features
reduces the fraction to 65%.

To verify the bona fides from our putative lncRNAs,
we followed two strategies: 1) co-expression of predicted
lncRNAs with their neighbor protein-coding genes; and 2)
ribosome profiling of predicted lncRNAs compared with
protein-coding RNAs.

In the first analysis, we tested whether our putative
lncRNAs follow a co–expression profile with PCT neigh-
bors similar to that observed in other studies [4, 55].

We collected an expression dataset of 17 samples pro-
vided in Pauli et al. [21] representing 8 time-points
of zebrafish embryo-genesis stages (Accession numbers:
PRJNA154389, GSE32898) and mapped the predicted
transcripts using TopHat and Cufflinks pipelines [69].
We filtered out 50% of transcripts with low expression
variation among all the samples, obtaining an expression
matrix of 11015 transcripts in 17 samples. We computed
the absolute Spearman correlation between the top 10% of
predicted lncRNAs and neighbor annotated PCTs at dif-
ferent kb windows. Figure 3 shows the absolute Spearman
correlation of lncRNA–PCT pairs, a sample of annotated
PCT–PCT pairs, and a sample of random not neigh-
bor PCT–PCT pairs for each considered window. In all
cases, lncRNA–PCT pairs exhibit a higher correlation
with respect to annotated PCT–PCT pairs (statistical sig-
nificance tested with one tailed wilcox test and shown
in parentheses). No significant difference is found among
signatures even for the gold standard set. An overall
increase in significance is observed at 20 kb window,
similar to that reported in other related studies [4, 55].
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Table 7 Pauli et al. [21] novel transcripts predicted with different
zebrafish signatures

Training
Features

Predicted
lncRNAs

Pauli et al.
lncRNAs

Intersection Fraction AUC

Signature 1 17154 1133 1035 0.91 0.87

Signature 2 17305 1133 995 0.88 0.87

Signature 3 17198 1133 1039 0.92 0.87

Signature 4 18615 1133 962 0.85 0.81

IseeRNA 17077 1133 951 0.84 0.82

All 9366 1133 738 0.65 0.78

In the second analysis, we tested whether our putative
lncRNAs exhibit a Ribosome Release Score (RRS) signifi-
cantly lower than protein-coding RNAs [58]. We collected
the zebrafish ribo-seq profile provided by GWIPS-viz
database, which is an aggregate of two ribo-seq stud-
ies [70, 71], and the mRNA-seq profile provided by
Pauli et al. [21]. We computed the RRS of the top 10%
lncRNAs predicted with different combination of fea-
tures and those belonging to the zebrafish gold stan-
dard (Table 1). As shown in Fig. 4, in all cases the
RRS of protein-coding RNAs is greater than the RRS of
lncRNAs (statistical significance tested with one tailed
wilcox test and shown in parentheses). As expected, the
most significant difference can be observed for anno-
tated lncRNAs (pvalue ≤ 2.8 · 10−19). Signature 4
exhibits the most significant difference (pvalue ≤ 4.9 ·
10−10).

Conclusions
LncRNA peculiarities, such as transcripts length and
poor conservation at primary sequence level between
species, pose a variety of new computational biology

challenges: identification of novel lncRNA genes, and
understanding how they evolve and function. Large scale
studies on human, mouse, and zebrafish, for which a
large number of genomic, transcriptomic and expres-
sion data are available, are instrumental for compara-
tive analyses aimed at: 1) developing lncRNA discovery
tools that produce a high-quality set of lncRNAs from
RNA-seq data; 2) allowing comprehensive annotation of
lncRNAs with respect to their primary sequences, the
structural features, and their related functions; 3) search-
ing for signatures and features that help to find common
codes, even at the level of short nucleotide sequences,
used by lncRNA in the course of evolution; and 4)
elucidating evolutionary constraints in order to prior-
itize which lncRNAs that are likely to be functionally
important.

We performed an extensive comparison of a num-
ber of features extracted from transcript sequences.
Some of them were borrowed from literature and oth-
ers, related to repeats, were novel additions. With the
proposed analysis, we obtained different signatures for
human, mouse, and zebrafish, highlighting features are
shared among species, while identifying those pecu-
liar to a single species. All signatures obtained in this
study outperform the prediction performance reported
in the literature by 1–24% depending on the signa-
ture and species, showing that the systematic selec-
tion of informative features could improve classification
performance.

With the obtained signatures, we classified 56535 de
novo assembled transcripts of zebrafish and validated the
obtained putative lncRNAs with two in-silico strategies:
1) co-expression pattern with respect to neighbor protein-
coding genes, and 2) ribosome profiling compared with
protein-coding RNAs. Both analyses revealed a signifi-
cant enrichment for predicted lncRNAs with respect to

Fig. 3 Co-expression with neighbor protein coding genes evaluated for transcripts classified with different zebrafish signatures. Co-expression with
neighbor protein coding genes is evaluated with the absolute Spearman correlation for transcripts classified with different zebrafish signatures and
at different kb windows. In parentheses the pvalue of one tailed wilcox test between lncRNAs–PCT and PCT-PCT (Gold-standard) distributions
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Fig. 4 Ribosome Release Score evaluated for transcripts classified with different zebrafish signatures. The Ribosome Release Score (RRS), a relative
measure of abundance of ribosomes reads in ORF and 3’UTR regions, is evaluated for transcripts classified with different zebrafish signatures and for
those belonging to the gold standard (Table 1). In parentheses the pvalue of one tailed wilcox test between PCTs and lncRNAs distributions

protein-coding genes corroborating the likelihood of our
predictions.

Studies including more animal species are needed
to fully generalize our results, nonetheless we have
shown that our methodology can be easily extended to
include additional features – not necessary extracted from
sequences – and applied to other genomes.

Endnotes
1 http://www.ensembl.org
2 https://genome.ucsc.edu
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