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Abstract

Background: Inferring the ancestry of each region of admixed individuals’ genomes is useful in studies ranging
from disease gene mapping to speciation genetics. Current methods require high-coverage genotype data and
phased reference panels, and are therefore inappropriate for many data sets. We present a software application,
AD-LIBS, that uses a hidden Markov model to infer ancestry across hybrid genomes without requiring variant

calling or phasing. This approach is useful for non-model organisms and in cases of low-coverage data, such as

ancient DNA.

Results: We demonstrate the utility of AD-LIBS with synthetic data. We then use AD-LIBS to infer ancestry in two
published data sets: European human genomes with Neanderthal ancestry and brown bear genomes with polar
bear ancestry. AD-LIBS correctly infers 87-91% of ancestry in simulations and produces ancestry maps that agree
with published results and global ancestry estimates in humans. In brown bears, we find more polar bear ancestry than
has been published previously, using both AD-LIBS and an existing software application for local ancestry
inference, HAPMIX. We validate AD-LIBS polar bear ancestry maps by recovering a geographic signal within
bears that mirrors what is seen in SNP data. Finally, we demonstrate that AD-LIBS is more effective than
HAPMIX at inferring ancestry when preexisting phased reference data are unavailable and genomes are

sequenced to low coverage.

Conclusions: AD-LIBS is an effective tool for ancestry inference that can be used even when few individuals
are available for comparison or when genomes are sequenced to low coverage. AD-LIBS is therefore likely to
be useful in studies of non-model or ancient organisms that lack large amounts of genomic DNA. AD-LIBS
can therefore expand the range of studies in which admixture mapping is a viable tool.
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Background

Inferring the ancestry of different parts of admixed
diploid individuals’ genomes has been a goal of fields as
diverse as disease gene mapping [1] and paleogenomics
[2, 3]. Several computational approaches have been de-
veloped for ancestry detection. Among these, global
methods calculate genome-wide amounts of admixture
but do not attempt to localize admixture segments in
the genome. In contrast, local methods for ancestry
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detection scan across admixed individuals’ genomes to
search for haplotype blocks originating from specific an-
cestral populations [4]. Because haplotype blocks are
broken down by recombination over time, local methods
sacrifice power to detect very old admixture events in
exchange for the ability to make specific, local state-
ments about ancestry [4].

Many of the techniques for local ancestry inference
were developed to investigate human ancestry and there-
fore incorporate assumptions that may not be valid for
analyses of non-human data. For example, methods that
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compute on genotype calls rely on accurate calling.
Genotype calling from sequence data as implemented in
applications such as GATK [5] rely on pre-existing
knowledge of polymorphic sites to make high-quality
variant calls. This information is often unavailable for
non-model organisms. In addition, some fields, such as
paleogenomics [6], are limited by the amount of data
that can possibly be recovered. Specifically, the degraded
nature of recovered ancient DNA, and the upper limit
imposed by the endogenous DNA content of source ma-
terial [6], often results in coverage well below the thresh-
old of 20X that has is considered necessary for reliable
genotype calling [7]. Additionally, population genomic
analyses may benefit more from sequencing many indi-
viduals to low coverage than sequencing fewer individ-
uals more deeply [8], meaning that data collected for
other types of analyses may not be suitable for ancestry
inference techniques that rely on genotype calling. As an
example, a recent study used ancient DNA from aur-
ochs, the extinct wild ancestor of domestic cattle, to pro-
duce a ~6X coverage genome and infer gene flow into
British and Irish cattle breeds post-domestication [9].
These data would be unsuited to current local ancestry
inference techniques.

To address these challenges, we present AD-LIBS (An-
cestry Detection through Length of Identity By State
tracts), which is a software application that performs
local ancestry inference by analyzing genetic data across
genomic windows rather than at individual sites. AD-
LIBS is designed for low-coverage shotgun resequencing
data, and bypasses the need for variant calling and phas-
ing. Input data for AD-LIBS is a single haploid sequence
for each individual where every base is a random sample
from one or the other chromosome, as has been done in
other studies to mitigate genotyping errors [10, 11]. AD-
LIBS uses a hidden Markov model to infer the most
likely ancestral origin of each piece of the genome.

We test AD-LIBS using simulated data and find that
it correctly infers 87-91% of ancestry, with a true posi-
tive rate of 89% for identifying admixed, homozygous
regions and 82-85% for identifying admixed heterozy-
gous regions.

We then use AD-LIBS to assign ancestry in two real
data sets: one comprising five European humans with
known Neanderthal ancestry and five West African indi-
viduals without Neanderthal ancestry, and another con-
sisting of 18 brown bears from North America and
Scandinavia with varying amounts of polar bear ancestry.
In humans, we find that AD-LIBS produces maps of
Neanderthal ancestry in Europeans that overlap signifi-
cantly with published maps [2, 3] and global Neander-
thal ancestry estimates that fall within 0-2% of what is
expected from prior studies [12, 13]. In the bear data
set, AD-LIBS identifies polar bear ancestry in all brown
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bear populations, including those believed previously to
be unadmixed, and recovers a geographic signal in pat-
terns of polar bear ancestry. We also test AD-LIBS on
downsampled, artificially low-coverage data from bears
and find that it produces consistent results down to about
2X genome-wide coverage, outperforming HAPMIX [14],
an existing local ancestry inference tool, at coverage levels
below this. In summary, AD-LIBS is an effective tool for
producing local ancestry maps for genomes of hybrid indi-
viduals when only low-coverage sequence data are avail-
able and/or reference data are scarce.

Results

Overview of AD-LIBS

AD-LIBS (Ancestry Detection through Length of
Identity-By-State tracts) uses a hidden Markov model to
determine the ancestry of specific regions of hybrid indi-
viduals’ genomes inferred from low-coverage shotgun
sequence data. To circumvent problems inherent in
genotyping and phasing individuals sequenced to low
coverage, AD-LIBS uses non-overlapping windows to
scan pseudo-haploid sequence data, allowing all nucleo-
tide positions in a given window to “vote” on the correct
ancestry of that window. AD-LIBS does not require
phased sequences from reference individuals nor does it
require prior knowledge of polymorphic sites. AD-LIBS
does require prior estimates of the population size, the
number of generations since admixture, and the propor-
tion of ancestry that the admixed population derives
from each ancestral population. Although population
size is best taken from census data, a rough estimate
may be obtained from nucleotide diversity in the ancestral
populations [15]. Admixture proportion may be estimated
using the f statistic [12, 16] if an outgroup genome is
available, and time of admixture can be roughly inferred
from the admixture proportion estimate together with
prior knowledge about the ancestral species’ historical
ranges and demography. AD-LIBS includes programs to

calculate both average nucleotide diversity and £, and in
practice, incorrect estimates for these parameters do not
have a large effect on results (Additional file 1: Figure S1).

AD-LIBS scans across each hybrid individual’s genome
in windows of a fixed width. In each window, AD-LIBS
calculates a score based on average identity-by-state
(IBS) tract lengths between the admixed individual and
each individual from each ancestral population. AD-
LIBS considers three possible types of ancestry in each
window: homozygous for ancestry from one of the two
ancestral populations, or heterozygous. Thus, AD-LIBS
works as an ancestry genotyper for genomic segments
and determines the most likely sequence of ancestry
states across each chromosome or scaffold, given ex-
pected score distributions under each type of ancestry,
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computed from nucleotide diversity values. The prob-
ability of transitioning between ancestry states is related
to the probability of recombination having occurred at
specific genomic loci in the time since admixture, as well
as the overall prevalence of alleles from each ancestral
population in the admixed population.

AD-LIBS is designed to be efficient: its genome scanning
and scoring components are written in C and its hidden
Markov model component uses a Cython package (https://
github.com/jmschrei/pomegranate). AD-LIBS requires that
the system running it possesses enough memory to hold
the longest chromosome or genomic scaffold sequence for
each reference ancestral individual and a single hybrid in
memory at once; for humans, this would comprise approxi-
mately 250 MB plus 250 MB RAM for each reference an-
cestral individual. On an Intel Xeon 2.7 GHz processor
with 377 GB RAM, we ran AD-LIBS on a single 2.3 Gb hy-
brid brown bear genome, using ten ancestral reference ge-
nomes with numeric parameters pre-computed, in under
7.5 min. The same operation took approximately 9 min on
a comparable machine with 70 GB RAM. When scanning
multiple hybrid genomes, AD-LIBS can use multiple pro-
cesses simultaneously to reduce execution time.

Simulations

To assess the accuracy of AD-LIBS, we generated 100 sim-
ulated hybrid genomes, each consisting of ten, one-
megabase (1 Mb) chromosomes. We assumed a demo-
graphic history resembling that of the ABC Islands brown
bears, a well-studied population of brown bears known to
have polar bear ancestry [10, 11, 17-19]. We used two
demographic models, one with a single polar-brown bear
admixture event 12,000 years ago (single-pulse model), and
another incorporating continuous brown bear dispersal to
the ABC Islands from the initial admixture event until the
present (migration model) (see Implementation). We com-
pared AD-LIBS ancestry calls to the known ancestry of
each simulated chromosome. AD-LIBS performed well,
with overall accuracy of 87% for the single-pulse model
and 91% for the continuous migration model, and accur-
ately recovered polar bear ancestry (82—-85% true positive
rate for heterozygous and 89% true positive rate for homo-
zygous polar bear ancestry) (Table 1, Fig. 1). While choice
of window size and number of reference individuals from
each ancestral population had a small effect on overall ac-
curacy, simulations show that suboptimal choices for both
— e.g. one reference individual per ancestral population, or
large windows of 25 kb — reduce overall accuracy only by
several percent (Fig. 1). Additionally, we found that in-
accurate prior estimates of admixed population size, num-
ber of generations since admixture, and polar bear ancestry
proportion for individual hybrid bears had a similarly small
effect on overall accuracy (Additional file 1: Figure S1).
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Table 1 The accuracy of AD-LIBS ancestry inferences using
simulated genomes

Model Ancestry state Prop. calls Prop. truth
correct detected

Migration AA 0.8858 0.9310
Migration AB 0.8447 0.9633
Migration BB 09762 0.8459
Migration Average 0.9022 09134
Migration Overall accuracy 0.9069

Single-pulse AA 0.8933 0.9245
Single-pulse AB 0.8170 09513
Single-pulse BB 0.9501 0.7134
Single-pulse Average 0.8868 0.8631
Single-pulse Overall accuracy 0.8694

Two demographic models representative of the ABC Islands bears’ history
were used: one in which a single admixture event between polar and brown
bears takes place 12,000 years ago, followed by isolation of the hybrid
population (Single-pulse model), and one in which admixture takes place at
the same time but is followed by continuous brown bear migration from the
mainland (Migration model). Overall accuracy is the percent of all bases for
which true ancestry matched AD-LIBS-inferred ancestry. Since this number is
weighted toward more common ancestry states, the average across all three
ancestry states is also given

AD-LIBS was about as good at estimating each individ-

ual’s extent of polar bear ancestry as f , a widely-used stat-
istic that estimates admixture proportion by comparing
genome-wide frequencies of sites supporting tree topolo-
gies compatible and incompatible with admixture [12, 16].
AD-LIBS tends to overestimate the amount of heterozy-
gous ancestry by several percent, however (Fig. 2). This
might explain why AD-LIBS was more accurate in identi-
fying ancestry under the migration model than the single-
pulse model (Table 1, Fig. la, b). Genomes simulated
under the migration model tend to have a lower overall
extent of polar bear ancestry (Fig. 2a, b), giving AD-LIBS
less opportunity to overestimate heterozygous ancestry.
This causes the overall accuracy of AD-LIBS to fall by a
rate of approximately 0.2% per percent polar bear ancestry
(Fig. 2e; slope of best fit line by least squares regression
=-0.206; adjusted 7*=0.687; F-statisic p-value < 2.2e—16,
via linear model function in R [20]), although this effect
may level off as higher levels of polar bear ancestry will
lead to greater amounts of homozygous polar bear ances-
try, which AD-LIBS detects more accurately.

Real data

We collected two data sets for our study. First, we ob-
tained five CEPH European (CEU) human genomes with
Neanderthal ancestry [12] and five Yoruban (YRI) hu-
man genomes with little to no Neanderthal ancestry [12]
from the 1000 Genomes Project [21], along with a single
high-quality Neanderthal genome [13]. We used these
data to map Neanderthal ancestry in Europeans using
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Fig. 1 AD-LIBS accuracy using simulated data. a, ¢, and e refer to simulations with a single polar-brown bear admixture event 12,000 years ago,
followed by isolation (single-pulse model); b, d, and f refer to simulations in which a brown-polar bear admixture event 12,000 years ago is followed
by continual breeding with unadmixed brown bears (migration model). a and b: percent of AD-LIBS inferences correct and percent of true ancestry
recovered in each ancestry state (homozygous polar bear, heterozygous, and homozygous brown bear) for each individual. ¢ and d: Effect
of using different numbers of reference ancestral individuals (1, 2, 3, 4, or 5 from each population) on overall accuracy, using 10kb win-
dows. Asterisks denote a distribution mean significantly lower (p < 0.001) than the best distribution (5 individuals from both populations), according
to ttest. e and f: Effect of using different window sizes (5kb, 10kb, and 25kb), with 5 reference bears from each ancestral population. Asterisks
denote a distribution mean significantly lower (p < 0.001) than the best distribution (10kb windows), according to t-test

AD-LIBS and compare the results to previously-
published local ancestry maps [2, 3] and global estimates
of Neanderthal ancestry in Europeans [12, 13]. We also
collected previously published shotgun sequence data
from four polar bears, eighteen North American brown
bears, and one American black bear [10, 11, 17, 18]. For
a full list of bear samples used in this study, see Table 2.
All reads were aligned to the polar bear reference gen-
ome [17] before pseudo-haploidization and variant call-
ing (Implementation). The black bear was used as an

outgroup to perform f [12, 16] calculations for compari-
son with our findings.

Neanderthal ancestry in humans

AD-LIBS produced maps of Neanderthal ancestry in
modern Europeans that agreed with published data, in-
cluding global estimates of Neanderthal ancestry propor-
tion [12, 13] as well as population-specific local ancestry
maps [2, 3]. We prepared pseudo-haploid genome se-
quences from five randomly selected admixed CEPH
European (CEU) and five unadmixed Yoruban (YRI) in-
dividuals from the 1000 Genomes Project [21], as well as
two “haplotype” sequences from the Altai Neanderthal
[13] (variants were randomly assigned to one or the
other haplotype at heterozygous sites; see Implementation).
We then ran AD-LIBS to infer Neanderthal ancestry in
each European, using Neanderthal and Yoruban sequences
as reference ancestral populations. For comparison, we also
calculated each European individual’s Neanderthal ances-

try via f . Although choice of window size affects results,
the estimate of each individual’s Neanderthal ancestry pro-
portion from AD-LIBS, using appropriate parameters, is

0.80-1.90% greater than the f estimate (Table 3). AD-
LIBS estimates are also 0.22—1.92% greater than the pub-

lished f estimate of 1.5-2.1% in all modern humans [13].
We note that back-migration of Europeans to West Africa
has also contributed some Neanderthal ancestry to Yoru-
ban individuals [13, 22], biasing f estimates downward.
We also compared the maps of Neanderthal ancestry from
AD-LIBS to those published for CEPH Europeans [2, 3].
The AD-LIBS map overlapped significantly (p of
greater overlap =0 in 500 random trials) with the two
previously published maps, although each map also

finds Neanderthal ancestry in regions of the genome
where the other maps do not.

Due to the nature of the emission probability distribu-
tions that AD-LIBS uses to distinguish between regions
with different types of ancestry (Implementation), AD-
LIBS produces inaccurate results when the window size
is too small and/or too much genetic variation within
the ancestral populations is also shared between them.
This was the case when using 10 kb windows to scan for
Neanderthal ancestry in Europeans (Table 3). When an-
cestral populations share a large amount of genetic vari-
ation, the distributions that AD-LIBS uses to distinguish
between different types of ancestry tend to overlap.
Using larger window sizes can reduce the variance of
these distributions, and AD-LIBS can suggest an appro-
priate window size automatically (Implementation).
Using a window size of 15 kb, above the threshold rec-
ommended by AD-LIBS, produced more accurate esti-
mates of Neanderthal ancestry in Europeans (Table 3).
When too much genetic variation within ancestral popu-
lations is also shared between them, however, AD-LIBS
is unlikely to be accurate no matter what window size is
chosen. This is likely to be the case when both admixing
populations consist of modern humans, and this prob-
lem can be avoided by choosing an alternative to AD-
LIBS when genetic differentiation between ancestral
populations, as measured by statistics such as Fsr [23],
is low.

Polar bear ancestry in brown bears

We next used AD-LIBS to scan for polar bear ancestry
in brown bears. We explored the effect of low sequence
coverage depth on AD-LIBS inferences, compared global
polar bear ancestry estimates from AD-LIBS to those
produced using other techniques, and looked for geo-
graphic patterns in the distribution of polar bear ances-
try across brown bear genomes.

Determining the necessary level of coverage

We sought to determine the effect of low sequence
coverage depth on the accuracy of AD-LIBS by down-
sampling reads to produce artificial low-coverage ge-
nomes. We selected four admixed ABC Islands bears
that were sequenced to at least 20X coverage (ABCO1,
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Fig. 2 Accuracy of AD-LIBS estimates of the overall extent of polar bear ancestry, using simulated data. a and ¢ refer to simulations with a single
polar-brown bear admixture event 12,000 years ago, followed by isolation (single-pulse model); b and d refer to simulations in which a brown-polar
bear admixture event 12,000 years ago is followed by continual breeding with unadmixed brown bears (migration model). All AD-LIBS runs in this
figure used 5 reference individuals per ancestral population and 10kb windows. a and b: Inferred percent polar bear ancestry using AD-LIBS and
f versus true percent polar bear ancestry. ¢ and d: inferred percent polar bear ancestry of each type, according to AD-LIBS, versus true percent polar
bear ancestry of each type. Each point represents the percent of a single simulated hybrid bear genome with a specific type of ancestry.
e: overall accuracy of AD-LIBS inferences versus true percent polar bear ancestry, including both types of simulations. The line of best fit
by least-squares regression is also shown. Accuracy decreases slightly as polar bear ancestry increases, probably due to the tendency of
AD-LIBS to overestimate the extent of heterozygous ancestry (c and d)

ABCO05, Adm2, and Bar), four polar bears over 20X
coverage (PB7, PB12, PB68, and PB105) and three
Scandinavian brown bears over 10X coverage (OFSO1,
RFO1, and SJSO1). The Scandinavian brown bears were
hypothesized to be unadmixed with polar bears [17].
We obtained a set of variant calls and a pseudo-haploid
genome sequence for each bear (Implementation), and
downsampled every bear to 0.5X, 1X, 2X, 5X, and 10X
coverage along the longest genomic scaffold (scaffold1) to
produce a set of variant calls and a pseudo-haploid se-
quence for this scaffold at these different coverage levels.

Table 2 Sample details

We ran AD-LIBS on each of the four admixed ABC
Islands bears at full coverage and at each downsampled
coverage level, using the three Scandinavian brown bears
and four polar bears as unadmixed reference sequences.
For comparison to AD-LIBS, we then ran HAPMIX [14],
a commonly-used tool for local ancestry inference, on the
same data. At each depth, we compared inferences from
HAPMIX and AD-LIBS to the output of both programs
run on the full-coverage data.

Using the high coverage data, we found that AD-LIBS
and HAPMIX produce comparable results, although

Sample Species Location Sex Coverage Study

PB7 U. maritimus Spitsbergen, Svalbard F 176.2X Miller et al. 2012 [18]
PB12 U. maritimus Qaanaq, Greenland F 26.0X Liu et al. 2014 [17]
PB68 U. maritimus Qaanag, Greenland F 26.1X Liu et al. 2014 [17]
PB105 U. maritimus Disko West, Greenland F 26.2X Liu et al. 2014 [17]
OFS01 U. arctos Ostanvik, Sweden F 22.8X Liu et al. 2014 [17]
RFO1 U. arctos Ruokolahti, Finland F 20.9X Liu et al. 2014 [17]
SN U. arctos Slakka, Sweden F 15.2X Liu et al. 2014 [17]
Swe U. arctos Dalarna, Sweden F 11.0X Cahill et al. 2015 [11]
Den U. arctos Denali Natl. Park, AK F 12.1X Cahill et al. 2013 [10]
GPO1 U. arctos Glacier Park, Montana M 16.8X Liu et al. 2014 [17]
GRZ U. arctos Kenai Peninsula, AK F 83.6X Miller et al. 2012 [18]
ABCO1 U. arctos Baranof Island, AK M 20.0X Liu et al. 2014 [17]
ABCO2 U. arctos Baranof Island, AK F 184X Liu et al. 2014 [17]
ABCO3 U. arctos Chichagof Island, AK M 19.6X Liu et al. 2014 [17]
ABCO4 U. arctos Chichagof Island, AK M 18.8X Liu et al. 2014 [17]
ABCO5 U. arctos Chichagof Island, AK F 224X Liu et al. 2014 [17]
ABCO6 U. arctos Admiralty Island, AK F 19.5X Liu et al. 2014 [17]
Adm1 U. arctos Admiralty Island, AK F 12.1X Cahill et al. 2013 [10]
Adm?2 U. arctos Admirality Island, AK F 76.5X Miller et al. 2012 [18]
Bar U. arctos Baranof Island, AK M 49.1X Miller et al. 2012 [18]
Chil U. arctos Chichagof Island, AK F 9.2X Cahill et al. 2015 [11]
Chi2 U. arctos Chichagof Island, AK F 10.2X Cahill et al. 2015 [11]
Uam U. americanus Pennsylvania M 11.6X Cahill et al. 2013 [10]

All sequence data were published in previous studies and downloaded as reads from the NCBI SRA. Coverage levels shown were estimated from numbers of raw
reads before mapping to the reference genome. All samples were aligned to the polar bear reference genome, then subjected to base and map quality filtering,

indel realignment, and duplicate removal
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Table 3 Results of running AD-LIBS on autosomal sequences of
five randomly chosen European (CEU) individuals from the 1000
Genomes Project, with the Altai Neanderthal and five randomly
chosen Yoruba (YRI) individuals from the 1000 Genomes Project
as reference individuals from admixing populations
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Table 5 Numbers of variants obtained from four polar bears
(PB7, PB12, PB68, and PB105), three brown bears (OFS01, RFOT,
and SJS01), and four ABC Islands bears (ABCO1, ABCO5, Adm?2,
and Bar) at different levels of coverage along the longest polar
bear genomic scaffold

Individual AD-LIBS, 10 kb AD-LIBS, 15 kb f Coverage level # Raw variants # Filtered # Phased
NA11832 11.5% 2.35% 141% 10 490,705 410,174 410,174
NA11840 11.5% 2.32% 1.52% 5 443,470 288,761 288,821
NA12340 13.8% 342% 1.52% 2 353,433 44,706 44,706
NA12383 13.4% 3.39% 1.56% 1 268,595 1,494 1,494
NA12814 13.6% 3.29% 1.45% 0.5 172,214 14 14

Using AD-LIBS with a window size (10 kb) lower than the recommended minimum
of 14 kb gives bad results, while using a window size above this threshold (15 kb)
gives much more reasonable results

AD-LIBS tends to label regions heterozygous that HAP-
MIX labels homozygous polar bear (Table 4). At the
lowest coverage levels, marker density after variant call-
ing was too low for HAPMIX to produce interpretable
results (Table 5). AD-LIBS more consistently infers the
same ancestry at low and high coverage than does HAP-
MIX. Additionally, at coverage below 2X, ancestry calls
made by AD-LIBS are more similar to the full-coverage
ancestry calls from HAPMIX than are the low-coverage
ancestry calls from HAPMIX (Fig. 3). When grouping
results by ancestry state, low-coverage homozygous an-
cestry calls from AD-LIBS are more likely to match

Table 4 Percent ancestry of each type, as called by AD-LIBS and
HAPMIX; in the four bears sequenced to sufficient coverage
depth for variant calling

Bear Ancestry state AD-LIBS HAPMIX Agreement
ABCO1 Hom. Polar 4.30% 7.30% 43.6%
ABCO1 Heterozygous 28.7% 14.2% 46.7%
ABCO1 Hom. Brown 67.1% 78.5% 84.2%
ABCO1 Total 100% 100% 72.7%
ABCO5 Hom. Polar 4.90% 8.39% 47.5%
ABCO5 Heterozygous 28.3% 12.8% 44.2%
ABCO5 Hom. Brown 66.8% 78.8% 84.0%
ABCO5 Total 100% 100% 72.3%
Adm2 Hom. Polar 3.60% 6.52% 43.6%
Adm?2 Heterozygous 26.8% 12.2% 42.6%
Adm2 Hom. Brown 69.6% 81.3% 84.7%
Adm?2 Total 100% 100% 73.2%
Bar Hom. Polar 4.56% 7.68% 46.6%
Bar Heterozygous 27.8% 13.2% 44.6%
Bar Hom. brown 67.6% 79.1% 84.3%
Bar Total 100% 100% 72.8%

AD-LIBS calls more heterozygous ancestry than HAPMIX and probably
overestimates heterozygous ancestry genome-wide

At low coverage, marker density is too low for tools like HAPMIX to be useful
or accurate

high-coverage calls than those from HAPMIX, although
AD-LIBS labels some regions as heterozygous that are
homozygous according to HAPMIX (Additional file 1:
Figure S2). We infer from this experiment that AD-LIBS
is consistent with itself down to about 2X coverage, and
that inferences of homozygous ancestry from AD-LIBS
are more reliable than those from HAPMIX at low
coverage, although AD-LIBS erroneously labels some re-
gions of homozygous ancestry heterozygous. By avoiding
the need for variant calling, AD-LIBS also outperforms
HAPMIX in cases of very low (0.5X or 1X) coverage,
when there are not enough called variants to detect any
polar bear ancestry. We note that genotype imputation
could help improve marker density when running
HAPMIX on low-coverage data, but this is only pos-
sible when studying species for which variant catalogs
from large panels of reference individuals are avail-
able, such as humans.

Measuring admixture proportion

We next sought to compare estimates of the genome-
wide extent of polar bear ancestry in brown bears from
AD-LIBS to those produced using other techniques. For
each of eighteen brown bears, we ran AD-LIBS using
four polar bears and four Scandinavian brown bears, the
latter as potentially unadmixed models of ancestral pop-
ulations (individual Scandinavian brown bears were ex-
cluded from the unadmixed reference brown bear set
when treated as hybrid bears). For each bear, we also es-
timated genome-wide polar bear ancestry using the f
statistic [12, 16], which was used in prior studies of polar
bear ancestry in brown bears [10, 11]. For this analysis,
we used PB7 and PB12 as model polar bears, Swe as a
model brown bear, and the American black bear as the
outgroup. We also ran HAPMIX on all brown bears
sequenced to at least 20X coverage, with all polar bears
and the three Scandinavian brown bears above 20X
coverage used as reference ancestral populations. For
details about choices of parameters, see Implementation.
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Fig. 3 (See legend on next page.)
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(See figure on previous page.)

Fig. 3 Results from downsampling four ABC Islands brown bears, three Scandinavian brown bears, and four polar bears to 0.5X, 1X, 2X, 5X, and
10X coverage along the longest genomic scaffold, running HAPMIX and AD-LIBS on the four ABC Islands bears at each coverage depth, and comparing
these runs to results obtained from running both programs on the full-coverage versions of the same individuals. Each line represents an individual
ABC Islands bear and each color represents a specific low coverage/full coverage comparison. a: percent of full coverage calls recovered by running
each program at low coverage. Values given are averages across the three ancestry states (homozygous polar bear, heterozygous, and homozygous
brown bear). b: percent of low coverage calls that were correct, according to full-coverage calls. Values given are averages across the three ancestry
states. Some points are missing because HAPMIX was unable to detect any polar bear ancestry at 0.5X coverage

The admixture proportions detected with AD-LIBS

were higher than our estimates using f (Table 6). AD-
LIBS-inferred admixture proportions are also higher
than estimates from HAPMIX for the four ABC Islands
bears of greater than 20X coverage (Table 6). We note

that f is considered a lower bound on admixture propor-
tion, since it can only detect mutations that arose in the
hybridizing lineages between the time of speciation and
admixture [16]. This was not the case in our simulations,

however, in which AD-LIBS and f both consistently overes-
timated the polar bear admixture proportion by several per-
cent (Fig. 2a, b). Although overestimation of heterozygous
ancestry could explain why AD-LIBS produces erroneously
high polar bear admixture proportions, an alternative ex-
planation is needed to explain its discrepancy with f . One
possibility is that in real data, selection in the brown
bear lineage could reduce nucleotide diversity below
the level typical of neutrally-evolving regions of the
brown bear genome, but not below the level typical

across the entire polar bear genome. This could cause
windows of the genome in which brown bear-specific se-
lection has taken place subsequent to the brown-polar
bear split to appear erroneously heterozygous. It is also
possible that polar bear ancestry in the Scandinavian
brown bears, which were assumed to be unadmixed in
f calculations and in prior studies [10, 11], may also ex-
plain why f estimates were lower than estimates using
both AD-LIBS and HAPMIX.

To be conservative, we recalculated all of our admixture
proportions from AD-LIBS, this time multiplying the num-
bers of bases called homozygous and heterozygous polar
bear by the rate at which these types of ancestry calls were
correct in our simulations under the “single-pulse” model
(Table 1) (Table 6, “AD-LIBS conservative” column). Since
bases mis-called as heterozygous might actually be of ei-
ther homozgyous polar bear or homozygous brown bear
ancestry, treating them all as homozygous brown bear this
way should produce an under-estimate of polar bear

Table 6 Percent polar bear for each brown bear in this study, calculated via f, AD-LIBS, and HAPMIX, if available

Bear Origin f AD-LIBS AD-LIBS conservative HAPMIX
ABCO1 Baranof Island, AK 8.63% 18.6% 15.5% 14.4%
ABCO2 Baranof Island, AK 8.87% 18.8% 15.7% 14.8%
ABCO3 Chichagof Island, AK 9.63% 19.4% 16.2% N/A
ABCO4 Chichagof Island, AK 9.03% 19.0% 15.8% N/A
ABCO5 Chichagof Island, AK 8.93% 19.1% 15.9% N/A
ABCO6 Admiralty Island, AK 6.56% 17.1% 14.2% N/A
Adm1 Admiralty Island, AK 6.12% 16.6% 13.8% N/A
Adm?2 Admirality Island, AK 6.05% 17.0% 14.2% 12.6%
Bar Baranof Island, AK 8.14% 18.5% 15.4% 14.3%
Chi1 Chichagof Island, AK 8.57% 18.6% 15.5% N/A
Chi2 Chichagof Island, AK 8.69% 18.7% 15.6% N/A
Den Denali Natl. Park, AK 7.02% 14.5% 11.9% N/A
GPO1 Glacier Park, Montana 437% 17.2% 14.3% N/A
GRZ Kenai Peninsula, AK 3.30% 13.0% 10.7% N/A
OFS01 Ostanvik, Sweden 0.464% 5.35% 441% N/A
RFO1 Ruokolahti, Finland 0.319% 6.90% 5.67% N/A
SJSO1 Slakka, Sweden 0.211% 5.27% 4.33% N/A
Swe Dalarna, Sweden 0%* 4.89% 4.02% N/A

The asterisk indicates that Swe was used as a model unadmixed brown bear in f calculations, making polar bear ancestry undetectable. HAPMIX
was only run on the four ABC Islands brown bears with minimum 20X coverage, to ensure that heterozygous variant calls were reliable. The
“AD-LIBS conservative” column shows AD-LIBS estimates corrected according to the percent of homozygous and heterozygous polar bear ancestry
calls that were incorrect in simulations under the single-pulse model (Table 1)
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ancestry. The observation that AD-LIBS tends to find less
homozygous polar bear ancestry than HAPMIX does
(Table 4) also suggests that some of the mis-called hetero-
zygous ancestry should be treated as homozygous polar
bear ancestry. Regardless, we find using this technique that

AD-LIBS still predicts more polar bear ancestry than f .

Comparing specific ancestry calls (homozygous polar
bear, homozygous brown bear, and heterozygous) shows
72-74% overall agreement between AD-LIBS and HAP-
MIX, with most discrepancy resulting from AD-LIBS over-
estimating the extent of heterozygous ancestry (Tables 4
and 7). It is possible that HAPMIX underestimates homo-
zygous polar bear ancestry as well, and that the problems
described earlier with variant calling and phasing may
lower the reliability of inferences from HAPMIX.

Shared patterns of ancestry

We next investigated the extent to which the same re-
gions of the genome had the same type of ancestry in
multiple bears. For each possible combination of two or
more bears, we computed the number of bases in the
genome for which all bears were inferred to have the
same type of ancestry. Considering each type of ancestry
separately, we then created random ancestry maps for
each bear by sampling genomic coordinates comprising
randomly-drawn regions of the same number and size
from the reference genome. Computing the overlap
among these random ancestry maps for all bears in
the set gave us a null model against which to com-
pare the extent of overlap among our true ancestry
maps. For each group of bears and each type of

Table 7 Percent ancestry of each type called by AD-LIBS for all
bears below 20X coverage, for which HAPMIX was not run

Bear Hom, polar Heterozygous Hom. brown
ABCO02 4.56% 28.5% 66.9%
ABCO3 4.82% 29.1% 66.1%
ABCO4 4.67% 28.6% 66.8%
ABCO6 3.71% 26.7% 69.6%
Adm1 2.92% 274% 69.7%
Chi1 4.24% 28.7% 67.0%
Chi2 4.03% 29.3% 66.7%
Den 1.20% 26.6% 72.2%
GPO1 343% 27.5% 69.1%
GRz 1.72% 22.5% 75.8%
OFSO01 0441% 9.82% 89.7%
RFO1 0.441% 12.9% 86.6%
SJSO1 0.332% 9.88% 89.8%
Swe 0.339% 9.10% 90.6%

Heterozygous calls are probably overestimates
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ancestry, overlap is greater than for random samples
(Fig. 4). This suggests that polar bear introgression
took place within the shared demographic history of
all of the brown bears in this study, as hypothesized
by others [10, 11, 17-19].

As another way to visualize sharing of polar bear-
derived haplotypes among brown bears, we used princi-
pal components analysis (PCA), to test whether the an-
cestry data from AD-LIBS contain a similar geographic
signal of admixture to that which has been observed
previously from SNP data [17]. Using EIGENSOFT
SmartPCA [24], we created vectors of ancestry across
10 kb genomic windows and performed PCA on these
vectors for all 18 brown bears. Principal components
place individuals into groups based on geography, with
the first component corresponding to polar bear ances-
try proportion. The ancestry results are largely similar to
those from SNP data (Fig. 5). For example, the Montana
bear clusters with the Admiralty Island individual(s), to
the exclusion of the Baranof and Chichagof Island bears.
The SNP PCA distinguishes bears from Finland and
Sweden, however, while the ancestry PCA does not, sug-
gesting that polar bear ancestry in these individuals
might stem from the same historical event, despite
different recent evolutionary histories.

Discussion
AD-LIBS is a new technique for the detection and ana-
lysis of ancestry in admixed individuals, designed for use
with low-coverage shotgun sequence data from non-
model organisms. The technique works well on both
simulated and real data, requires only several reference
individuals from each ancestral population (Fig. 1), and
is accurate at coverage depths as low as 2X (Fig. 3).
AD-LIBS is unlikely to perform as well as other local
ancestry inference techniques when high-confidence
genotype calls and phased data from reference popula-
tions are available. Moreover, AD-LIBS overestimates
heterozygous ancestry (Fig. 2), although it has a lower
false positive rate for identifying regions homozygous for
one or the other type of ancestry (Fig. 1) and infers the
correct amount of homozygous, introgressed ancestry
genome-wide (Fig. 2). Therefore, one can be confident
in results from AD-LIBS when analyzing genomic re-
gions labeled as homozygous for ancestry from one or
the other reference population but should use caution
when describing regions heterozygous for ancestry.
Although AD-LIBS is robust to suboptimal choices of
most parameters, window size must be chosen carefully,
and Fgr between ancestral populations [23] must also be
considered. The latter is important because overlap be-
tween the three emission probability distributions that
AD-LIBS uses to determine which type of ancestry
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True overlap is greater than for random genomic samples
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Fig. 4 Comparing overlap of regions of different types of ancestry among hybrid bears. For every combination of 2 or more American brown
bears, we measured the number of bases that AD-LIBS labeled with the same type of ancestry (homozygous polar, homozygous/heterozygous
polar, or homozygous brown) in each bear. We also performed one random trial per real comparison, in which coordinates comprising random
regions were sampled from the reference genome, producing sets of genome regions of the same size and number as the regions of ancestry
produced by AD-LIBS for each bear, but randomly scattered across the genome. We then measured the overlap between these random ancestry
regions for the sake of comparing to the true overlap. Averages of every comparison of each number of bears are shown as solid lines, and averages
of every comparison of randomized versions of those same bears are shows as dashed lines

produced the set of IBS tract lengths in each window (see
Implementation) depends to a large extent on Fsr be-
tween the two ancestral populations. If nucleotide diver-
sity between populations is large relative to nucleotide
diversity within populations, then the means of the emis-
sion probability distributions will lie further apart than
distributions for ancestral populations with low Fsr (see
Additional file 1: Supplementary Methods for expected
emission probability distributions). While increasing the
window size can help mitigate this problem by decreasing
the variances of the distributions, it may be impossible to
get accurate results when dealing with populations with
low Fs between them. As an example, AD-LIBS is not ex-
pected to give accurate results for human populations, in
which within-population nucleotide diversity is often very
similar to between-population nucleotide diversity. With
populations of sufficiently high Fs; such as polar and
brown bears, users should either allow AD-LIBS to deter-
mine an appropriate window size by measuring the
overlap among emission probability distributions (see Im-
plementation) or carefully evaluate results to ensure they
are realistic. Using too small a window size to distinguish
populations that are closely related can result in error
(Table 3).

Using AD-LIBS, we detected a greater amount of polar
bear ancestry in 18 brown bear genomes than has been pre-
viously reported using other methods [10, 11, 17, 18]. It is
possible that these polar bear ancestry estimates are inflated
by several percent due to AD-LIBS overestimating the ex-
tent of heterozygous ancestry (Fig. 2). If still valid, however,
this finding illustrates an advantage of using local ancestry
inference techniques like AD-LIBS over global techniques
in admixture studies. If AD-LIBS is correctly inferring that
Scandinavian brown bears have some polar bear ancestry,
then prior studies that used these bears as model “unad-
mixed” brown bears may have underreported polar bear
ancestry in all bears. The reason for this underreporting is
that the global ancestry inference techniques used in prior

studies, such as f , are genome-wide averages. As such, glo-
bal ancestry inference methods cannot detect polar bear an-
cestry in an individual brown bear as long as the model
“unadmixed” brown bear to which it is compared has the
same amount of polar bear ancestry anywhere else in its
genome. Local methods like AD-LIBS and HAPMIX, con-
versely, can detect polar bear ancestry at a particular gen-
omic locus within an individual, as long as the model
brown bear genome to which it is being compared is free of
polar bear ancestry at that same locus (Fig. 6).
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Fig. 5 Geographic signal recovered in vectors of polar bear ancestry. a: principal components analysis (PCA) of polar bear ancestry state of 10kb
genomic windows for 18 brown bears, using EIGENSOFT SmartPCA [24]. b: PCA of SNP data from a previous study [17], including a subset of the
bears in a. Both plots show similar geographic patterns, with the Montana bear (GP01) falling close to the Admiralty Island bear(s), but only the
SNP data separates Finnish (RFOT) from Swedish brown bears

AD-LIBS maps of polar bear ancestry in brown bears
also provide a look into the geographic history of polar-
brown bear admixture. Given that principal components
analysis (PCA) of polar bear ancestry groups bears geo-
graphically largely the same way as PCA of SNP data
(Fig. 5), polar-brown bear admixture may have taken
place before the present day North American brown
bear populations formed. The placement of the Montana
brown bear near bears from Admiralty Island in princi-
pal component (PC) space also suggests that ABC
Islands brown bears could have been the source of polar
bear ancestry in mainland brown bears, as previously hy-
pothesized [11]. Finally, the existence of a small amount
of polar bear ancestry in Scandinavian brown bears,
which is similarly observed in Finnish and Swedish bears
in PC space despite these bears’ clear difference in geno-
type PC space, suggests that there may have been a single,
older polar-brown bear introgression event in Europe, in-
dependent from the source of polar bear ancestry in North
American brown bears. If true, this result is evidence that
hybridization between brown and polar bears may have
been common in their evolutionary history, and may be
the expected outcome of shifting habitat boundaries in
times of global climate change.

Conclusion
AD-LIBS expands the potential range of admixture analyses
both to non-model organisms and to data sets in which

only low-coverage genomes are available. While AD-LIBS
should not replace existing approaches for high-coverage
data or where phased reference panels are available, AD-
LIBS accurately identifies genomic regions in hybrids that
are homozygous for ancestry from a specific ancestral
population, even with low coverage data. By thus reducing
the quantity and quality of data needed, AD-LIBS can make
admixture mapping a viable tool in a wider range of studies
than was previously possible.

Implementation

Model description

AD-LIBS (Ancestry Detection through Length of Identity
By State tracts) is designed for use with low-coverage se-
quence data from diploid organisms. The insight behind
AD-LIBS is to consider windows of a genome, rather than
individual SNP sites, when determining ancestry. This al-
lows groups of variants to “vote” together on the ancestry
of windows in the genome, decreasing the influence of
individual sites that might be prone to genotyping or se-
quencing error. AD-LIBS takes as input pseudo-haploid
FASTA sequences, in which every base is randomly sam-
pled from one or the other homologous chromosome, ra-
ther than sets of genotype calls at variable sites. This
eliminates the need for variant calling, which can be prob-
lematic without prior knowledge of polymorphic sites as
in non-model organisms. It also avoids problems inherent
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Fig. 6 lllustration of cases where either a local ancestry detection method (like AD-LIBS) or a global ancestry detection (like f) might succeed,
partially succeed, or fail. Each line represents a chromosome, with polar bear ancestry shown in blue and brown bear ancestry shown in
brown. All five individuals needed for computation of f are shown in each case. a local and global methods both succeed in detecting
all of the hybrid individual's polar bear ancestry. b local and global methods both fail to detect the hybrid individual’s polar bear ancestry.
¢ local methods successfully detect the hybrid individual’s polar bear ancestry, since it is in a different part of the genome than the polar bear ancestry
in the genome of the model “unadmixed” brown bear. Global methods fail to detect the hybrid individual's polar bear ancestry. Since global methods
use genome-wide averages, the hybrid individual is not seen to possess any more polar bear ancestry than the model “unadmixed” brown bear.
d Both local and global methods will detect the hybrid’s first segment of polar bear ancestry but fail to detect the second segment,
resulting in both types of methods underestimating the hybrid individual's true percent polar bear ancestry
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in identifying heterozygous sites using low-coverage
sequencing data [10, 11].

If an individual has ancestors from both population A
and B, each window of that individual’s genome can be
classified as a sample of two chromosomes from popula-
tion A, two from population B, or one of each. The state
space of the hidden Markov Model (HMM) used by AD-
LIBS therefore includes three ancestry states: AA, which
models genomic windows in which both of an individual’s
chromosomes descend from population A; AB, which
models windows in which an individual derives one
chromosome from each ancestral population; and BB,
which models windows in which an individual is homozy-
gous for ancestry from population B. Note that no attempt
is made to “phase” variants when ancestry is heterozygous:
AD-LIBS does not attempt to determine which of the two
homologous chromosomes is of population A or B ances-
try in the heterozygous state. In our model, we always des-
ignate the ancestral population with lower genetic
diversity as population A and the other as population B.
Figure 7 describes a cartoon of the HMM state space, in-
cluding states not yet described. AD-LIBS uses the Python
Pomegranate library for hidden Markov model operations,
available at https://github.com/jmschrei/pomegranate.

Transition probabilities

The transitions between states are related to the prob-
ability of recombination having occurred since admix-
ture between the two ancestral populations. For this,
AD-LIBS requires an estimate of the genome-wide ex-
tent of admixture and the number of generations since
admixture. Given that the number of generations since

admixture is g, and the per-nucleotide recombination
probability per generation is r, the probability of a re-
combination event having taken place at a single nucleo-
tide position in the time since admixture is gr. AD-LIBS
assumes r to be a flat rate of 1 centimorgan per mega-
base, or 10°® per site. If p, the extent of ancestry from
population A in the admixed population, is known, then
the probabilities of switching between state AA (homo-
zygous population A ancestry), AB, (heterozygous ances-
try), and BB (homozygous population B ancestry) can be
determined. This requires considering the per-site prob-
abilities of recombination events having happened or
not in the time since admixture on both homologous
chromosomes, along with the probabilities of the next
base on each homologous chromosome being derived
from population A or B. Additionally, AD-LIBS accounts
for the effect of genetic drift: considering recombination
events as alleles in the classic Wright-Fisher model, it
derives the probability of resampling the same ancestral
recombination event twice in a single individual, hereafter
referred to as z. The probabilities of transitions between
the three ancestry states are given in Table 8.

As an example, two possible sets of events can lead to a
transition from a region of homozygous population A an-
cestry (AA) to a region of homozygous population B an-
cestry (BB). One is that there has been a recombination
event at the same site on both chromosome homologues
in the time since admixture, the probability of which is
(gr)?, and that the base immediately after the recombin-
ation event is of population B ancestry on both chromo-
some homologues, the probability of which is (1 - p)>.
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Fig. 7 The state space of AD-LIBS hidden Markov model. The three
round states (AA, AB, and BB) are ancestry states that can emit scores.
AA represents regions where both homologous chromosomes derive
ancestry from ancestral population A, AB represents regions of
heterozygous ancestry, and BB represents regions homozygous
for population B ancestry. The three square states (sAA, sAB, and sBB)
are skip states, each associated with one of the three ancestry states.
Skip states can only emit scores representing windows of the genome
in which data are too sparse to infer ancestry. Each skip state is more
likely to transition back to its associated ancestry state than to one of
the others. Arrow colors represent different types of transition
probabilities. Green arrows are starting probabilities and are related to
the pre-estimated percent ancestry derived from each ancestral
population (A and B). Blue arrows represent recombination events;
their probability is related to the probability of a recombination event
having happened at a given site in the time since admixture, as well as
the probability of sampling a base from population A or B. Black arrows
are related to the probability of skipping a given window, computed
from the number of “N” bases encountered. Red arrows are transitions
to the end state, with probabilities related to the number of windows
on the chromosome or scaffold being scanned. Gold arrows represent
probabilities that are computed after other probabilities, by subtracting
from 1 the sum of all other transition probabilities out of a given state

This set of events thus has probability (¢r)*(1-p)*. Con-
versely, if the two chromosome homologues have a recent
common ancestor at the site of interest, it is possible that
a historical recombination event between a region of
population A ancestry and a region of population B ances-
try happened once, but was inherited by both parents of
the individual of interest. The probability of the individual
inheriting the same historical recombination event from
both parents is z, and the probability of the base immedi-
ately after this recombination event deriving from ances-
tral population B is (1 - p), making the probability of this
set of events z(1 - p) (see Table 8).

Whereas r is a hard-coded approximation and g is a
model parameter inferred from prior knowledge, the
parameters p and z can be calculated. A popular method
for estimating the admixture proportion p from se-

quence data is the statistic f, an extension of the D stat-
istic used to estimate the extent of Neanderthal ancestry
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in modern humans [12, 25]. D is a genome-wide meas-
ure of excess derived allele sharing between an admixed
individual and candidate introgressor; it compares num-
bers of sites, genome wide, that support alternative tree

topologies. The statistic f is a ratio of D computed on
an admixed individual to D computed on an individual

from the admixing population of interest. f can be used
to obtain a lower bound on admixture proportion. When
p is not supplied by the user, AD-LIBS requires a gen-
ome from an outgroup individual and at least two indi-
viduals from admixing population A; these are used to
compute f as an approximation of p. Sometimes, for ex-
ample when the test individual derives less of its genome
from the introgressor than the individual hypothesized
to be unadmixed, f can yield negative values. In this
case, and in every other case where p <0, we set p to a
minimum value of 0.001. This allows AD-LIBS to detect
regions of population A ancestry even when they were
not originally expected, if the signal is strong enough.
The parameter z, or the probability of resampling the
same ancestral recombination event twice in an individ-
ual, is less straightforward to compute. Conceptualizing
recombination events of interest as alleles that arise
within the admixed population during the time since ad-
mixture, with the per-site, per generation probability r, a
Markov chain can be used to compute the probability of
such a recombination event drifting to any frequency be-
tween 0 and 2 where N is the number of individuals in
the population, over the course of g generations [26].
This probability distribution can then be used to com-
pute the probability of resampling the same recombin-
ation event twice in a single individual. Since the
transition probability matrix for this Markov chain can
become very large with large population sizes, making
computation difficult, we implemented the solution to
the diffusion approximation of this problem presented
by McKane and Waxman [27] in AD-LIBS. For a de-
tailed explanation of how the value of z is computed in
AD-LIBS, see Additional file 1: Supplementary Methods.
In addition to the three ancestry states AA, AB, and
BB, we defined three skip states, sAA, sAB, and sBB,
which each model windows in which there is insufficient
data to make an inference about ancestry (Fig. 7). Each
of these states is only capable of emitting a designated
score representative of low-quality windows. Each is also
much more likely to transition back to its associated
ancestry state than to one of the others: the transition
probability p(AB|sAA) = p(AB|AA), p(BB|sAB) = p(BB|AB)
and so on. This allows the HMM to have memory of the
state in which a sequence was before encountering win-
dows of sparse data: the probability of transitioning to a
new ancestry state is the same, whether or not windows of
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Table 8 All possible combinations of events leading to transitions between the three ancestry states of the hidden Markov model

From |To |R; [Cwa |[Ch |R2 |Co |Co |Z | Probability

a b
AA BA |Y |A |B |- - - - gr(1—p)(A—gr)
AA AB |- - - Y |A |B |- gr(l—-p)(A—gr)
AA BA |Y |A (B |Y |A |A |- gr(1 —p)grp
AA AB |Y |A |A |]Y |A |B |- grpgr(1 —p)
AA BB |Y |[A |B |Y |A |B |- gr(d—p)gr(1—p)
AA BB |- |- - |- - |- ]Y z(1—-p)
AB AA |- - - Y |[B |A |- (1—gr)grp
AB |AA |Y |A |A |Y |B |A |- (grp)?
AB AA |- |- - |- - Y zp
BA AA |Y |B |A |- - - - grp(1 —gr)
BA |AA |Y |B |A |Y |A |A |- (grp)?
BA AA | - - - - - - 1Y zZp
AB BB |Y |A |B |- - - - gr(1—p)(1 —gr)
AB BB |Y |A |B |Y |B |B |- (gr(1 —p))?
AB BB |- - - - - Y z(1—p)
BA BB |- - - |Y |A |B |- (1-gr)gr(1d—p)
BA BB |Y |B |[B |Y |A |B |- (gr(1 —p))*?
BA BB |- - - - - - 1Y z(1-p)
BB AA |Y |B |A |Y |B |A |- (grp)?
BB AA |- - - - - - 1Y zZp
BB AB |Y |B |A |- - - - grp(1 —gr)
BB BA |- - - |Y |B |A |- (1—gr)grp
BB AB |Y |B |A |Y |B |B |- grpgr(1 —p)
BB BA |Y |B |B |Y |[B |A |- gr(1—p)grp

“A” and “B” denote chromosomes derived from ancestral populations A and B, and the three states AA, AB, and BB model regions where ancestry is homozygous
from population A, heterozygous, and homozygous from population B, respectively (AB and BA are represented by same state, but are shown separately here to
clarify that the ancestry of both separate chromosomes must be considered when computing probabilities). The other columns denote possible recombination-related
events on the two parental homologues of a given chromosome (henceforth “homologue 1” and “homologue 2"). A “Y” in the R1 column signifies that recombination
took place at a given base on chromosome homologue 1 in the time since admixture, and a “Y” in the R2 column signifies that recombination took place at this base
on chromosome homologue 2. C1a and C1b refer to the ancestry of the bases on chromosome homologue 1 immediately before and after the recombination event, if
it happened; C2a and C2b refer to the ancestry of the bases on chromosome homologue 2 before and after recombination. Z indicates that the same ancestral
recombination event, which happened in the time since admixture, was sampled twice in the same individual (once on chromosome homologue 1 and once
on chromosome homologue 2). The parameter g is the number of generations since admixture, r is the recombination probability per site per generation, assumed to
be 1 cM/Mb or 10-8 per site, and z is the probability of resampling the same ancestral recombination event twice in one individual, according to genetic drift

approximated by the Wright-Fisher model

sparse data are encountered. The probabilities of transi-
tioning from ancestry states to skip states can only be
calculated after scanning a sequence: windows with a per-
centage of ambiguous or “N” bases above a user-specified
threshold are designated “skipped,” and the skip probabil-
ity s is the number of skipped windows divided by the
total number of windows in an input DNA sequence.
The transition probability from each ancestry state to its
associated skip state, as well as the probability of remaining

in a skip state once there, is s. Since the emission probabil-
ity distributions of skip states are very different from those
of ancestry states, in practice the magnitude of s does not
matter: windows intended to be skipped will be skipped
whether s is high or low.

For a more detailed explanation of other transition
probabilities, and how transition probabilities are
set on sequences belonging to the X chromosome
(or Z chromosome for species using the ZW sex
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determination system), see Additional file 1: Supple-
mentary Methods.

Emission probabilities

Rather than considering individual genotypes at known
variable sites, AD-LIBS divides genomic sequences into
windows and computes a score based on identity-by-state
(IBS) tract lengths in each window. Identity-by-state tract
lengths have proven useful in quantifying parameters of
demography and admixture and underlie some popular
methods for demographic inference [28, 29]. They are also
easy to compute, can be measured without a set of high-
confidence genotype calls, and have a clearly defined ex-
pected distribution, which should not be affected by the
fact that our input data are pseudo-haploidized sequences
rather than phased haplotypes.

AD-LIBS computes scores based on IBS tract
lengths in fixed-width genomic windows. In each
window, the “query” sequence from the hybrid indi-
vidual is compared to all available sequences from
ancestral populations A and B. The score x in a

a 1 n
given window is x = log <$ Zi:l [; ZjIIBSiJ} > -
1
log (ﬁ Zf:l [Z Z:_1IBSW]> where a is the number

of sampled individuals from population A, b is the number
of sampled individuals from population b, n is the total
number of IBS tracts found in a given window between the
hybrid and another individual, IBS;; is the length of the o
IBS tract with individual i sampled from either population
A or B, and w is the window size in base pairs. In simpler
terms, x is the ratio of the log transformed mean IBS tract
length between the hybrid and individuals from population
A, and between the hybrid and individuals from population
B. For its emission probability distributions, AD-LIBS com-
putes the expected distribution of x for each of the three
ancestry states, with slight adjustments for scores in
windows along the X (or Z) chromosome. For details, see
Additional file 1: Supplementary Methods.

Potential pitfalls

One parameter that must be chosen carefully is the win-
dow size. Apart from upper and lower bounds set on
window size by mathematical limitations (see Additional
file 1: Supplementary Methods), users have the ability to
choose window sizes for their analyses. AD-LIBS can
recommend a window size by testing the amount of
overlap among the three emission probability distribu-
tions. Since overlap among emission probability distribu-
tions can hinder the ability of AD-LIBS to distinguish
among different types of ancestry, and since the variance
of all three distributions will decrease as window size
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increases (see Additional file 1: Supplementary
Methods), increasing window size can improve discrim-
inative power while risking failure to detect short ances-
tral haplotypes. AD-LIBS recommends a window size by
computing the emission probability distributions for a
range of window sizes beginning at the minimum bound.
At each window size, it integrates a function returning
the minimum value of each pair of distributions over
those distributions’ full range, which gives a measure of
overlap [30]. The smallest window size for which the
maximum pairwise distribution overlap is 0.5 or lower is
recommended. If the chosen window size causes the
maximum overlap of any two of the three distributions
to exceed 0.5, AD-LIBS iteratively multiplies the stand-
ard deviations of all three emission probability distribu-
tions by 0.5 and recomputes the overlap until it falls
below 0.5. While this makes the model less realistic, it
has the potential to improve discriminative power.

Simulations

To test AD-LIBS, we used the December 11, 2009 version
of Hudson’s coalescent simulator, ms [31], to simulate
haplotypes under a demographic model representative of
brown bears, polar bears, ABC Islands brown bears, and
American black bears. We performed 20 trials in which
ten 1 Mb pseudo-haploid chromosomes were generated
for each of five polar bears, five mainland brown bears,
five ABC Islands brown bears, and one black bear. Our
demographic model is similar to that proposed by Cahill
et al. [10], in which hybridization between brown and
polar bears takes place on Alaska’s Admiralty, Baranof,
and Chichagof (ABC) islands at the end of the Pleistocene
epoch (the initial hybrid bear population consists of 50%
polar bears and 50% brown bears). We chose for our
model 0.94 Mya for the split time between the American
black bear and brown and polar bears [32], 411 kya for the
split between brown and polar bears [17], and 12 kya, the
approximate end of the Pleistocene epoch, as the time of
hybridization between mainland brown bears and the
polar bears of the ABC islands [10]. Furthermore, we
chose a generation time of 11.35 years and a per-site,
per-generation mutation rate of 1.825728 1078 [17], as
well as a default recombination rate of 1 centimorgan per
megabase, or 10~ ® per site. For nucleotide diversity values,
we used Gyrown bear = 0:0017 and Opglar bear = 4 10™ % esti-
mated by Cahill et al. [10], along with Bpjacic bear = 0.0021
estimated by Kutschera et al. [32]; we converted these into
effective population size values by dividing by four times
the mutation rate. Our full ms command, which produced
two haplotypes for each simulated individual, was ms 32 10
-t 1700.0 -r 931.135415571 1000000 -1 4 10 10 10 2 -n 1
0235294117647 -n 4 1.23529411765 -es 0.0113546182949
2 0.5 -¢j 0.0113546182949 2 1 -¢j 0.0113546182949 5 3 -¢j
0.3888956766 1 3 -ej 8.89445099767 3 4 —T.
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In each of the 20 simulations, ms generated two black
bear haplotypes and 10 each of polar bear, mainland
brown bear, and ABC Islands brown bear haplotypes,
with ten repetitions. After splitting the ms output files
into individual repetitions, we then used Seq-Gen [33]
with the Hasegawa, Kishino, and Yano (HKY) nucleotide
substitution model [34] and a 4:1 transition:transversion
ratio to convert each haplotype from each repetition into
a DNA sequence. The full Seq-Gen command ms repeti-
tion output file was seq-gen -mHKY -t 4 -1 1000000 -s
0.0017 -p [number of trees in ms output file] [ms output
file]. We then sampled two haplotypes per individual
and, using a Python program, randomly choose the base
from one or the other haplotype at each position to gen-
erate 1 Mb pseudo-haploid chromosome sequences. Fi-
nally, we concatenated the 1 Mb haploid sequences for
each individual across the ten repetitions to yield
10 Mb simulated genomes for 5 polar bears, 5 main-
land brown bears, 5 ABC Islands brown bears, and
one black bear.

We used the trees from ms to produce maps of “true”
ancestry for each hybrid bear in order to validate AD-
LIBS results for each trial. We output trees with the —t
parameter of ms and used these to produce BED files of
the true ancestry of each segment of the simulated chro-
mosomes for all five ABC Islands bears. To do this, we
used a Python program to parse the trees describing the
relationship of all simulated haplotypes at each segment
of the simulated chromosome. For each ABC Islands
brown bear haplotype at each segment, we computed
the time to most recent common ancestor (TMRCA)
with all polar bear haplotypes and with all brown bear
haplotypes. In order to distinguish admixture from in-
complete lineage sorting, we designated an ABC Islands
bear haplotype as having polar bear ancestry only if its
TMRCA with all polar bear haplotypes was more recent
than its TMRCA with all brown bear haplotypes, and if
its TMRCA with all polar bear haplotypes postdated the
polar-brown bear split. If both haplotypes comprising a
pseudo-haploid ABC Islands bear chromosome have
polar bear ancestry in a given region, that region is des-
ignated “AA” for homozygous polar bear ancestry; if
both have brown bear ancestry, it is designated “BB;” if
there is one haplotype with each type of ancestry, it is
designated “AB;” and if none of these is the case, no
ancestry call is made. These are used as maps of “true”
ancestry across the simulated chromosomes.

We then ran AD-LIBS on each simulated hybrid bear
and assessed its accuracy using its map of “true” ances-
try. For our initial estimate of polar bear ancestry in each

hybrid bear, we calculated f using the first two polar
bear sequences, the first mainland brown bear sequence,
and the black bear sequence as an outgroup. We then
ran AD-LIBS with an admixed population size of 3000
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and 1000 generations since admixture, and nucleotide di-
versity values that were calculated directly from the gener-
ated sequences. We note that only having 10 megabases of

sequence for each bear may have hurt the accuracy of our f

calculations, since f is a genome-wide average that requires
a large number of single-site observations to disentangle
true admixture from incomplete lineage sorting [12, 16].
For each simulated ABC Islands brown bear chromosome,
we tried running AD-LIBS with one polar bear and one
brown bear sequence to use as reference data, then two of
each, three of each, four of each, and five of each, to deter-
mine whether the number of reference sequences affected
output. We also used three different window sizes — 5 kb
(slightly above the minimum threshold set by AD-LIBS,
given the nucleotide diversity in the sequences), 10 kb, and
25 kb — for the same reason. After generating the results,
we compared the output of AD-LIBS to the BED files of
“true” ancestry by compiling the intersection of AD-LIBS’
ancestry features with the true ancestry features using BED-
Tools intersect [35] and determining the true ancestry
across each window by majority vote of true ancestry re-
gions contained within. For each state, then, we calculated
the percent of bases for which the HMM’s classification
was correct, as well as the percent of bases for which the
true ancestry was recovered by the HMM. Admixture pro-
portion was calculated as two times the number of bases in
homozygous polar bear windows, plus the number of bases
in heterozygous windows, all divided by two times the total
number of windows for which AD-LIBS produced a label.

To compare performance, we repeated this experi-
ment, but this time used a demographic model in which
polar bears on the ABC islands are gradually converted
into brown bears by continuous gene flow from main-
land American brown bears. In this model, we allowed
mainland bears to migrate to the ABC islands popula-
tion at a rate of 0.001 (0.1% of each generation of the
ABC Islands population is composed of brown bear mi-
grants), beginning 12,000 years ago and continuing until
the present. This model produces ABC Islands bears
more varied in their polar bear ancestry proportion, and
possibly more similar to the true ABC Islands bears. The
full procedure for simulations with this model was the same
as above, but using the ms command ms 32 10 -t 1700.0 -r
931.135415571 1000000 -I 4 10 10 10 2 -n 1
0.235294117647 -n 4 123529411765 -m 2 3 93.1135415571
-em 0.0113546182949 2 3 0 -ej 0.0113546182949 2 1 -¢j
0.3888956766 1 3 -ej 8.89445099767 3 4 —T. We refer to
the former model, with a single hybridization event, as the
“single-pulse” model and the latter model, with continuous
gene flow, as the “migration model.”

Human and Neanderthal data
We ran AD-LIBS on human and Neanderthal data as a
further test of AD-LIBS’s ability to correctly calculate
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admixture proportion, since high-coverage human and
Neanderthal sequencing data are readily available, many
studies have already sought to identify Neanderthal
admixture proportions in modern humans and Fsr
between humans and Neanderthals is reasonably high.
We chose to scan European genomes for Neanderthal
ancestry, because Neanderthal-human admixture is well
studied, and we chose European over East Asian individ-
uals because the history of Neanderthal-European gene
flow may be simpler and involve fewer admixture events
than that of Neanderthal-East Asian gene flow [3, 36, 37].
We randomly selected five European (CEU) individuals
and five Yoruba (YRI) individuals from phase 3 of the
1000 Genomes Project [21], downloaded BAM files
mapped to reference genome hgl9 for each, and created a
haploidized genomic sequence for each individual using
the samtools mpileup utility [38] with map and base
quality cutoffs of 20, along with a program that chooses
a random base from the set that passed filters at every
position, filtering out bases where coverage was greater
than the 97.5™ percentile of coverage genome-wide.
The European individuals used were NA11832,
NA11840, NA12340, NA12383, and NA12814; the Yor-
uba were NA18504, NA18870, NA18934, NA19099,
and NA19238. We then downloaded variant calls for
the high-coverage Altai Neanderthal [13] and generated
two “haplotype” sequences in hgl9 coordinates using a
program that transforms VCF to FASTA format, ran-
domly assigning each variant at heterozygous sites to
one or the other haplotype. Treating YRI and Altai as
the two reference populations, we then calculated 7a,;
= 0.000303, 7y = 0.001525, and 7Zaje; - yri = 0.001763
from these sequences and chose a population size of
10,000, based on prior estimates [39], and 2,000 genera-
tions since admixture, roughly based on inferences
drawn from Neanderthal haplotype block lengths in an-
cient human genomes [40, 41]. Neanderthal admixture

proportions were estimated by calculating f using both
Neanderthal haplotype sequences, the Yoruba individ-
ual NA18504, and the reads from chimpanzee genome
release PanTro4 [42], mapped to hgl9 coordinates by
the UCSC Genome Browser team [43]. After running
AD-LIBS on each individual, we computed admixture
proportion using the same technique as described in
the Testing with simulated data section.

Bear data preparation

Our bear sequence data were all published as part of
previous studies [10, 11, 17, 18]; sample details are given
in Table 2. We selected for study 11 hybrid brown/polar
bears from Alaska’s Admiralty, Baranof, and Chichagof
(ABC) islands (ABCO1, ABC02, ABC03, ABC04, ABCO05,
ABCO06, Adm1, Adm2, Bar, Chil, and Chi2), one brown
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bear from Montana known to have polar bear ancestry
(GPO01), two brown bears with some polar bear ancestry
from the Alaskan mainland (Den and GRZ), four Scandi-
navian brown bears hypothesized to be free of polar bear
ancestry (OFS01, RF01, SJSO01, and Swe), and four polar
bears selected for high coverage depth (PB7, PB12,
PB68, and PB105). Most data were downloaded as reads
from the NCBI SRA, subjected to adapter removal and
read merging using Seq-Prep (https://github.com/
jstiohn/SeqPrep) and mapped to the polar bear reference
genome [17] using BWA MEM [44, 45], sorted and
indexed with samtools [38], and subjected to indel re-
alignment via GATK, followed by duplicate removal via
PicardTools [5]. The Denali park brown bear (Den),
Swedish brown bear (Swe), Admiralty Island brown bear
(Adm1), and American black bear (Uam), however, were
processed as published in previous studies [10, 11]:
adapter trimming using Trimmomatic [46], mapping
using BWA aln [44], and duplicate removal using sam-
tools rmdup [38] followed by GATK’s indel realignment
[5]. Following this, we selected four polar bears (PB7,
PB12, PB68, and PB105), two Scandinavian brown bears
(OFS01 and RF01), and four ABC Islands brown bears
(ABCO01, ABC05, Adm2, and Bar), each of which had a
minimum of 20X genome-wide average coverage, and
performed variant calling on these using GATK’s Unified
Genotyper. We set a minimum base and map quality of
30, and then discarded variants with a genotype quality
lower than 30 or a variant quality lower than 50. We also
filtered to exclude sites for which coverage was lower
than 4 or greater than the 97.5™ genome-wide percentile
for any individual bear; this yielded 16,635,425 SNPs and
3,054,975 indels. In addition to using these variant calls
for downstream analysis, we used BEAGLE [47] with no
reference panel, no imputation, and five iterations to
phase our SNPs, resulting in a panel of 15,637,657 (94%
of the original SNPs) phased polymorphic sites.

To compensate for our inability to reliably identify
heterozygous sites in low-coverage (<20X) individuals,
and to format our data for use with AD-LIBS, we gener-
ated pseudo-haploid sequences in reference genome co-
ordinates for all bears by choosing a random base with
minimum map and base quality of 30 at every site, skip-
ping sites where coverage was greater than the 97.5™
percentile of genome-wide coverage [10, 11]. This was
done using samtools mpileup with the polar bear refer-
ence genome and map and base quality filters, then pip-
ing to an in-house program that selects and outputs a
random high-quality base at each position, yielding a
FASTA file. Genome-wide coverage was computed using
bedtools genomecov [35]. We then filtered these se-
quences to only scaffolds with a minimum length of
500 kb in the reference genome and calculated 7,0, =
0.000615, 7Tprou, = 0.00233, and 7Tpyesar - brown = 0.003564
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using a utility included with AD-LIBS on these se-
quences. We then ran AD-LIBS on all bears, assuming
an admixed population size of 3,000 and 2,000 genera-
tions since admixture, using PB105, PB12, OFS01, and
Uam to estimate each admixed bear’s admixture propor-

tion via f. For the Scandinavian bears OFS01, RFOI,
SJS01, and Swe, assumed to be free of polar bear admix-
ture [11, 17], we specified an admixture proportion of
0.001 in order to allow the model to detect polar bear
ancestry if it existed. We inferred ancestry for each of
our brown bears using a window size of 10 kb (the size
that worked best using simulations), a skip threshold of
0.25 (which gave very similar results to runs with skip
thresholds of 0.1, 0.5, and 0.75), and using an X chromo-
some model for scaffolds determined belong to the X
chromosome in a previous study [10]. We set the time
since admixture to 1000 generations ago, the approximate
end of the Pleistocene epoch assuming a generation time
of 11.35 years [17] and an admixed population size of
3,000 individuals.

We also used our panel of phased SNPs to infer ances-
try for our four ABC Islands bears that had at least a
20X average depth of coverage (ABC01, ABC05, Adm2,
and Bar), using HAPMIX [14], with GENOTYPE =1,
OUTPUT_SITES =1, THETA =0.08, LAMBDA = 900.0,
RECOMBINATION_VALS =600 600, MUTATION_-
VALS=0.2 0.2 0.01, and MISCOPYING_VALS =0.05
0.05. This gave us an independent map of polar bear an-
cestry for these four bears against which to compare
AD-LIBS’s results. We note that our HAPMIX results
are not as reliable as those for human data, since our
reference panel was phased computationally and thus
subject to switch errors. After running HAPMIX, we
converted output to BED files that could be compared
to AD-LIBS results using an in-house program. This
program assigns an ancestry state (homozygous popula-
tion A, heterozygous, or homozygous population B) to
each site by choosing the highest ancestry probability
output by HAPMIX, or skipping sites where two or
more probabilities are equal. It then merges runs of sites
with the same ancestry into contiguous regions of ances-
try and prints results in BED format.

Low-coverage tests

To test AD-LIBS’s performance on low-coverage data,
we used the same alignments as our full-coverage data.
We chose to limit analysis, however, to the four hybrid
ABC Islands bears for which we were able to run HAP-
MIX at full coverage (ABC01, ABC05, Adm2, and Bar),
owing to the fact that these bears were sequenced to
minimum 20X coverage and thus yielded reliable geno-
type calls. For unadmixed “reference” bears, we included
all four polar bears (PB7, PB12, PB68, and PB105), as
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well as the three Scandinavian brown bears sequenced
to at least 10X coverage (OFS01, RF01, and SJS01). We
note that our full-coverage HAPMIX runs used only the
Scandinavian bears over 20X coverage (OFSO1 and
RFO01), and so our low-coverage HAPMIX runs actually
had one more reference individual available than our
high-coverage runs. For computational efficiency, we
limited analysis to the longest scaffold of the polar bear
reference genome (scaffold1l, 67.4 Mb). For each bear,
we compiled a random set of properly-paired reads that
mapped to scaffoldl with minimum map quality 30
using samtools view, samtools bamshuf, and samtools
bam2fq [38]. We then calculated, for each bear, the
number of reads from these random sets required to
obtain 0.5X, 1X, 2X, 5X, and 10X coverage across scaf-
foldl. We then took subsets of our sets of high-quality
mapping reads and, for each bear at each coverage level,
mapped these reads to polar bear scaffoldl using BWA
MEM [45], then performed GATK’s [5] indel realign-
ment on the resulting BAM files. We did not remove
duplicates, since the BAM files were already deduped
prior to downsampling. We used our previously de-
scribed strategy for preparing pseudo-haploid FASTA
sequences (samtools mpileup and a program that ran-
domly chooses a base at each position that passes quality
filters), with map and base quality cutoffs of 20, to pre-
pare data for use with AD-LIBS. We also used GATK’s
UnifiedGenotyper to call SNPs along scaffoldl for every
bear at each coverage level, removing sites with map or
base quality below 20, as well as indel or non-biallelic
variants. Following this, we phased variants using BEA-
GLE [47] with no reference panel, no imputation, and
five iterations at each coverage level.

We ran HAPMIX on each bear for each coverage level
using the same parameters as for full-coverage data (see
Bear data preparation), and its results were converted to
BED files for easy comparison to AD-LIBS’s results. AD-
LIBS was then run on each hybrid bear at each coverage
level with the same parameters as the full-genome runs,
with the exception that nucleotide diversity values were
computed from the haploidized FASTA files rather than
using the previously-calculated values, the skip threshold
was set to 0.75 to accommodate more missing data, and
prior estimates of polar bear ancestry proportion were
all set to 0.08, as they were in all HAPMIX runs. To
compare output of HAPMIX and AD-LIBS runs to each
other, we used the same technique as we did when com-
paring AD-LIBS results for simulated data to the BED files
of true ancestry, described in the Simulations section.

Shared polar bear ancestry

To test for sharing of the same types of ancestry across
the same regions of the genomes in multiple bears, we
used a custom Python program, along with several
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existing tools. We first created merged BED files of each
specific type of ancestry for each bear using BEDTools
[35], grouping heterozygous and homozygous ancestry to-
gether for one ancestry type. We also used BEDTools
intersect to compute the size (in base pairs) of the inter-
section of each group of bears for each ancestry type, and
random samples were taken from the polar bear genome
using BEDTools shuffle, limited to the polar bear genomic
scaffolds that were at least 500 kb long — the same set of
scaffolds on which AD-LIBS was run.

In order to run EIGENSOFT SmartPCA [24] on the
bear ancestry data, we used a custom script to convert
AD-LIBS’s BED files into EEGENSTRAT format, using the
starting coordinate of each window as the position of each
“variant,” dropping “scaffold” from scaffold names, setting
genetic distance to 0 (the default) for each “variant” so
that a flat recombination rate can be assumed across each
scaffold, and coding each homozygous polar bear window
as 2, heterozygous windows as 1, and homozygous brown
bear windows as 0.

For the SNP-based PCA run, we downloaded the set
of polar and brown bear SNPs published as part of a re-
cent study [17], excluded all polar bears, converted to
EIGENSTRAT format, and ran EIGENSOFT SmartPCA
[24] the same way as with our ancestry data. Only the
first two principal components were considered.

Additional file
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Supplementary Methods, Figure S1 and Figure S2. (PDF 296 kb)
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