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Meta-analysis approach as a gene selection ® e
method in class prediction: does it improve
model performance? A case study in acute
myeloid leukemia
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Abstract

Background: Aggregating gene expression data across experiments via meta-analysis is expected to increase the
precision of the effect estimates and to increase the statistical power to detect a certain fold change. This study
evaluates the potential benefit of using a meta-analysis approach as a gene selection method prior to predictive
modeling in gene expression data.

Results: Six raw datasets from different gene expression experiments in acute myeloid leukemia (AML) and 11 different
classification methods were used to build classification models to classify samples as either AML or healthy control. First,
the classification models were trained on gene expression data from single experiments using conventional
supervised variable selection and externally validated with the other five gene expression datasets (referred to
as the individual-classification approach). Next, gene selection was performed through meta-analysis on four datasets,
and predictive models were trained with the selected genes on the fifth dataset and validated on the sixth dataset. For
some datasets, gene selection through meta-analysis helped classification models to achieve higher performance as
compared to predictive modeling based on a single dataset; but for others, there was no major improvement. Synthetic
datasets were generated from nine simulation scenarios. The effect of sample size, fold change and pairwise correlation
between differentially expressed (DE) genes on the difference between MA- and individual-classification model was
evaluated. The fold change and pairwise correlation significantly contributed to the difference in performance between
the two methods. The gene selection via meta-analysis approach was more effective when it was conducted using a set
of data with low fold change and high pairwise correlation on the DE genes.

Conclusion: Gene selection through meta-analysis on previously published studies potentially improves the performance

of a predictive model on a given gene expression data.
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Background

The ability of microarray technology to simultaneously
measure expression values of thousands of genes has
brought major advances. The measurement of gene ex-
pression may be done within a relatively short time to
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quantify genome-wide expression levels. On the other
hand, statistical analyses to extract useful information
from such high dimensional data face well known chal-
lenges. Common mistakes in conducting statistical ana-
lyses were reported [1]. Particularly class prediction
studies are subject to concerns about reliability of results
[2], where genes involved in predictive models depend
heavily on the subset of samples used to train the
models. This is related to the likelihood of false positive
findings due to the curse of dimensionality in microarray
gene expressions datasets [3].

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1619-7&domain=pdf
mailto:p.novianti@vumc.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Novianti et al. BMC Bioinformatics (2017) 18:210

Methods for aggregating gene expression data across ex-
periments exist [4, 5]. Data standardization is proposed as
a preliminary step in cross-platform gene expression data
analyses [6—8], as raw gene expression datasets are recom-
mended to be used [9] and gene expression values may be
incomparable across different experiments. Meta-analysis
is known to increase the precision of the effect estimate
and to increase the statistical power to detect a certain
effect size (or fold change). In class prediction, meta-
analysis methods can have different objectives, ranging
from methods for combining effect sizes [10] or combin-
ing P values [11, 12] to rank-based methods [13]. How-
ever, there is no meta-analysis method known to be
generally superior to others [14, 15].

In this study, we compared the performance of classifi-
cation models on a given gene expression dataset between
gene selection through meta-analysis on other studies and
conventional supervised gene selection. A single gene ex-
pression dataset with less than a hundred samples is likely
not enough to determine whether a particular gene is an
informative gene [16]. Thus, gene selection based on mul-
tiple microarray studies may yield a more generalizable
gene list for predictive modeling. We used raw gene ex-
pression datasets from six published studies in acute mye-
loid leukemia (AML) to develop predictive models using
11 different classification functions to classify patients
with AML versus normal healthy controls. In addition, a
simulation study was conducted to more generally assess
the added value of meta-analysis for predictive modeling
in gene expression data.

Methods

As a starting point, we assume D gene expression datasets
are available for analysis. First, the D raw datasets are indi-
vidually preprocessed. Next, 11 classifiers are trained on
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expression values from the j study (j=1, ..., D) by in-
corporating variable selection procedure via limma
method and externally validated on the remaining D-1
gene expression datasets. We refer to these models as in-
dividual-classification models.

To aggregate gene expression datasets across experi-
ments, D gene expression datasets are divided into three
major sets, namely (i) a set for selecting probesets
(SET1, consists of D-2 datasets), (ii) for predictive mod-
eling using the selected probesets from SET1 (SET2,
consists of one dataset) and (iii) for externally validating
the resulting predictive models (SET3, consists of one
dataset). The data division is visualized in Fig. 1. We
next describe the predictive modeling with gene selec-
tion via meta-analysis (refer to as MA(meta-analysis)-
classification model). First, significant genes from a
meta-analysis on SET1 are selected. Next, classification
models are constructed on SET2 using the selected
genes from SET1. The models are then externally vali-
dated using the independent data in SET3. The MA-
classification approach is briefly described in Table 1
and is elaborated in the next subsections.

Data extraction

Raw gene expression datasets from six different studies
were used in this study, as previously described else-
where [16, 17], i.e. E-GEOD-12662 [18] (Datal), E-
GEOD-14924 [19] (Data2), E-GEOD-17054 [20] (Data3),
E-MTAB-220 [21] (Data4), E-GEOD-33223 [22] (Data5)
and E-GEOD-37307 [23] (Data6). Five studies were con-
ducted on Affymetrix Human Genome U133 Plus 2 array
and one study was performed on U133A (Additional file 1:
Table S1). The raw datasets were pre-processed by quantile
normalization, background correction according to manu-
facturer’s platform recommendation, log, transformation

| Datal | | Data2 | |

|| DataD|

SET1

# of datasets D-2

Selecting informative
probesets

Usage

# of probesets The number of common
probesets
Scale Original scale

SET2

1

Predictive modeling

The number of informative
probesets resulted from the
analysis in SET1

Original scale

SET3

1

Externally validating
classification models

The number of informative
probesets resulted from the
analysis in SET1

Scaled to SET2

Fig. 1 Data division to perform cross-platform classification models building and their characteristics. (#: the number)
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Table 1 An approach in building and validating classification
models by using meta-analysis as gene selection technique

1. Data collection

Collect raw gene expression datasets, which possibly come from
previous experiments and/or systematic search from online repositories.

2. Data preparation

(i) Individually preprocess raw gene expression datasets (i.e.
normalization, background correction, log2 transformation).

(i) Divide D available gene expression datasets into three sets, i.e. D-2
gene expression datasets to get a gene signature list (SET1), a gene
expression set to train classification models (SET2) and a dataset to
validate the models (SET3).

3. Meta-analysis for gene selection

(i) For each probesets, aggregate expression values from SET1 to get
a signature list via random effect meta-analysis.

(i) Record significant probesets (also refer to as informative probesets)
4. Predictive modeling

(i) In SET2, include informative probesets resulted from Step 3.

(i) Divide samples in SET2 to a learning set and a testing set.

(iii) Perform cross validation in classification model modeling.

(iv) Evaluate optimum predictive models in the testing set.
5. External validation

(i) In SET3, include probesets that are informative from Step 3.

(i) Scale gene expression values in SET3 with SET2 as a reference.

(i) Validate classification models from Step 4 to the scaled gene
expressions data in SET3.

and summarization of probes into probesets by median pol-
ish to deal with outlying probes. We limited analyses to
22,277 common probesets that appeared in all studies.

Meta-analysis for gene selection

We aggregated D-2 gene expression datasets to extract
informative genes by performing a random effects meta-
analysis. This means meta-analysis acts as a dimension-
ality reduction technique prior to predictive modeling.
For each probeset, we pooled the expression values
across datasets in SET1 to estimate its overall effect size.
Let Yj; and 6; denote the observed and the true study-
specific effect size of probeset i in an experiment j, re-
spectively. The random effects model of a probeset i is
written as:

Y =0+ ¢&;, where6;=0;+0; for i
=1,..,pand j=1,.., (D-2),

where p is the number of tested probesets, ; is the
overall effect size of probeset i, &;~ N(0; O%j) with 0,2, as
the within-study variance and §; ~ N(0; 77) with 77 as
the between-study or random effects variance of probe-
set i. The study-specific effect size 8; is defined as the
corrected standardized mean different (SMD) between
two groups, estimated by:
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where X (9?,71) is the mean of base-2 logarithmically
transformed expression values of probeset i in Group 0
(Group 1). s;; is originally defined as the square root of
the pooled variance estimate of the within-group vari-
ances [24]. This estimation of o;, however, is rather un-
stable in a small sample size study. We utilized the
empirical Bayes approach implemented in limma to
shrink extreme variances towards the overall mean vari-
ance. Thus, we define s; as the square root of the vari-
ance estimate from the empirical Bayes t-statistics [25].
The second component in Eq.(1) is the Hedges’ g correc-
tion for SMD [26]. The estimation of between-study
variance (7;2) was performed by Paule-Mandel (PM)
method [27] as suggested by [28, 29]

For each probeset, a z-statistic was calculated to test
the null hypothesis that the overall effect size in the ran-
dom effects meta-analysis model is equal to zero (or a
probeset is not differentially expressed). To adjust for
multiple testing, P-values based on z-statistics were cor-
rected at a false discovery rate (FDR) of a =5%, using
the Benjamini-Hochberg (BH) procedure [30]. We con-
sidered probesets that had a significant overall effect size
as informative probesets. For each informative probeset
i, the estimated overall effect size 6, (91') is:

_ > iy @
i Z}.Wij )

Where w;; = 1/(ii2 + sfj .

0

Classification model building

The following classification methods were used to con-
struct predictive models: linear discriminant analysis
(LDA), diagonal linear discriminant analysis (DLDA) [31],
shrunken centroid discriminant analysis (SCDA) [32],
random forest (RF) [33], tree-based boosting (TBB) [34],
L2-penalized logistic regression (RIDGE), L1-penalized lo-
gistic regression (LASSO) [35], elastic net [36], feed for-
ward neural networks (NNET) [37], support vector
machines (SVM) [38] and k-nearest neighbors (KNN) [39].
A detailed description of the classification methods, model
building procedure as well as the tuning -parameter(s)
was presented in our previous study [40]. The class pre-
diction modeling process for both individual- and MA-
classification models was done by splitting the dataset in
SET?2 into a learning set Z and a testing set 7. The learn-
ing set % was further split by cross validation into an
inner-learning set and inner-testing set, to optimize the
parameters in each classification model. The optimal
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models were then internally validated on the out-of-bag
testing set 7. Henceforth, we referred to the testing set 7
as an internal-validation set V.

For MA-classification models on SET2, we used all the
probesets identified as differentially expressed by meta-
analysis procedure in SET1, except for LDA, DLDA and
NNET methods, which cannot handle a larger number
of parameters than samples. For these methods, we in-
corporated top-X probesets to the predictive modeling,
where X was less than or equal to the sample size minus
1. The top lists of probesets were determined by ranking
all significant probesets on their absolute estimated
pooled effect sizes (6,) from Eq.(2). As the number of
probesets to be included was itself a tuning parameter,
we varied the number of included probesets from 5 to
the minimum number of within group samples. For
other classification functions, we used the same values
of tuning parameter(s) as described in our previous
study [40].

For the individual-classification approach, we opti-
mized the classification models based on a single gene
expression dataset (SET2). Here, we applied the limma
procedure [41] to determine top-X relevant probesets,
controlling the false discovery rate at 5% using the BH
procedure [30]. The optimum top-X was selected
among{50, 100, 150, 200} for classification methods
other than LDA, DLDA and NNET. We used the same
number of selected probesets for the three aforemen-
tioned classification methods as in the MA-classification
approach. In each case, we evaluated the classification
models by the proportion of correctly classified samples
to the number of total samples, known as a classification
model accuracy.

Model validation

The optimal classification models obtained from the pre-
vious step were externally validated on SET3. The log,
expression values of the data in SET3 for the probesets
used in the classification models were scaled to the log,
expression values of the data in SET2, so that the learn-
ing and the validation sets had comparable range. For
each probeset i, we assumed the expression values were
in the interval [a;, b;] in SET2 and [c; d;] in SET3. A log,
expression value x;; of probeset i in sample s from SET3,
was scaled to the scale of SET2 by the following trans-
formation formula:

(di—ci) s diicl‘. (3)

S(xis) = a; +

Predictive models were then applied to the scaled log,
gene expression data in SET3.

For individual-classification, we rotated the single
learning dataset and validated the models on the other
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D-1 datasets. For MA-classification, we rotated the data-
sets used for selecting informative probesets (SET1) as
well as learning (SET2) and validating (SET3) classifica-
tion models. For each possible combination of D-2 data-
sets, we repeated step 3—5 of our approach (Fig. 1). Due to
a small number of samples in Data3, we omitted the pre-
dictive modeling process when it was selected as SET2.
Hence, the possible gene expression datasets in SET2 were
Datal, Data2, Data4, Data5 and Data6; and gene expres-
sion datasets in SET3 were Datal, Data2, Data3, Data4,
Data5 and Data6, rendering thirty possible combinations
to divide D = 6 datasets to three distinct sets.

Simulation study

We generated synthetic datasets by conducting simula-
tions similar to that described by Jong et al [42]. We
refer to the publication for more detail description of
each and every parameter stated in this sub-section.
Among parameters to simulate gene expression data
(Table 2, in [42]), we applied these following parameters
for all simulation scenarios, i.e. (i) the number of genes
per data set (p=1000); (ii) the pairwise correlations of
noisy genes were set equal to zero (implying X33 in Fig. 1.
reference [42] was equal to 0), (iii) the proportion of dif-
ferentially expressed genes (1 = 10%) and; (iv) the param-
eter of an exponential distribution to draw the variances
of the genes (A =0.5). Further, the number of samples
per dataset (1), the log, fold changes of differentially
expressed (DE) genes (A) and pairwise correlations of
DE genes (p) were varied as follows: n =50, 100, 150; A
=0.1,0.5,0.75; and p=0.25, 0.5,0.75, respectively. We
define pairwise correlation of noisy (DE) genes as the
correlation between any and every two pairs of noisy

Table 2 Parameters to generate simulated gene expression

datasets

Simulation ID n A o DEGya DEGRp
1 50 0.1 0.75 12 72
2 50 0.5 0.5 57 34
3 50 0.75 0.25 70 62
4 100 0.1 0.75 12 14
5 100 0.5 0.5 53 56
6 100 0.75 0.25 67 50
7 150 0.1 0.75 15 23
8 150 05 05 52 26
9 150 0.75 0.25 58 57

Symbols. n: the number of samples in each generated dataset; A: the log, fold
changes of differentially expressed (DE) genes. p: pairwise correlation of

DE genes

“The number of genes that were stated as differentially expressed (DE) genes
by MA approach from 50 cumulative studies. All the selected genes are

true positives

The number of true DE genes among the top-100 DE genes selected by
limma procedure



Novianti et al. BMC Bioinformatics (2017) 18:210

(DE) genes. Table 2 shows nine combinations from these
parameters, which reflect the amount of information in
each simulated gene expression dataset. In the first block
(simulation #1 to #3) for instance, the dataset generated
by parameters in simulation #1 contains less information
than the dataset generated by parameters in simulation
#2, which is caused by the low degree of log, fold
changes and high correlation of DE genes.

For each scenario mentioned in Table 2, we simulated
data that consisted of #*52 samples from the same popu-
lation. The data was then randomly divided into 52 dif-
ferent sub-datasets of n samples each (proportional to
the classes). Next, the sub-datasets were randomly
chosen to be considered as (i) SET1: a set of fifty data-
sets for selecting probes via meta-analysis; (ii) SET2: a
dataset for predictive modeling; (iii) SET3: a dataset for
validation. In the MA-predictive modeling, we estimated
classification model accuracies when the number of
studies for variable selection were ranging from 5 to 50
studies.

Random effects linear regression

We quantified the difference in performance between
classification models that were optimized with and with-
out incorporating information from other studies in the
simulation study by a random effects linear regression
model. The difference of model accuracy between MA-
and individual-classification procedure for a classification
model C based on a simulation scenario S is denoted as
dcsyr. Such  differences were calculated when MA-
classification procedure incorporated M = studies
(where M =550 by 5) to select features. Having
rescaled the dcsy to be in the range of 0 and 1 by
Hd% , we then transformed dcsy using the logit
function to get unbounded and more approximately
normally distributed outcome values. Given in each
simulation setting we calculated dcsy, for different
number of M studies for feature selection in MA ap-
proach, we used a fully crossed random effects model,
where simulation setting S and the number of studies
for MA-approach M acted as clustering factors or
random effects. Additionally, since the same classifica-
tion methods were applied to build prediction models,
classifier C was added as a random effect term.

We then tested three determinants (X, k=1,2,3) that
might contribute to the difference in performance of clas-
sification models that were trained by two approaches
(dcsar), namely the number of samples per dataset (#), the
log, fold changes of differentially expressed (DE) genes
(A) and pairwise correlations of DE genes (p). Each of the
determinant was individually evaluated in the random ef-
fects model. More formally, the random effects model for
the kK’ determinant is written as:
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desy = Bo + 9oc + 9os + om(s) + B Xk

where d' cspr is the logit transformation of the scaled
dcsas 9os doms) and Joc are the random intercepts with
respect to the simulation setting S (95 ~ N(0, 63s)), the
number of studies for meta-analysis M ( 9ous) ~
N(0, 03,1) and classification model C (9pc ~ N(0, 05c))
respectively.

Software

All analyses were performed in R statistical software
using these packages: affy for preprocessing procedures
[43]; meta for meta-analysis [44], CMA for predictive
modeling [45], lme4 for the random effects linear model
[46] and ggplot2 for data visualization [47].

Results

We first present the performance of classification
models when each individual study was used to optimize
the classification functions (individual-classification pro-
cedure) in AML datasets. As the first illustration, we
considered the case for which Datal was used for
optimization. To start with, we compared the distribu-
tion of expression values in the validation sets Data2 to
Data6 to the expression values in Datal. There seemed
to be a considerable difference in the distributions of ex-
pression values between studies, with Data6 having a
lower range than other experiments, indicating that data
standardization across studies was necessary (Fig. 2).
Gene expression values in Data2 to Data6 were effect-
ively scaled by using Eq.(3) so that they had comparable
ranges as in Datal (Additional file 1: Figure S1). The
classification models optimized in Datal, were validated
with Data2 to Data6. The classification models per-
formed poorly in all 5 validation sets, notably worst in
Data2 and Data4 (Additional file 1: Table S2). When
Data2, Data4, Data5 and Data6 were used to optimize
the classifiers, we found similar results (Additional file 1:
Table S3-S6).

The comparison of the accuracies of classification
models that were trained by MA- with individual-
classification procedures based on optimization with
Datal is shown in Fig. 3. In most cases, MA-classification
models outperformed individual-classification models.
The difference of model accuracies between MA- and
individual-classification approach was considerably larger
when Data2 was used as a validation set. On average,
classification methods that require the number of features
to be smaller than the number of samples (i.e. NNET,
LDA and DLDA), seemed to improve with the MA-
classification approach. When validated against Data4, all
models seemed to benefit from the MA-classification
approach.
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Fig. 2 The distribution of expression values after pre-processing step from the first three samples in six experiments. The expression values are
in log, scale
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Fig. 3 Plot of the difference of classification model accuracies between MA- and individual-classification approach, when Datal was used as a
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In the other cases (i.e. when Data4, Data5 and Data6
acted as a learning set), we noticed that MA-classification
approach did not outperform the individual-classification
models when the models were validated on Data2. The
MA-classification approach reduced the classification
model accuracies by up to 50%, as compared to
individual-classification models. As the MA-classification
approach mostly resulted in a lower number of genes used
in the predictive models than individual-classification ap-
proach, it might be hard for MA-classification models to
outperform individual-classification models when vali-
dated on Data2, as DE genes in this dataset (on average)
had a low degree of log, fold change (i.e. 0.471). On the
other hand, most of MA-classification models outper-
formed individual-classification models when they were
validated on Data3 (Additional file 1: Figure S2-S5). Given
that (i) the MA-approach was better in selecting the “true”
DE genes (results from the simulation study) and more
importantly (i) the average log, fold change of the DE
genes in Data3 was considerably high, i.e. 2.025, in most
cases the classifiers benefited from the MA-approach. In-
corporating information from other experiments in these
datasets did not consistently improve the predictive ability
of classification models when externally-validated. The
simulation study was conducted to evaluate the difference
of classification model accuracies between the MA- and
individual-classification approach more generally. The re-
sults showed that the MA-classification approach was
more likely to improve the classification model accuracy
when it was conducted in a set of less informative datasets
(Fig. 4). We defined a less informative dataset as a dataset
with a small number of samples, a low degree of log, fold
changes of the DE genes and a high level of pairwise cor-
relation of DE genes. In this type of dataset, feature selec-
tion via limma method hardly selected the true DE genes
in the individual-classification approach. Among the true
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100 DE genes in each simulated dataset, the limma pro-
cedure could select 14 to 72 DE genes. Meanwhile, all se-
lected genes by MA approach were truly DE genes
(Table 2). As we observed in the AML data, classification
methods that require the number of features less than the
number of samples (i.e. NNET, LDA and DLDA) per-
formed better with the feature selection prior to predictive
modeling via meta-analysis.

Factors that might contribute to the difference of clas-
sification model accuracy between the MA- and
individual-classification approach, were individually eval-
uated by random effect models. This resulted in the log,
fold changes and pairwise correlation between DE genes
as the significant factors. Both factors were consistent with
the finding that a set of less informative datasets benefited
from the MA-classification approach (shown by negative
coefficient on A and positive coefficient on p). Further,
there was no additional variation in the difference in
performance between MA- and individual-classification
approach that was associated with the number of datasets
used to select features in meta-analysis approach (Bp =0).
A possible explanation of this finding could be that five
datasets used in MA-classification approach were enough
to select relevant variables so that the quality of the variable
selection was not further increased by the increasing the
number of datasets. This might also explain all the true
positive genes selected by MA-approach in the simulation
study. (Table 3)

Discussion

This study applied a meta-analysis approach for feature
selection in predictive modeling on gene expression
data. Selecting informative genes among massive noisy
genes in predictive modeling faces a great challenge in
microarray gene expression data. Dimensionality reduc-
tion is applied to reduce the number of noisy genes as
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Table 3 Results of the random effects models
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Factors  Coefficient ~ Confidence interval Ooc Confidence interval Oos Confidence interval Oomsy  Confidence interval
LL uL LL uL LL uL LL uL

n 0.0005 -0.0005 00009 00244 0.0165 0.0404 0.0489 0.0289 0.0759 0.000 0.000 0.0039

A -0.1169 -0.2041 -0.0285 0.0245 0.0163 0.0402 0.0359 0.0159 0.0405 0.000 0.000 0.0039

o 0.1489 0.0295 02636 0.0245 0.0165 0.0405 0.0369 0.0022 0.0579 0.000 0.000 0.0039

Each factor was evaluated individually in the random effects linear regression model. The coefficients were inverse transformed to the original scale of the
difference of classification model accuracy between MA- and individual classification approach

Abbreviations: LL lower limit, UL upper limit

Symbols: n: the number of samples in each generated dataset; A: the log2 fold change of differentially expressed (DE) genes. p: pairwise correlation of DE genes.
Ooc, Oos and Ogys) are the standard deviation of the random intercepts with respect to classification model, scenario in the simulation study and the number of
studies used for selecting relevant features via meta-analysis approach. See Method section for more details regarding the random effect models

well as to reduce the possibility of predictive models
choosing clinically irrelevant biomarkers. An extra step
to generate a gene signature list is usually applied in
practice (e.g. by [48—53]), including predictive modeling
via embedded classification methods (e.g. SCDA and
LASSQO). Selected informative genes may depend on the
sub-samples used in the analysis [2], which may lead to
the lack of direct clinical application [54].

Previous research on the application of meta-analysis
in differential gene expression analysis showed that a
single study might not contain enough samples to make
a conclusion whether a particular gene is an informative
gene. Among 12,211 common genes from 271 combined
samples, 70 to 90% of the genes needed more samples in
order to draw a conclusion [16]. A very low sample size
as compared to the number of genes can cause false
positive finding [3]. Involving thousands of samples is a
straight forward solution but it can be very costly and
time consuming. A possible solution to increase the
sample size is by combining gene expression datasets
with a similar research question through meta-analysis.

Meta-analysis is known as an efficient tool to increase
statistical power and to obtain more generalizable re-
sults. Although a number of meta-analysis methods have
been used as a feature selection technique in class pre-
diction, no method has been shown to perform better
than others [14, 17]. In this study, we combined the cor-
rected standardized effect size for each gene by random
effects models, similar to a study conducted by Choi et
al [10]. However, we estimated the between-study vari-
ance by Paule-Mandel method, which outperforms the
DerSimonian-Laird method in continuous outcome data
[28]. We used a broad selection of classification func-
tions to build predictive models in order to evaluate the
added value of meta-analysis in aggregating information
from gene expression across studies.

Six raw gene expression datasets resulting from a sys-
tematic search in a previous study in acute myeloid
leukemia (AML) [16] were preprocessed, 22,277 com-
mon probesets were extracted and used for further ana-
lyses. We assessed the performance of classification
models that were trained by each single gene expression

dataset. The models were then validated on datasets ob-
tained from other studies. Classification models that
were externally validated might suffer from heterogen-
eity between datasets, due to, for instance, different sam-
ple characteristics and experimental set-up.

For some datasets, gene selection through meta-analysis
yielded better predictive performance as compared to pre-
dictive modeling on a single dataset, but for others, there
was no major improvement. Evaluating factors that might
account for the difference in performance of the two pre-
dictive modeling approaches on real-life datasets could be
confounded by uncontrolled variables in each dataset. As
such, we empirically evaluated the effects of fold change,
pairwise correlation between DE genes and sample size on
the added value of meta-analysis as a gene selection
method in class prediction with gene expression data.

The simulation study was performed to evaluate the
effect of the level of information contained in a gene ex-
pression dataset. For a given number of samples, we de-
fined an informative gene expression data as a dataset
with large log, fold changes and low pairwise correlation
of DE genes. The simulation study shows that the less
informative datasets (i.e. Simulation 1, 4 and 6) benefited
from MA-classification approach more clearly, than the
more informative datasets. The limma feature selection
method on a single dataset had a higher false positive
rate of DE genes compared to feature selection via meta-
analysis. Incorporating redundant genes in the predictive
model may weaken the performance of a classification
model on independent datasets. While conventional pro-
cedures use the same experimental data, meta-analysis
uses a number of datasets to select features. Thus, the
chances of sub-samples-dependent features to be in-
cluded in a predictive model are reduced in MA- than in
individual-classification approachand the gene signature
may be widely applied.

For MA, we defined the effect size as a standard-
ized mean difference between two groups. Although
we individually selected differentially expressed probesets
(ie. ignoring correlation among probesets), we incorpo-
rated information from all probesets by applying limma
procedure in estimating the within-group variances
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(Eq.(1)). This empirical Bayes moderated t-statistics pro-
duces stable variances and it is proven to outperform or-
dinary t-statistics [55]. Marot et al implemented a similar
approach in estimating unbiased effect sizes (Eq.(13) in
[56]) and they suggested to apply such approach to esti-
mate the study-specific effect size in meta-analysis of gene
expression data.

We analyzed gene expression data at the probeset
level. When more heterogeneous gene expression data
from different platforms are used, mapping probesets to
the gene level is a good alternative. Annotation packages
from Bioconductor [57] and methods to deal with mul-
tiple probesets referring to the same gene may be con-
sidered, if such mapping is applied in a cross-platform
gene expression study. A point to consider in cross-
platform analysis of microarray experiments is data
standardization. The same genes may have different sig-
nal in different experiments, due to e.g. different array
technology and scanning process. We investigated the
distributions of expression values across experiments
and found incomparable ranges of expression values
across experiments. Despite its simple nature, the scaling
formula in Eq.(3) produces common ranges of gene ex-
pression values across experiments. Some methods to
scale gene expression across experiments were proposed
[7, 8, 10]. We do not expect that different scaling
methods give significantly different findings as presented
here, although it may be interesting to study.

We individually pre-processed the selected gene expres-
sion datasets, adjusted by the microarray platform in each
and every study. A different preprocessing method may
lead to different results of the prediction models, but it is
not covered in this study. The predictive ability of a classifi-
cation model may depend on a set of samples that is used
in the preprocessing and normalization step. The rank-
based genes is preferred over raw expression values to gen-
erate gene expression data [57]. Although we do not expect
the present conclusions to change, it could be interesting to
investigate this procedure further in this context.

Conclusions

A meta-analysis (MA) approach was applied to select
relevant features from multiple studies. Based on the
simulation study, the MA approach was better in terms
of variable selection than the predictive modeling by
using a single dataset. In particular, a less informative
dataset (which contains low log, fold changes and highly
correlated differentially expressed genes) was likely to
benefit from feature selection via meta-analysis for class
prediction. This also held for classification methods that
require a smaller number of features than samples.
Given the present public availability of omics datasets,
meta-analysis approach can be used more often as an al-
ternative gene selection method in class prediction.
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