
SOFTWARE Open Access

QuickMIRSeq: a pipeline for quick and
accurate quantification of both known
miRNAs and isomiRs by jointly processing
multiple samples from microRNA
sequencing
Shanrong Zhao1*, William Gordon1, Sarah Du1, Chi Zhang1, Wen He1, Li Xi1, Sachin Mathur2, Michael Agostino2,
Theresa Paradis1, David von Schack1, Michael Vincent3 and Baohong Zhang1*

Abstract

Background: Genome-wide miRNA expression data can be used to study miRNA dysregulation comprehensively.
Although many open-source tools for microRNA (miRNA)-seq data analyses are available, challenges remain in
accurate miRNA quantification from large-scale miRNA-seq dataset. We implemented a pipeline called QuickMIRSeq
for accurate quantification of known miRNAs and miRNA isoforms (isomiRs) from multiple samples simultaneously.

Results: QuickMIRSeq considers the unique nature of miRNAs and combines many important features into its
implementation. First, it takes advantage of high redundancy of miRNA reads and introduces joint mapping of
multiple samples to reduce computational time. Second, it incorporates the strand information in the alignment
step for more accurate quantification. Third, reads potentially arising from background noise are filtered out to
improve the reliability of miRNA detection. Fourth, sequences aligned to miRNAs with mismatches are remapped to
a reference genome to further reduce false positives. Finally, QuickMIRSeq generates a rich set of QC metrics and
publication-ready plots.

Conclusions: The rich visualization features implemented allow end users to interactively explore the results and
gain more insights into miRNA-seq data analyses. The high degree of automation and interactivity in QuickMIRSeq
leads to a substantial reduction in the time and effort required for miRNA-seq data analysis.

Background
MicroRNAs (miRNAs) are a class of endogenous small
(about 22 nucleotides (nt)) non-coding RNAs that play
important roles in the regulation of gene expression.
The miRNA genes are first transcribed as primary miR-
NAs that are further processed into pre-miRNAs by
Drosha, an RNase III enzyme [1–3]. Then pre-miRNAs
are exported to the cytoplasm and processed by Dicer,
another RNase III enzyme, to generate a ~22-nt duplex
consisting of a mature miRNA and its corresponding
star miRNA [4, 5]. Finally, the duplex is unwound to

give rise to mature miRNAs. Mature miRNA species
may be generated from the 5′ and/or 3′ arms of the
precursor duplex, and are called miRNA-5p and -3p,
respectively. The mature miRNA is incorporated into a
miRNA-induced silencing complex (miRISC), which
then binds to the 3′-UTR of the target mRNA
transcript, leading to translational inhibition or mRNA
degradation.
The significance of miRNAs in health and disease is

still an unfolding story. A single miRNA can regulate
hundreds of target mRNAs concurrently. Importantly,
aberrant regulation of miRNAs plays a central role in
pathological events underlying cancers [5] and neuro-
degenerative diseases [6, 7]. Many researchers have
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demonstrated the potential role of miRNAs as non-
invasive biomarkers of a variety of diseases [8–11].
Targeting miRNAs provides an emerging opportunity to
develop effective miRNA-based therapy [12]. The rising
body of advanced preclinical evidence on the biological
significance of miR-221/222 in a variety of malignancies
indicates that they will play a crucial role in the future of
innovative therapeutic strategies, both as validated bio-
markers and drug targets [13].
Recent advances in next-generation sequencing (NGS)

technologies have enabled the interrogation of genome-
wide miRNA expression at high throughput and low
cost [14–17]. Deep sequencing of miRNA (miRNA-seq)
has provided researchers an opportunity to catalogue the
repertoire of miRNA expression across various tissues
and models and comprehensively study their dysregula-
tion. Importantly, miRNA profiling by sequencing can
better distinguish very similar miRNAs compared with
other available methods, including microarrays and
qPCR panels. The NGS approach is a powerful way of
cataloguing miRNAs, and has led to an exponential in-
crease in miRBase entries in the last few years [18].
Many groups have developed open-source tools for

miRNA-seq data analysis, including mirTools [19],
DSAP [20], miRNAkey [21], miRanalyzer [22], miR-
Deep2 [23], miRExpress [24], UEA sRNA workbench
[25], sRNAtoolbox [26], miRspring [27], iMir [28], Oasis
[29], iSRAP [30], CAP-miRSeq [31], and miRge [32].
These tools differ in the methods and algorithms used
for various processing steps such as adapter trimming
and sequence alignment. Despite the availability of these
tools, many bioinformatics challenges remain. On the
one hand, a miRNA-seq dataset is enriched for small
RNA species between 19 and 23 nt, and short sequence
lengths make it more likely that a read maps to a gen-
omic locus or known miRNA simply by chance in a
large and complex reference genome. On the other
hand, a sequence read can map to more than one
miRNA, and how to deal with multiple mapping reads is
still a challenge. This issue becomes more severe when
miRNA-seq reads derived from multiple precursors are
aligned to a reference genome directly. Therefore, for
accurate miRNA quantification, it is especially important
to introduce computational strategies to reduce or
minimize potentially false mappings.
Nearly all miRNA-seq data analyses are performed

using Linux clusters or workstations. However, analysis
results in Linux are often hard to access for most bench
scientists. Moreover, analyses of miRNA-seq datasets
typically generate large amounts of data and a variety of
result files that are difficult to interpret. Therefore, it is
crucially important to organize and share miRNA-seq
data analysis results in an efficient and user friendly way.
Interactive web interfaces that allow end users not only

to navigate all the quality control (QC) metrics and
quantification results, but also to drill down and gain
more insights into miRNA-seq datasets are thus much
preferred.
To address those aforementioned challenges, we

implemented a pipeline called QuickMIRSeq to advance
accuracy, efficiency, and automation of miRNA-seq data
analysis to the next level. QuickMIRSeq is, in part, moti-
vated by our development of QuickRNAseq [33], an
integrated tool for large-scale RNA-seq data analyses.
QuickMIRSeq reconciles its implementation with the
unique nature of miRNAs. Specifically, we require that
QuickMIRSeq would:

1. group miRNAs with identical or similar sequences
to solve or mitigate the multiple mapping issue of
sequencing reads;

2. be strand-aware, and respect the fact that miRNA-
seq dataset are intrinsically sense stranded;

3. implement joint mapping of multiple samples for
both computational efficiency and filtering out noisy
background reads to improve the reliability of
miRNA detection and quantification;

4. remap those sequences with mismatches to known
miRNAs to the reference genome to further reduce
potentially false positives;

5. quantify the expression levels of both miRNAs and
isomiRs; and

6. organize results in a user-friendly manner, make
them fully accessible via a web interface, and enable
end users to interactively digest analysis results in a
user friendly manner.

Implementation
QuickMIRSeq is designed for quick and accurate quanti-
fication of known miRNAs and isomiRs from large-scale
small RNA sequencing, and the entire pipeline consists
of three main steps (Fig. 1), i.e. (1) database preparation,
(2) quantification and annotation, and (3) integration
and visualization. Step #1 prepares databases required
for Step #2; Step #2 processes the miRNA-seq dataset
and generates count tables for miRNAs and isomiRs;
and Step #3 produces an integrated and interactive
project report for data analyses. Step #1 requires to run
only once for any given species, and then the databases
can be shared by many miRNA-seq projects. Steps #2
and #3 are accomplished by Perl scripts QuickMIRSeq.pl
and QuickMIRSeq-report.pl, respectively.

Step #1: Database preparation
This step prepares miRNA, hairpin, and small RNA
and mRNA databases for Step #2. Two scripts were
written to automate the entire step (Fig. 1). The
utility script Prepare_smallRNA_mRNA.sh is used to
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prepare small RNA and mRNA databases. It auto-
mates the downloading mRNA, tRNA, and small
RNA database from a variety of public domains, per-
forms cleanup and extraction, and generates bowtie
index libraries for small RNA and mRNA. QuickMIR-
Seq_build.pl takes a mature miRNA and a hairpin

sequence database in FASTA format as input, and
creates modified miRNA and hairpin databases for
alignment in Step #2. The workflow for creating the
modified miRNA and hairpin databases is depicted in
Fig. 2a, and the main issues to be addressed are
described as follows.

Fig. 2 Database preparation. a The flowchart of creation of modified miRNA and hairpin database. b Mature miRNAs with identical sequences. c
Sequences from a model miRNA cluster; i.e., different miRNAs mapping (and overlapping) to a region of the same hairpin precursor. d The same
pre-miRNA gene loci can generate many miRNA isoforms, but the most abundant isoform in a particular sample may not necessarily be the one
annotated in miRBase. The numbers in the first column represent counts of sequences identical to the sequences in the second column. e A
mature miRNA can be derived from more than one precursor. f Representative entries in a *miRNA database. All extended bases are in lower
case, while the nucleotides that correspond to mature miRNAs are in upper case

Fig. 1 Overview of the QuickMIRSeq pipeline
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All known mature miRNAs and hairpins can be down-
loaded directly from miRBase [18]. Currently, there are
1881 precursors and 2588 mature miRNAs (human) reg-
istered in the most recent miRBase release 21. Some ma-
ture miRNA sequences are identical (see the example in
Fig. 2b), though derived from different pre-miRNA
sequences (Additional file 1: Figure S1). Examples of
such miRNA sequences are found in the same cluster on
human chromosome 19. Presumably, a single gene was
expanded to form all the other paralogs. The paralogs
have maintained the same mature miRNA sequence, but
their genomic sequences have slowly diverged, poten-
tially leading to alternate functions. Therefore, the
redundant sequence entries in miRNA and hairpin data-
bases are first removed, and only unique sequences are
kept. The identical miRNA and hairpin groups are listed
in Additional file 1: Table S1 and Additional file 1: Table
S2, respectively. Next, unique miRNAs are mapped to
unique hairpins. Individual miRNA clusters are identi-
fied, and then merged into groups if any two clusters
share a common miRNA member. Although miRBase
registers hsa-miR-520c-3p, hsa-miR-520b, and hsa-miR-
520f-3p as three separate mature miRNAs, they are all
aligned to the same hairpin precursor in Fig. 2c. If the
alternative splicing events of 5′ and 3′ end are taken
into account, the sequence reads derived from these
three miRNAs are nearly indistinguishable. In Quick-
MIRSeq, we group overlapping mature miRNAs mapped
to the same precursor into individual clusters.
Another issue in quantification of miRNAs is the pres-

ence of isomiRs (see Fig. 2d). Unfortunately, miRBase
annotates only one mature miRNA for a given miRNA
locus, and often the most abundant isomiR present in
the sample is not necessarily the one annotated in miR-
Base [34]. For instance, the most abundant hsa-miR-30e-
5p isoform in Fig. 2d is 2 bp longer at the 3′ end than
the miRBase annotation. Therefore, it is not sufficient to
use only annotated miRNAs in miRBase as the sole ref-
erence for accurate miRNA quantification. To capture
the entire set of isomiR length variants, all the annotated
miRNA sequences are extended at the 5′ and 3′ ends by
adding user specified additional nucleotide bases from
their corresponding hairpin precursors. The extended
miRNAs are used in the sequence alignments.
More than 50 mature miRNAs are found in two or

more hairpin precursors in the human genome [35], and
hsa-let-7a-5p is used to exemplify this point (see Fig. 2e).
These loci produce identical mature miRNAs but often
have different nucleotides adjacent to the mature se-
quence. Accordingly, after the 5′ and 3′ end extension,
one mature miRNAs can generate more than one
extended sequence. These extended sequences are
combined to represent hsa-let-7a-5p (see Fig. 2f ) in the
database. It is noted in Fig. 2f that the extended

nucleotides are in lower case while mature miRNA se-
quences are in upper case. Different extended sequences
are delimited by either a single “N” if corresponding to
the same mature miRNAs, or a double “NN” if corre-
sponding to different mature miRNAs.

Step #2: Quantification and annotation
Figure 3a outlines the main flowchart for Step #2. First,
all adapter sequences are trimmed from raw sequencing
reads, and then short miRNA-seq reads are collapsed
into unique reads as illustrated in Fig. 3b within and
across samples. Next, the unique reads are mapped se-
quentially to the miRNA, hairpin, small RNA, and
mRNA sequence databases prepared in Step #1. Our im-
plementation exploits as many unique features of
miRNA reads as possible, and a variety of strategies are
introduced for computational efficiency and accuracy in
quantification. These include collapsing identical reads
into unique ones and joint mapping of unique reads
across multiple samples (Fig. 3b), remapping of miRNA
reads with mismatches to the reference genome to re-
duce false hits (Fig. 3c) and taking into account the
strand information for more accurate read mapping
(Fig. 3d and e).
A major feature of miRNA reads that can be utilized is

their high redundancy. Therefore, collapsing identical
reads into unique ones is advantageous in miRNA-seq
data analysis because it significantly reduces the number
of miRNA reads in the alignment step. A step that col-
lapses identical reads has been adopted by miRDeep2
[23], miRExpress [24], sRNAbench [26], miRge [32], and
other programs. A miRNA-seq study often consists of
many samples from different biological conditions. It is
expected that the majority of identical miRNA reads can
be found in most samples of a given dataset. Instead of
processing individual samples independently, it is more
efficient to perform an alignment using the combined
unique sequence reads identified across multiple samples
(Fig. 3b).
Short reads derived from genomic loci can be mapped

to miRNAs by chance, especially when mismatches are
allowed. Therefore, QuickMIRSeq introduces an op-
tional “Remapping” step to map those sequences with
mismatches to the reference genome to reduce the
number of likely false positives (Fig. 3c). If a mismatch
read can be mapped perfectly to the reference genome
without any mismatch, its mapping to the miRNA will
be invalidated. Read “a” in Fig. 3c is a case in point. The
mapping of Read “b” is kept because no perfect mapping
is found in the reference genome.
In all current small RNA sequencing protocols, the

adapters are ligated first to the RNA molecule, and
therefore miRNA-seq dataset are intrinsically stranded.
However, bowtie [36] by default will attempt to align a
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sequence read against both the forward and reverse-
complement reference strands, and this is problematic
as illustrated in Fig. 3d and e. As shown in Fig. 3d,
mature miRNA species can be generated from both the
5′ and/or 3′ arms of the same hairpin precursor, and
these two miRNAs can even be reverse complementary
to each other, such as hsa-miR-3913-5p and hsa-miR-
3913-3p. In this scenario, reads derived from hsa-miR-
3913-5p can be mapped to the reverse-complement
strand of hsa-miR-3913-3p, and vice versa. In Fig. 3e,
hsa-mir-374b and hsa-mir-374c are expressed from the
same locus in chromosome X but transcribed in oppos-
ite directions. Likewise, reads derived from this locus
become ambiguous if the strand information is ignored
in the alignment step. More miRNA pairs that are
reverse complementary to each other are listed in
Additional file 1: Table S3. If the strand information is

ignored, the accurate quantification becomes problem-
atic for those miRNA pairs in Additional file 1: Table S3.
Thus, it is crucial to specify “–norc” option to instruct
bowtie not attempt to align against the reverse-
complement reference strand when analyzing currently
sequenced miRNA-seq dataset.
The joint mapping procedure was first introduced by

miRge [32]. QuickMIRSeq not only incorporates this
strategy into its alignment step, but also extends it to
filter out potentially noisy background reads to improve
the reliability of detected miRNAs. In our experience,
sufficient sequencing depth reveals low expressing miR-
NAs (true positives) across many samples, while noisy
background reads (false positives) are more likely to be
seen only in a very small subset of samples. Therefore,
potentially noisy reads can be identified based on the
patterns of their read counts across samples and

Fig. 3 Various strategies introduced in QuickMIRSeq to reduce computational time and to improve accuracy in miRNA quantification. a The
overview of workflow for miRNA-seq data analysis. b Collapsing identical reads into unique ones within and across multiple samples. c Remapping of
miRNA reads with mismatches to the reference genome to reduce false hits. d miRNAs has-miR-3913-5p and has-miR-3913-3p are generated from the
same hairpin precursor and reverse complementary to each other. e Genes hsa-mir-374b and hsa-mir-374c are expressed from the same genomic
locus in chromosome X but transcribed in opposite directions
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accordingly filtered out. As we will show later, the filter-
ing of noisy reads barely impacts the total number of
mapped miRNA reads, but significantly reduces the
number of detected miRNAs.
Previously, each arm of the hairpin precursor miRNA

is believed to give rise to a single mature product. How-
ever, recent advances have revealed that a number of
distinct mature miRNA species can arise from the same
hairpin arm, and thus significantly increase the diversity
and complexity of the miRNAs. Recent additional stud-
ies have shown that isomiR sequences are tissue and
gender-specific [34] and play distinct roles in biological
processes [37], which emphasize the importance of per-
forming miRNA-seq analysis simultaneously at both the
miRNA and isomiR levels. To this end, the QuickMIR-
Seq pipeline produces parallel quantification results for
miRNAs and isomiRs. The protocol for isomiR quantifi-
cation is detailed in Additional file 1: Figure S2. In brief,
the 5′ and 3′ end offsets for all mapped reads are identi-
fied first. Then reads that have identical 5′ and 3′ end
offsets are added up to generate an isomiR counts table.
Quite often, end users are required to make an unin-

formed choice in advance between inclusion and exclu-
sion of sequences that contain mismatches when
analyzing miRNA-seq datasets. If end users change their
minds, the same dataset have to be re-analyzed. To help
end users to make an informed decision afterwards, the
QuickMIRSeq pipeline generates companion counts ta-
bles in which only sequences with mismatches are
counted, in addition to the ‘standard’ counts table for
miRNA and isomiRs. The companion tables serve two
purposes. First, they can be used for quality controls and
secondly, they offer the end user a choice of using only
perfectly matched reads for downstream analysis, elimin-
ating the need to reanalyze the entire dataset. Instead,
the subtraction of the companion counts table from its
‘standard’ miRNA or isomiR counterpart provides the
necessary information.

Step #3: Integration and visualization
This step automates the generation of various QC plots
and produces an integrated interactive project report.
All high-quality plots are ready for PowerPoint presenta-
tion and scientific publications. From the entry webpage
of the project report as shown in Fig. 4, a user can easily
navigate and visualize analysis results. More importantly,
the project report offers interactive visualizations of
miRNA-seq QC and expression results. The visualization
in QuickMIRSeq is implemented by combining cutting
edge JavaScript-based open source visualization libraries,
including JQuery, D3 (Data-Driven Documents), can-
vasXpress, and Nozzle [38]. JQuery simplifies HTML
page traversal, manipulation, event handling, and anima-
tion, while D3 can manipulate HTML documents based

on input data. Nozzle [38] is designed to facilitate sum-
marizing and rapid browsing of complex results in data
analysis pipelines when multiple analyses are performed
on big datasets. All required JavaScript libraries have
already been packaged into the QuickMIRSeq project
report; thus, the report can be digested on a PC locally
and deployment into a web server is optional.

Results
QuickMIRSeq can analyze miRNA-seq datasets from
any species as long as the corresponding mature miRNA
and hairpin databases are available. We selected three
datasets GSE64977 [7], GSE65920 [39], and GSE60900
[40] for test runs, corresponding to human, mouse and
rat, respectively. All three datasets were generated and
deposited into GEO between 2014 and 2016. The
complete project reports can be downloaded from the
QuickMIRSeq project home page (http://QuickMIRSeq.-
sourceforge.net). We will use the GSE64977 dataset to
highlight important functionalities and features of
QuickMIRSeq. All the results presented below, including
summaries and QC plots, were generated automatically
by the QuickMIRSeq pipeline, and end users are not
required to perform any additional analysis steps.

Integrated and interactive project report
A screenshot of the entry webpage for the project report
is shown in Fig. 4. The page consists of three main sec-
tions. The first section provides the summary of reads
mapping and annotation for individual samples, includ-
ing the distribution of read lengths, the breakdown of
read annotations, and the number of reads falling into
miRNA, hairpin, small RNA, mRNA and unaligned cat-
egories, respectively. Clicking on “QC Parallel Plot” but-
ton will show an integrated and interactive QC plot for
linked quality control measurements. The second
section shows an array of key QC metrics graphically,
including adapter trimming, detected miRNAs and
distributions of variation at 5′ and 3′ ends of miRNA
reads. For each QC plot, clicking on the icon image will
bring forth the corresponding enlarged plot, and the
interactive plot is accessible by clicking the pointing
hand. The third section lists expression values of
detected miRNAs in each sample, which can be inter-
changeably shown as either raw counts or RPMs (Read
Per Million).

Incorporation of strand information gives more accurate
quantification
It was demonstrated more accurate quantification is
obtained in stranded mRNA-seq than in non-stranded
mRNA-seq [41]. To demonstrate the importance of the
strand information in miRNA quantification, four
samples (SRR1759212, SRR1759213, SRR1759214, and
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SRR1759215) in the dataset were analyzed by the Quick-
MIRSeq pipeline with and without incorporation of the
strand information in the alignment, and the scatter
plots for SRR1759212 and SRR1759213 are shown in
Fig. 5a. In comparison, the four samples were also ana-
lyzed using miRge [32], and the results are shown in
Additional file 1: Figure S3. The comparison between
QuickMIRSeq and miRge is discussed later in a separate
section. The majority of miRNAs are arrayed along the
diagonal line in the scatter plots and their quantification
results are either identical or very close. However, there
are some miRNAs whose quantifications are influenced
dramatically by the strand information. Additional file 1:
Table S4 lists the top 10 miRNAs with large differences.
To better understand the reasons for the observed large

differences, miR-103b and miR-3065-5p were selected
for in-depth analysis.
As shown in Fig. 5b, the sequence AGCAGCATTGTA-

CAGGGCTATGT has 5882 copies in SRR1759212. If the
strand information is ignored, this read maps equally
well to the sense strand of hsa-miR-103a-3p and to the
antisense strand of hsa-miR-103b. In fact, the dataset is
sense-stranded, and thus the mapping to hsa-miR-103a-
3p is true, whereas the alignment to hsa-miR-103b is
wrong. Fig. 5b shows that ignoring the strand informa-
tion underestimates the expression of one of the miR-
NAs and overestimates the other. In Fig. 5c, a large
number of reads were aligned to the antisense strand of
hsa-miR-3065-5p; however, these reads would not be
mapped if the stranded sequencing protocol was taken

Fig. 4 Entry page of a project report. The first section provides the summary of reads mapping and annotation for individual samples. The
second section shows a variety of key QC metrics, including adapter trimming, detected miRNAs and distributions of variation at 5′ and 3′ ends of
miRNA reads. The third section lists expression values of detected miRNAs in each sample, which can be interchangeably shown as either raw
counts or RPMs on the fly
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into consideration. As a result, the expression of hsa-miR-
3065-5p is overestimated due to false mappings. There-
fore, incorporation of strand information in the alignment
step gives rise to more accurate quantification.

Benefits of joint mapping and remapping of mismatch
reads
For GSE64977, if each individual sample is processed in-
dependently, a total of 1,110,470,294 reads need to be
aligned, whereas this number drops to 47,355,430 if all
64 samples are combined and jointly processed (Fig. 6a).
The benefit of joint mapping becomes increasingly
evident as the number of sample increases. The strategy
of joint mapping of multiple samples takes advantage of
the high redundancy of miRNA-seq reads within and
across samples, and it significantly reduces computa-
tional time. In our HPC cluster, it took bowtie (with 8
running threads) 0.57 h to align 47 million reads to miR-
base, and the time would rise to 13.3 h if mapping all
1.11 billion raw reads without introducing the strategy
of jointing mapping. In the meantime, joint mapping is
powerful in filtering out false positives (i.e., noisy reads),
thereby improving the reliability of the detected miRNAs
(Fig. 6b). As depicted in Fig. 6b, the filtering of noisy
reads barely impacts the total number of mapped
miRNA reads, but significantly reduces the number of
detected miRNA, and accordingly, improves the statis-
tical power in downstream differential analysis of miR-
NAs. In Fig. 6b, a read is considered noisy if it is absent
in more than 60% of the samples, and the average

number across samples is less than two. In the
QuickMIRSeq pipeline, end users can define the
criteria for noisy reads when analyzing their miRNA-
seq datasets.
The motivation of remapping reads with mismatches

to the reference genome is to reduce potential false hits.
The impact of “Remapping” on miRNA reads with mis-
matches is shown in Fig. 6c. The invalidation rate was
calculated for all mismatch reads and unique mismatch
reads, respectively. For unique mismatch reads, the aver-
age invalidation rate was 3.9% (ranging from 2.8 to
11.8%). However, the corresponding average rate was
0.61% for all mismatch reads. This confirms that the ma-
jority of the invalidated reads has low abundance and
thus, is most likely to be false positives. Clearly, the in-
validation rate varies greatly from sample to sample
(Fig. 6c). This “Remapping” is implemented as an op-
tional step, although it is recommended for miRNA-seq
data analyses.
As mentioned in the Implementation section, the

QuickMIRSeq pipeline separates the mapped reads
into two categories: perfect and mismatches, and
generates a companion counts table for reads with
mismatches only, in addition to the standard counts
table. On average, about 12% (ranging from 9 to 17%)
mapped reads have mismatches (see Additional file 1:
Figure S4). In general, we recommend that reads with
mismatches are included in the quantification step
because their exclusion can underestimate miRNA
expression levels.

Fig. 5 Incorporation of strand information gives more accurate quantification. a Scatter plots of miRNA quantification results. b,c Many reads are
wrongly mapped to anti-sense strand of has-miR-103b and has-miR-3065-5p when the stranded information is ignored in miRNA-seq quantification.
Samples SRR1759212 and SRR1759213 are stranded, but analyzed with and without incorporation of the strand information, respectively
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Comprehensive analysis reports and rich QC metrics
As shown in Fig. 3a, adapter-trimmed reads undergo
four separate alignments against miRNA, hairpin, small
RNA, and mRNA sequences in a sequential manner.
After annotation, QuickMIRSeq provides an overview of
the distribution of annotated reads in each sample (Add-
itional file 1: Figure S5). The relative abundance of anno-
tated reads in each category is sample dependent.
Usually, only a tiny portion of reads are mapped to hair-
pins. For high-quality miRNA-seq datasets, miRNAs
should be dominant compared with other annotated
categories. Furthermore, dividing the total number of
reads by the unique number of reads gives rise to the
read redundancy in each annotated category (Fig. 7).
Depending on sequencing depth, the redundancy for

miRNA reads can be as high as several hundred folds,
whereas the redundancies of reads in other annotated
categories are generally much lower. This feature can be
used to identify potential issues in sequencing samples.
For example, when we analyzed an in-house cell-free
miRNA-seq dataset from urine, we found some samples
had exceptionally high redundancy in unaligned reads
(unpublished data). It turned out that many unaligned
reads in those samples resulted from dimerization of
primers added during the library preparation step.
Because the amount of RNA in cell-free urine is low,
this is more likely to happen than in other sample types.
Therefore, the redundancy plot (shown in Fig. 7) is very
helpful in trouble-shooting potential issues arising from
difficult samples during library preparation.

Fig. 6 The benefits of joint mapping and “Remapping” of mismatch reads. a If individual samples are processed independently, a total of
1,110,470,294 sequences need to be aligned. This number drops to 47,355,430 if all 64 samples are jointly processed. b The filtering of noisy reads
significantly reduces the number of detected miRNAs (Top panel) but barely impacts the total number of mapped miRNA reads (Bottom panel).
A read is filtered out if it has ZERO counts in more than 60% of samples, or its average count across all samples is below 2. c For unique
mismatch reads, the average invalidation rate is 3.8% (ranging from 2.7 to 6.1%); however, the corresponding average rate is only 0.64% for all
mismatched reads. Note the y-axis indicates the percentage of miRNA reads that are invalidated in the “Remapping” step
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The sequence read length in most miRNA-seq datasets
that we analyzed was 50 bp, much longer than the typ-
ical length of a miRNA (20–23 bp). All adapter se-
quences need to be trimmed prior to alignment. After
trimming, reads that are shorter than 16 bp are dis-
carded and excluded from further analysis. QuickMIR-
Seq automatically generates a summary QC report for
adapter trimming step (see Additional file 1: Figure S6).
Ideally, the percentage of reads with adapter sequences
should be close to 100% in a high-quality miRNA-seq
dataset (Top panel). The trimmed reads should still be
long enough to be kept for alignment, and thus the per-
centage of reads surviving adapter trimming should also
be very high (Bottom panel). Moreover, a high-quality
miRNA-seq dataset is expected to have a characteristic
read length distribution. For human samples, the length
distribution of the trimmed reads should, in principle,
be centered on 22 bp. The read length distributions for
samples SRR1759212, SRR1759213, SRR1759214, and
SRR1759215 from GSE64977 are shown in Additional
file 1: Figure S7. The peak is indeed at 22 bp for all four
samples, and the overall pattern of length distribution
indicates the majority of reads are derived from miR-
NAs. Usually, the length distribution is very informative
on miRNA-seq data quality.
The offsets of all unique reads are first calculated with

respect to miRNA seed sequences. Next, the distribution
of offsets is examined and depicted as shown in

Additional file 1: Figure S8 (see also Additional file 1: Table
S5). Generally speaking, the 5′ end shows a much narrower
range (+/−1 nt) of variations compared with the 3′ end
(+/−3 nt) (Additional file 1: Figure S8A and 8B). Of the
7183 unique reads, only 2210 reads (31.8%) have no vari-
ation on both the 5′ and 3′ ends (Additional file 1: Figure
S8C). If we examine only one end, 5571 reads (63.64%)
show 3′ end variations whereas only 1339 reads (18.64%)
show 5′ end variations. The pattern of distributions shown
in Additional file 1: Figure S8 is in accordance with miR-
NA’s biological role and biogenesis. It is believed the first 8
nucleotides are crucial for miRNA’s binding to its targeted
mRNAs, and the variation at the 5′ end is therefore func-
tionally more constrained. The larger variability at the 3′
end mainly results from imperfect Dicer editing, which ei-
ther adds additional hairpin nucleotides or shortens the
length of the miRNA, most commonly at the 3′ end. Argo-
naute crystallographic studies have indicated that the the 3′
ends extend from the PAZ domain and are therefore sus-
ceptible to exonucleolytic cleavage [42, 43], causing 3′ end
shortening. Moreover, non-templated nucleotide addition
to the 3′ end can occur on the mature miRNA [44]. Taken
together, it is expected that the 3′ end of miRNA displays
higher variation than the 5′ end.

Rich and interactive visualization features in QuickMIRSeq
The rich interactive features of QuickMIRSeq are par-
tially illustrated in Fig. 8. As shown in Fig. 8a, miRNA

Fig. 7 Read duplications in each annotated RNA category. As expected, the redundancy in miRNA reads is typically high, while redundancies in
other annotated categories are generally much lower. The sample names from the GSE64977 miRNA-seq dataset used in this study are shown
along the X-axis
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expression profiles can be grouped and segregated in
real time according to the sample annotations, such as
time points, biological conditions and dosage arms. The
look and feel of the plot is highly customizable including
plot type, font size, color, and position of each box. The
alignments of sequence reads with microRNA (Fig. 8b)
show details of abundance of isomiRs, patterns of 5’ and
3’ offsets, and potential noisy reads. Correlation plot can
be generated based on user selected microRNAs as
shown in Fig. 8c to explore co-expression patterns. The
heatmap shown in Fig. 8d is highly interactive. Data
transformation and hierarchical and k-mean clustering
can be performed through user menu. The QuickMIR-
Seq user guide (https://baohongz.github.io/guide/Quick-
MIRSeq.html) has detail instructions on how to explore
the analysis results interactively.

QuickMIRSeq versus miRge and other tools
The software miRge is one of the latest tools available
for known miRNA quantification. It is considerably
more computationally efficient than any prior software

tools and scales well with large datasets [32]. The compari-
sons for samples SRR1759212, SRR1759213, SRR1759214,
and SRR1759215 are shown in Additional file 1: Figure S9.
The scatter plots indicate the quantification results are rea-
sonably consistent for most miRNAs, but for some miR-
NAs, large differences were observed. The difference
mainly results from the fact that miRge ignores strand
information when analyzing miRNA datasets and that its
execution workflow tends to exclude reads with mis-
matches from quantification, as discussed further in
Additional file 1: Figure S9.
Many tools developed in early years are sort of super-

seded by recent ones. The new tools published in 2014
and 2015 included sRNAtoolbox [26], Oasis [29], iSRAP
[30], CAP-miRSeq [31] and miRge [32]. The comparison
of miRge with sRNAtoolbox was reported in the miRge
paper. Oasis is a web based application and does not
meet our needs. We installed iSRAP but failed to make
it work. CAP-miRSeq was claimed to be a comprehen-
sive analysis pipeline for microRNA sequencing data. In
essence, CAP-miRSeq is a wrapper of miRDeep2 [23],

Fig. 8 Rich interactive visualization features of QuickMIRSeq report. a Boxplot of expression values grouped by sample conditions. b Alignment
details of reads mapped to has-miR-1247-5p. c Correlation plot of selected microRNA expressions. d Heatmap view of multiple microRNA expressions
in log2 scale. Note all plots are generated interactively. The demo dataset is from GSE64977
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and simplifies batch processing of multiple samples.
However, in order to process multiple samples in paral-
lel, CAP-miRSeq requires a Sun Grid Engine cluster.
Unfortunately, Pfizer’s HPC cluster is running LSF. In
contrast, QuickMIRSeq does not have special require-
ments on its execution environment, and can be run in
a stand-alone Linux workstation or any cluster
environment.
bcbio-nextgen also implements a configurable best-

practices pipeline for small RNA-seq data analysis
(https://bcbio-nextgen.readthedocs.io/en/latest/contents/
pipelines.html#smallrna-seq), including quality controls,
adapter trimming, miRNA/isomiR quantification, other
small RNA detection, and prediction of new miRNAs.
The quantification of known small RNAs is carried out
by SeqBuster [45], a bioinformatic tool developed in
2010, while the quantification isomiRs is done by R
script. In contrast, QuickMIRSeq quantifies both known
miRNAs and isomiRs simultaneously. QuickMIRSeq is
simple to use, and its implementation blends many use-
ful features from other open source tools. More import-
antly, QuickMIRSeq makes all analysis results fully
accessible via a web interface, and enables end users to
visualize them interactively.

Discussion
QuickMIRSeq highlights
The analysis of miRNA-seq data presents unique chal-
lenges. The miRNA-seq dataset are intrinsically stranded,
and QuickMIRSeq incorporates the strand information in
the alignment step for more accurate quantification
(Fig. 5). Compared with mRNA-seq, miRNA sequences
are typically only 19–23 bp in length, and are more likely
to be mapped to random sequences throughout the gen-
ome. To remedy this situation, QuickMIRSeq introduces
joint mapping of multiple samples not only to reduce
computational time (Fig. 6a), but also to filter out poten-
tially false positives (i.e., noisy reads) based upon their
expression patterns across samples, thereby improving the
reliability of the detected miRNAs (Fig. 6b). Additionally,
QuickMIRSeq introduces the step of remapping reads
with mismatches to a reference genome to further reduce
the number of false hits (Fig. 6c). The combined effect of
our approaches maximizes the capture of true miRNAs
and minimizes false assignments. Besides, QuickMIRSeq
quantifies the expression levels for both miRNAs and
isomiRs simultaneously.
QuickMIRSeq automatically generates a rich set of QC

metrics and publication-ready plots and a variety of
summary tables (Figs. 4 and 8). The summary plots on
adapter trimming as well as the read length distribution
offer concise information on the quality of the raw data-
set. After alignment, various plots, including the number
of detected miRNAs, the distribution of annotated

sequences and the read redundancy in each annotated
category (Fig. 7) can be used to quickly uncover poten-
tial sequencing issues in some samples or in the entire
dataset, such as primer dimerization or sample prepar-
ation failures. The rich visualization features imple-
mented in QuickMIRSeq allow end users to interactively
explore the results of miRNA-seq data analyses, and to
gain more insights into miRNA-seq datasets without set-
ting up database and/or server.
QuickMIRSeq is very easy to use. For practical miRNA-

seq data analysis, a user just needs to prepare run.config, a
plain text configuration file that stores project, species,
and software-specific parameters, such as the location of
database and sequencing files. This run configuration file
also improves the reproducibility of miRNA-seq data ana-
lyses. For the convenience of QuickMIRSeq users, a con-
figuration file template has been provided in the
QuickMIRSeq package for easy customization. Further-
more, end users have full control of the execution work-
flow in Step #2 by enabling or disabling some optional
computational analysis steps. Step #3 does not require any
parameters when running the QuickMIRSeq-report.pl
script under the results folder.

Limitations of the QuickMIRSeq pipeline
QuickMIRSeq is designed for accurate quantification of
known miRNAs and isomiRs. The current version of Quick-
MIRSeq cannot be used to discover novel miRNAs. The
counts table generated from QuickMIRSeq provides a start-
ing point for functional analysis and biological interpret-
ation. Downstream analyses are usually driven by biological
questions and the experimental design, and thus vary from
project to project. Currently, QuickMIRSeq cannot be used
to perform differential expression analysis of miRNAs [46,
47] or carry out gene set overrepresentation analysis [48].
We attempted to automate differential analysis but realized
it is extremely hard to make this step user friendly and uni-
versally applicable to any experimental design. Some tools
like iSRAP [30] and CAP-miRSeq [31] offer such a function-
ality, but support only the comparison between two condi-
tions such as “Treatment versus Control”. A practical
microRNA-seq study is quite often much more complex.
For instance, for biomarker discovery in clinical studies, it’s
common to collect specimens at different time points, from
different population (race, gender or age group), from
various disease stages or treatment arms (healthy control,
disease subgroups, and different dosage group), and even
from different sources (whole blood, PBMC, urine or
tissues). As a result, the statistical model and covariates for
differential analysis can be very complicated. The “Treat-
ment versus Control” comparison is too simple to be
practically used in most miRNA-seq data analysis.
Another limitation is sample size. QuickMIRSeq collapses

sequences into unique sequences, first within and across
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samples, and then annotates them. All unique reads and
their quantification are held in memory; therefore, the num-
ber of samples that can be run together is not unlimited.
The read counts table is kept in memory, and its size and
growth is roughly proportional to the number of unique
reads. If the miRNA-seq process is clean and the majority of
reads are miRNAs, the table should not grow significantly as
each sample is added. According to our internal test runs,
QuickMIRSeq should have no problem in batching 200
samples on a Linux workstation with 128 GB memory. Until
now, the majority of miRNA-seq datasets deposited into
GEO have sample sizes much smaller than 100. In case the
samples from a large-scale miRNA-seq study cannot be
processed in one batch by QuickMIRSeq, the large dataset
can be divided into multiple chunks for parallel processing.

Conclusion
We developed QuickMIRSeq, an integrated pipeline for
quick and accurate quantification of known miRNAs and
isomiRs by jointly processing multiple samples. Its imple-
mentation takes advantage of the unique nature of miR-
NAs, and is computationally efficient. A variety of
strategies have been introduced to maximize the capture
of true miRNAs, to minimize false positives, and to
improve the reliability of miRNA detection and quantifica-
tion. The user-friendly interactive application makes data
exploration and sharing more efficient.

Additional files

Additional file 1: Table S1. Human mature miRNAs in miRBase Release
21 with identical sequences. Table S2. Human hairpins in miRBase
Release 21 with identical sequences. Table S3. Pairs of miRNAs that are
reverse complementary to each other in human miRBase Release 21.
Table S4. Top 10 miRNAs with large differences in miRNA quantification
between stranded and non-stranded mapping modes. Table S5.
Distribution of 5′ and 3′ end offsets of unique miRNA reads in
GSE64977. Figure S1. Top panel: All of the miRNAs in the alignment
have the same mature sequence (highlighted in gray), but originate
from different genes as evidenced by the differences in the pre-
miRNA sequences. Bottom panel: miRNA genes found in a cluster on
human chromosome 19. Figure S2. Protocol of isomiR quantification.
Figure S3. Scatter plots of miRNA quantification results by miRge for
samples SRR1759212 SRR1759213, SRR1759214 and SRR1759215. The
same dataset were analyzed with and without incorporation of the
strand information, respectively. Figure S4. Breakdown of mapped
miRNA reads into perfect and mismatch categories. Figure S5.
Comprehensive annotation of miRNA-seq reads. The summary plot
provides an overview of the distribution of annotated reads in all five
annotated RNA categories for each sample. Figure S6. Summary
report for adapter trimming. Figure S7. Read length distributions for
samples SRR1759212, SRR1759213, SRR1759214, and SRR1759215 in
the GSE64977 miRNA-seq dataset. Figure S8. Variations at 5′ and 3′
ends of miRNA reads. Figure S9. The comparison of QuickMIRSeq
with miRge. (PDF 1088 kb)
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