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Abstract

Background: Copy number variation (CNV) is known to play an important role in the genetics of complex diseases
and several methods have been proposed to detect association of CNV with phenotypes of interest. Statistical
methods for CNV association analysis can be categorized into two different strategies. First, the copy number is
estimated by maximum likelihood and association of the expected copy number with the phenotype is tested.
Second, the observed probe intensity measurements can be directly used to detect association of CNV with the
phenotypes of interest.

Results: For each strategy we provide a statistic that can be applied to extended families. The computational
efficiency of the proposed methods enables genome-wide association analysis and we show with simulation
studies that the proposed methods outperform other existing approaches. In particular, we found that the first
strategy is always more efficient than the second strategy no matter whether copy numbers for each individual are
well identified or not. With the proposed methods, we performed genome-wide CNV association analyses of
hematological trait, hematocrit, on 521 Korean family samples.

Conclusions: We found that statistical analysis with the expected copy number is more powerful than the statistic
with the probe intensity measurements regardless of the accuracy of the estimation of copy numbers.
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Background
Copy number variants (CNVs) are widely distributed
throughout the human genome [1, 2] and have been
considered as important genetic factors for human dis-
eases [3, 4]. Several different methods, such as array
comparative genomic hybridization (aCGH) and next
generation sequencing, have been suggested to identify
CNVs. Thanks to the recent improvement of sequencing
technology, sequencing cost decreases very fast and be-
comes much cheaper. Furthermore, aCGH cannot detect
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aberrations such as mosaicism that do not result in copy
number changes. However, in spite of this advantage of
sequencing, aCGH is still cheaper and many array data
have already been produced. Thus, it may be a cost ef-
fective choice at least for a while. In this report, we focus
on CNV analysis with aCGH data–though the proposed
method can be readily extended to other types of CNV
data.
For aCGH data, gene copy numbers are not directly

observed and have to be estimated with their intensity
measures for association analyses. True unknown copy
numbers will be called as unobserved copy numbers in
the remainder of this report. CNV association requires
estimation of copy numbers, and several algorithms,
such as PennCNV [5], QuantiSNP [6], dChip [7] and
GTC [8], have been developed to detect unobserved
copy numbers. Then statistical methods such as linear
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regression and chi-square tests have been utilized to de-
tect CNV association with estimated copy numbers [9].
Barns et al. [10] calculated the posterior probability for
each possible copy number, and likelihoods weighted by
these posterior probabilities were used to build a likeli-
hood ratio test. As an alternative to CNV analysis using
the estimated copy number, the probe intensity measure-
ments can be used to detect the CNV association [11].
The probe intensity is assumed to be proportional to the
unobserved copy number, and its distributions can be
compared between affected and unaffected individuals. If
copy numbers are correctly estimated, the analysis using
the expected copy numbers seems to be an efficient
choice. However, estimates of copy numbers are often un-
certain and this effect has not been carefully considered in
the statistical analysis [4]. In this report, we considered
both approaches and compared them with simulation
studies for a large variety of parameter settings.
For association analysis, phenotypic correlations be-

tween individuals have the effect of sample size reduc-
tion, and thus independent population-based samples
have often been preferred to maximize the statistical ef-
ficiency. However, family-based association analyses have
been useful for certain scenarios because family mem-
bers are genetically homogeneous [12, 13]. For instance,
FBAT-statistics based on the so-called within-family
component [14] are robust in the presence of population
substructure and they are often preferred, in particular
for candidate gene studies. Within-family component in-
dicates the distribution of non-founders’ genotype when
their parental genotypes are conditioned. The distribu-
tion of founders’ genotype is called between-family com-
ponent and the statistical power of FBAT-statistics has
been improved by combining FBAT-statistics with the
between-family component in a robust way [11, 15, 16].
This two-stage analysis can achieve efficiency compar-
able to that of independent samples. However, due to
the assumption that between- and within- family com-
ponents are equally informative, this method can suffer
from statistical power of loss if the numbers of founders
and nonfounders are different.
In this report we propose two statistics, T1 and T2, for

CNV association analysis using family-based samples; for
T1, the phenotypes are regressed on the expected copy
number, and for T2 they are regressed directly on the
probe intensity measurements. A random effect is in-
cluded to model the phenotypic covariance between family
members, and the variance components for the phenotype
are estimated with a restricted likelihood. Our results show
that statistical analysis with the expected copy number is
usually more efficient than the statistic with probe inten-
sity measurements. We applied the proposed methods to
detect CNV association with a hematology-related trait,
hematocrit, in Korean family-based samples.
Methods
Notations and the disease model
We assume that K intensity measurements are observed
at a particular CNV region for each individual, there are
n families, and ni individuals in family i. For simplicity,
we consider only trio families, but the methods can be
extended to large extended families. We assume that j =
1, 2 indicates the parents in each family. We let xijk indi-
cate the observed intensity measurement on probe k for
individual j in family i. Xij indicates the column vector,
(xij1,…,xijK)

T, for individual j in family i. We let λij be the
unobserved copy number for individual j in family i, and
denote a set of possible realizations of λij and their cor-
responding frequencies respectively as C and Θ. We
denote the phenotype for individual j in family i by
yij, and let Zij be a vector of measured environmental
factors, including an intercept as the first element.
The intensity matrix, Xi, and phenotype vector, Yi, for

family i are respectively defined as Xi ¼ XT
i1;…;XT

ini

� �T

and Yi ¼ ðyi1;…; yiniÞT . We include a random effect, bi,
to allow for the phenotypic correlation between family
members. λi and εi indicate respectively an unobserved
copy number vector and a measurement error vector for
family members in family i. If we let N = Σi ni, an N ×K
design matrix X and an N × 1 vector Y are respectively ob-
tained by stacking all Xi and Yi vertically. λ, b and ε are
N × 1 vectors and are obtained by stacking all λi, bi and εi
vertically.

Signal model
We assumed that there are some correlations among the
probe intensity measurements and the correlation
matrix is assumed to be unstructured. We let γλij and

Σλij be a K × 1 mean vector and a K × K variance-
covariance matrix of the intensity measurements. We as-
sume that Xij|λij are identical and independently distrib-
uted for i and j, and

XijjλijeN γij; ;Σij

� �
:

If we assume that the correlation matrix is R, the
variance-covariance matrix can be expressed as Σλij ¼ Dλij

RDλij , where

Dλij ¼
σ1λij 0 ⋯

0 σ2λij Ο
⋮ Ο Ο

2
4

3
5:

The parameters for Σλij will be denoted by Σ, and this
proposed model will be called the signal model in the re-
mainder of this manuscript.
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Phenotype model
We assume that phenotypes are quantitative. We con-
sider a standard linear mixed model for phenotypes that
consists of CNV effects, additive polygenic effects, and
measurement error. If we denote the w ×w identity
matrix by Iw, the measurement error ε is assumed to fol-
low the multivariate normal distribution with mean 0
and variance σε

2IN. The phenotypic correlations between
family members are usually explained by a polygenic ef-
fect, b, and we assume b follows a multivariate normal
distribution. We let πijj′ be the kinship coefficient be-

tween individuals j and j′ in family i, we let dij be the in-
breeding coefficient for individual j in family i, we
denote Фi by the matrix

1þ di1 2πi12 ⋯ 2πi1ni
2πi21 1þ di2 ⋯ 2πi2ni
⋮ ⋮ ⋱ ⋮
2πini1 2πini2 ⋯ 1þ dini

2
664

3
775;

and we let

Φ ¼
Φ1 0 0 ⋯
0 Φ2 0 ⋯
0 0 Φ3 ⋯
⋮ ⋮ ⋮ Ο

2
664

3
775:

The kinship coefficient between two subjects indicates
the probability that two alleles randomly selected from each
subject are identical by decent, and the inbreeding coeffi-
cient of a subject means the probability that his or her two
alleles are identical by descent. Then, if we let the variance
of the polygenic effect be σg

2, b follows the multivariate nor-
mal distribution with mean 0 and variance covariance
matrix, σg

2Ф. In the presence of population substructure,
the empirical correlation matrix estimated with large-scale
SNP data can replace Ф to provide robustness to the pro-
posed method [17, 18]. If we condition on the true copy
number vector λ, the linear model for the phenotype is

Y ¼ Zαþ λβþ b

þ ε; where beN 0; σ2gΦ
� �

; εeN 0; σ2ε IN
� �

: ð1Þ

Copy number model
For disease copy number region we assume that there are
M different unobserved copy numbers in the population.
We further assume that the frequency of subjects with cm
copy numbers is θm in the population. We let C = {c1, …,
cM} and Θ = {θ1, …, θM}, where θ1 +… + θM = 1. We de-
note maternal and paternal copy numbers of individual j
in family i by λij

1 and λij
2 respectively, and we assume

that λij (= λij
1 + λij

2) for founders follows the multi-
nomial distribution under Hardy-Weinberg equilibrium. It
should be noted that λij can be any element in C. We
assume no de novo CNVs and we assume that parental
CNVs are transmitted to their offspring in a Mendelian
fashion. For simplification, we consider nuclear families
but the proposed method can be easily extended to the
extended families. The probability of the ordered copy
numbers for subjects in nuclear family i becomes

P λ1i1; λ
2
i1

� �
; λ1i2; λ

2
i2

� �
;…; λ1ini ; λ

2
ini

� �� �
¼ P λ1i1; λ

2
i1

� �� �
P λ1i2; λ

2
i2

� �� �

�
Yni
j¼1

P λ1ij; λ
2
ij

� �
j λ1i1; λ2i1
� �

; λ1i2; λ
2
i2

� �� �
:

Here, for j = 1 or 2,

P λ1ij; λ
2
ij

� �� �
¼ θ2m; if λ1ij ¼ λ2ij ¼ cm

2θmθm′; if λ1ij ¼ cm; λ
2
ij ¼ cm′

cm≠cm′

8>><
>>: ;

and for j = 3, …, ni,

P λ1ij; λ
2
ij

� �
j λ1i1; λ2i1
� �

; λ1i2; λ
2
i2

� �� �

¼
1=4; if λ1ij ¼ λli1; λ

2
ij ¼ λli2

′;

l ¼ 1; 2; l′ ¼ 1; 2
0; otherwise

8><
>: :

We let Λij be the set of possible maternal and paternal
copy number pairs for individual j in family i, for which
the sum is equal to λij, as follows:

Λij ¼ λ�1ij ; λ
�2
ij

� �
jλ�1ij þ λ�2ij ¼ λij

n o
:

Then the joint probability of λi1;…; λini for individuals
in family i is

P λi1;…; ; λinið Þ
¼

X
λ�1
i1

;λ�2
i1ð Þ∈Λi1

⋯
X

λ�1
ini

;λ�2
ini

� �
∈Λini

P λ�1i1 ; λ
�2
i1

� �
;…; λ�1ini ; λ

�2
ini

� �� �
:

If we assume that λ and b are missing values for the
EM algorithm, our full likelihood is

f X;Y; λ; bjZ;Φ;α; β; γ;Σ;Θð Þ
¼ f Xjλ; γ;Σð Þ⋅f Y;bjZ; λ;α; β; σ2

g ; σ
2
ε

� �
⋅f λjΘð Þ :

ð2Þ

Parameter estimation with the EM algorithm
To derive a score test for CNV association analysis, β in
the phenotype model was assumed to be 0, and the vari-
ance component parameters were estimated with the re-
stricted maximum likelihood (REML) method. The copy
number vector λ and the random effect vector b are
considered as missing variables for the EM algorithm,
and the conditional expectation of a complete data log-
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likelihood was maximized to estimate all the parameters.
Individuals were separated with K-means clustering [19],
and the empirical mean and co-variance matrix were
used as the initial values for the signal model.
In the expectation step, we calculate posterior probabil-

ities for each possible value of the unobserved copy num-
ber using the estimates from the previous iteration. We
use the superscript (ω) to indicate the estimate at the ω-th
iteration. The posterior probability of λ is obtained by

P λjX;Y;Z;Φ;α ωð Þ; β̂
ωð Þ
; γ̂ ωð Þ; Σ̂

ωð Þ
; Θ̂

ωð Þ� �

¼
f X;Y; λjZ;Φ; α̂ ωð Þ; β̂

ωð Þ
; γ̂ ωð Þ; Σ̂

ωð Þ
; Θ̂

ωð Þ� �
X

λ′
f X;Y; λ′jZ;Φ; α̂ ωð Þ; β̂

ωð Þ
; γ̂ ωð Þ; Σ̂

ωð Þ
; Θ̂

ωð Þ� � :

Under the null hypothesis, this posterior probability
becomes

P λjX;Y;Z;Φ; α̂ ωð Þ; β ¼ 0; γ̂ ωð Þ; Σ̂
ωð Þ
; Θ̂

ωð Þ� �

¼
f Xjλ; γ̂ ωð Þ; Σ̂

ωð Þ� �
f λjΘ̂ ωð Þ� �

X
λ′ f Xjλ′; γ̂ ωð Þ; Σ̂

ωð Þ� �
f λ′jΘ̂ ωð Þ� � :

The copy number with the largest posterior density

was assumed to be the true copy number λ̂
ωþ1ð Þ

for each
individual in the (ω + 1)-th iteration. For the missing
variable b, if we let V = σg

2Φ + σε
2IN and e = Y − Zα − λβ,

the posterior mean of b in the (ω + 1)-th iteration is esti-
mated as

b̂
ωþ1ð Þ ¼ σ̂ ωð Þ2

g ΦV̂
ωð Þ−1

ê ωð Þ:

In the maximization step, all parameters are estimated
by maximizing the expected log-likelihood of

f X;Y; λ ωð Þ; b ωð ÞjZ;Φ; α̂ ωð Þ; β̂
ωð Þ
; γ̂ ωð Þ; Σ̂

ωð Þ
; Θ̂

ωð Þ� �
:

γ and Σ are updated by the sample mean and sample
variance-covariance matrix. α and β in the phenotype
model are estimated by

α̂ ωþ1ð Þ; β̂
ωþ1ð ÞÞ

¼ Z
λ̂

ωð Þ
� �

V̂
ωð Þ−1

Z λ̂
ωð Þ

� �� �−1
Z
λ̂

ωð Þ
� �

V̂
ωð Þ−1Y:

The variance parameters, σg
2 and σε

2, are updated as

σ̂ ωþ1ð Þ2
g ¼ σ̂ ωð Þ2

g

þ 1
N
tr b̂

ωð Þ
b̂

ωð ÞT
−σ̂ g ωð Þ4ΦP̂

ωð Þ
Φ

� �
σ̂ ωþ1ð Þ2
ε

¼ σ̂ ωð Þ2
ε þ 1

N
tr ê ωð Þê ωð ÞT−σ̂ ωð Þ4

ε P̂
ωð Þ� �

;

where P̂
ωð Þ ¼ V̂

ω−1ð Þ−1
−V̂

ω−1ð Þ−1
X XT V̂

ω−1ð Þ−1
X

� �−1
XT
V̂
ω−1ð Þ−1

. Last, θk is updated with the following best lin-
ear unbiased estimator [20]:

θ̂
ωþ1ð Þ
k

¼ 1
2

1TNΦ
−11N

� �−1
1TNΦ

−1

�
P λ111 ¼ ck jX;Y;Z;Φ; α̂ ωð Þ; β̂

ωð Þ
; γ̂ ωð Þ; Σ̂

ωð Þ
; Θ̂

ωð Þ� �
⋮

P λ1nnn ¼ ck jX;Y;Z;Φ; α̂ ωð Þ; β̂
ωð Þ
; γ̂ ωð Þ; Σ̂

ωð Þ
; Θ̂

ωð Þ� �
2
664

3
775:

Identifying the number of clusters
The optimal M was chosen with the silhouette score
which quantifies whether objects in the same cluster stay
together and objects in different clusters are well sepa-
rated [21]. We denote the Euclidean distance between
Xij and Xi′j′ by dij,i ' j ', and denote the number of individ-

uals whose copy numbers are cm by n(cm). If the esti-

mated copy number λ̂ij for individual j in family i is
assumed to be cm, we let the average distance to the rest
of the cluster be

aij ¼ 1
n cmð Þ

X
i′ ;;j′ð Þjλ̂ i′ j′¼cm

n odij;i′j′ ;

and the minimum average distance to other clusters be

bij ¼ min

X
i′;;j′ð Þjλ̂ i′j′¼cmf gdij;i′j′

n cm′ð Þ

������m′≠m; m′ ¼ 1;…;M

8<
:

9=
;:

Then the silhouette score for individual j in family i is
defined as

silij ¼ bij−aij
max aij; ; bij

	 
 :
If silij is close to one, it indicates that the corresponding

individual is well-clustered, whereas if silij is close to −1, it
means that the individual is badly clustered. If silij is close
to zero, there may exist a better cluster for the corre-
sponding individual. Therefore, we first estimated the
copy numbers for each individual for different choices of
M. Then we calculated silhouette scores for all the individ-
uals, and the value of M that maximized the mean silhou-
ette score was considered as the optimal choice.

Statistical inference
The Wald and likelihood ratio tests for the proposed
likelihood are computationally intensive, and CNV asso-
ciation analysis with large families may not be feasible
on a genome-wide scale. Therefore, we provide two
score statistics based on Eq. (2); one is based on the esti-
mated copy number and the other is based on the probe
intensity measurement itself. First, the copy numbers
and parameters for variance components are estimated
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from the likelihood under the null hypothesis. The ex-
pected copy numbers are assumed to be the unknown
true copy numbers. Then Rao’s score test statistic is

T1 ¼ Y−Zαð ÞTV−1λ
� �T

� λTV−1λ− ZTV−1λ
� �T

ZTV−1Z
� �−1

ZTV−1λ
� �� �−1

� Y−Zαð ÞTV−1λ
� �

;

and T1 follows the chi-square distribution with a single
degree of freedom under H0 (See Additional file 1: Text
1 for details). If there exists no inverse matrix of V, the
generalized inverse matrix [22] can be utilized.
However, T1 is based on the estimates of the expected

copy numbers and its performance may depend on the

accuracy of λ̂ . We therefore also provide the statistic T2,
based directly on the probe intensity measurements. It
should be noted that, contrary to T1, T2 does not need
one to estimate the unknown copy number and the
computation is less intensive. We let Ψ be the empirical
variance-covariance matrix between individuals and IN
be the N×N dimensional identical matrix,

v ¼
tr IN−S2ð ÞΨ IN−S2ð ÞTV−1 IN−S1ð Þ
� �

tr IN−S2ð ÞΨΦ−1
� �

�XT IN−S2ð ÞTΦ−1 IN−S2ð ÞX;
and

uT ¼ YT IN−S1ð ÞTV−1 IN−S2ð ÞX;
where

S1 ¼ Z ZTV−1Z
� �−1

ZTV−1; and S2
¼ 1N 1TNΦ

−11N
� �−1

1TNΦ
−1:

If we denote the rank of v by r, T2 is defined by

T2 ¼ uTv−1ueχ2 df ¼ rð Þ under H0:

The detailed derivation of T2 is shown in Additional
file 1: Text 2. In particular, we can utilize a transformed
value for X in T2. For instance, the mean intensity meas-
urement over all probes or the first principal component
(PC) score can be utilized, and then T2 follows the chi-
square distributions with a single degree of freedom. Im-
plementation of the methods is assembled in an R pack-
age PedCNV, which is available from CRAN.

Simulation studies
Data generation
We conducted simulation studies to evaluate the per-
formance of the proposed methods and, for computa-
tional simplicity, we simulated just 300 parent-offspring
trios. We considered two scenarios; (1) M = 3, C = {0, 1,
2} and Θ = {(1 − θ)2, 2θ(1 − θ), θ2}, and (2) M = 6, C = {0,
1, 2, 3, 4, 5} and Θ = {(1 − θ)5, 5θ(1 − θ)4, 10θ2(1 − θ)3,
10θ3(1 − θ)2, 5θ4(1 − θ), θ5}. Copy numbers for offspring
were generated with simulated Mendelian transmission.
We assumed K = 7 probe intensities were measured for a
CNV region, and each intensity, xijk, was generated from
a normal distribution with

E xijk
� � ¼ skλij þ pλij ; k ¼ 1; 2; 3

sk þ pλij ; k ¼ 4; 5; 6; 7

�
; var xijk

� �
¼ z⋅λij þ qv

� �2
:

Here the dissimilarity between probe intensity measure-
ments in different clusters for probe k is proportional to
the value of sk and we considered three scenarios by using
three different choices of sk: badly separated clusters
(BSC), moderately separated clusters (MSC) and well sep-
arated clusters (WSC). The different means for the probe
intensities were provided by pλij generated from N(0,

0.9(λij + 1.5)2). The variance of each probe intensity meas-
urement was provided by qv generated from
Γ(0.025,0.00162). The parameter settings in the signal
model are described in Additional file 1: Table S1.
Phenotypes were generated based on Eq. (1). For the

phenotype model, we assumed that there was a single
covariate for Z which was independently generated for
each individual from the standard normal distribution.
σε
2 and σg

2 were assumed to be 1. For our simulations, we
considered trios and Φi becomes

1 0 :5
0 1 :5
:5 :5 1

2
4

3
5:

Analysis of a hematological trait
Subjects
Hematocrit indicates the volume percentage of red
blood cells in blood and red blood cells transfer oxygen
from the lungs to body tissues. Some diseases such as
anemia are related to hematocrit and we conducted as-
sociation analyses of hematocrit to identify CNVs related
to anemia. We used the same DNA samples as were
used in Lee et al. [23]. Five hundred fifty-one individuals
from 59 families including 216 Granular corneal dys-
trophy type 2 patients and 324 unaffected controls were
genotyped with Illumina HumanCNV 370 K-Duo
Beadchip. Clinical information for 30 individuals was
missing. Therefore, 521 individuals were used for the as-
sociation analysis. All subjects enrolled in this study
were of Korean ethnicity. Basic characteristics of our
samples are summarized in Table 1.



Table 1 Basic characteristics of study participants and hema-
tological trait

Variables Discovery (family) Replication (cohort)

Sample size (n) 521 4694

Age (years) 38.2 ± 18.3 54.0 ± 9.0

Male (%) 45.7% 47.1%

Hematocrit (%) 41.3 ± 4.3 41.1 ± 4.5
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CNV discovery
All samples were genotyped with NimbleGen HD2 3 ×
720 K aCGH which contains more than 720,000 probes.
Around 360,000 probes were designed based on previ-
ously reported CNVs, and the other probes were spaced
uniformly throughout the whole genome as a backbone.
Sample NA10851obtained from the HapMap lympho-
blastoid cell line (LCL) DNA was used as a reference,
and NimbleScan version 2.5 was used to process the
array image files (.tif ) according to the manufacturer’s
protocol. Extracted signal intensity was transformed to
log2 ratio with hg18/NCBI build 36. Subsequently, we
set the log2 ratio thresholds less than −0.25 for a dele-
tion and greater than 0.25 for a duplication, with more
than 10 consecutive probes required to assign a CNV.

CNV selection
We used a reciprocal overlap threshold > 50% to find
CNVs with similar boundaries for association analysis.
According to this threshold, clusters of overlapping
CNVs at the sample level are merged into one CNV.
Overlapping CNVs with very different sizes and sequen-
tially connected CNVs were excluded from further study.
Moreover, we selected CNV clusters which are well-
separated and have multi-class CNVs in order to assign
individuals to copy-number classes with high confidence
[24]. In total 500 CNVs were utilized for association
analyses.

CNV association
PedCNV was applied to an association study with a
hematological trait: hematocrit (Hct). The association of
CNVs with Hct was analyzed using T1 and T2, with age,
age2 and sex included as covariates. The resulting statis-
tics were adjusted by using genomic control to allow for
population substructure.

CNV validation by PCR experiment
To confirm CNV genotypes, a PCR using the AccuPrime
Taq DNA Polymerase High Fidelity (invitrogen, CA,
USA) was performed on 10–16 individuals selected from
each cluster (Additional file 1: Figure S1 (A)). The
primers were designed to give rise to amplicons with dif-
ferent lengths to detect both the deleted (690 bp) and
normal (1519 bp) alleles (Additional file 1: Table S2).
Genomic locations for designed primers based on hu-
man genome assembly hg18 were converted to those
based on hg19 by liftOver of the UCSC genome browser.
PCR was carried out on a GeneAmp PCR system 9700
(Applied Biosystems, Calif., USA) with the following
PCR conditions: 5 min at 95 °C, followed by 33 cycles of
30s at 95 °C, 30s at 60 °C, 2 min at 68 °C, and final ex-
tension at 68 °C for 7 min. The resulting PCR products
were visualized by electrophoresis separation on a 1.5%
agarose gel with Safe-Pinky DNA gel staining solution
(Genedepot, TX, USA). Moreover, to confirm exact
break-points of the CNVs, PCR products were se-
quenced using an ABI 3730 DNA analyzer (Applied Bio-
systems, CA, USA).

Replication study
We have previously implemented KGVDB, which in-
cludes 3601 multi-class CNVs and their tagging SNPs,
from 4694 community-based cohort samples, as a part
of the Korean Genome Epidemiology Study (KoGES)
[25]. We used these unrelated individual samples to pur-
sue replication of the identified CNV from the discovery
association study. Table 1 shows a summary of the par-
ticipants’ characteristics. In short, all the 4694 samples
were also genotyped with NimbleGen HD2 3 × 720 K
aCGH. The NA10851 sample was again used as a refer-
ence. NimbleScan version 2.5 was used to extract signal
intensity. Subsequently, quality control, such as
normalization and waviness correction, was conducted
using the R package (http://cran.r-project.org) and
WaveNorm [26]. For CNV detection, the Genome Alter-
ation Detection Analysis algorithm (GADA) was used
with T = 10, alpha = 0.2 and MinSegLen = 10. Moreover,
an average log2 ratio of ±0.25 was set as a cut-off value
[25]. Among the detected CNVs, we selected those
CNVs having a similar boundary with any CNV signifi-
cant in the discovery association study. Additional file 1:
Figure S2 shows the overall process of the replication
study.

CNV validation of replication study samples
To verify whether an estimated CNV genotype using co-
hort samples is true or not, we carried out quantitative
PCR (qPCR) using the TaqMan Copy number Assay
(Life Technologies, Foster City, CA, USA) according to
the manufacturer’s guidelines. A pre-designed TaqMan
probe (Assay ID: Hs04965547_cn) was used to validate
the existence of the CNV. All experiments were repli-
cated three times to enhance the validation accuracy.
The samples used for validation were randomly selected
from each genotype (Additional file 1: Figure S1 (B)).
Copy number genotype for each sample was calculated
by Copy caller v2.0 (Applied Biosystems, Calif., USA)
using the manufacturer’s guideline.

http://cran.r-project.org/
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Results
Evaluation with simulated data
Clustering
With the simulated data we evaluated the accuracy of
estimating M and the estimated copy numbers for each
individual when the true M was assumed to be known.
The results from the proposed method were compared
with CNVtools [10]. The probe intensity measurements
were generated under the three different scenarios: BSC,
MSC and WSC. For each individual, we calculated from
the probe intensity measurements the mean, the first PC
score and the fewest PC scores that explain more than
90% of the variation; they are denoted by mean, PC1
and PC.9 respectively. In addition to the original probe
intensity measurements (RAW), we used the mean, PC1
and PC.9, for the proposed method and the results were
compared with CNVtools. For CNVtools, the mean, PC1
and the one-dimensional canonical correlation trans-
formed vector of the probe intensity measurements were
used.
Additional file 1: Tables S3 and S4 show the accuracy

of the estimated value of M from 1000 replicates using
PedCNV and CNVtools. The proposed method using
PC1 was always the most accurate, followed by the pro-
posed method using PC.9. The results from the pro-
posed method performed better than CNVtools.
CNVtools had a tendency to choose a larger number of
clusters, and the results were rarely consistent, even
when the clusters were well separated. CNVtools selects
the number of clusters using a Bayesian information cri-
terion [10], while the proposed method selects it with a
silhouette score, which appears to be a better choice. In
Additional file 1: Table S5, M was set to be the true
value 3 for all methods, and the relative proportions of
individuals for whom the estimated copy number was
consistent with the true copy number were calculated
from 1000 replicates under the null and alternative hy-
potheses. Additional file 1: Table S5 shows that the pro-
posed method based on PC1 was the most accurate,
followed by the proposed method based on PC.9.
Table 2 Empirical type 1 error estimates (M = 3)

Significance Level

.005 .05

BSC T1 0.0060 ± 0.0021 0.050

T2 0.0056 ± 0.0021 0.055

MSC T1 0.0048 ± 0.0019 0.048

T2 0.0048 ± 0.0019 0.047

WSC T1 0.0056 ± 0.0021 0.051

T2 0.0048 ± 0.0019 0.049

The 95% confidence intervals of empirical type I error estimates for the proposed m
BSC, MSC and WSC, when there are three copy number clusters
Therefore we conclude that basing our method on PC1
may be a reasonable choice.
Association analysis
In order to evaluate the proposed statistics T1 and T2,
we simulated the probe intensity measures for BSC,
MSC and WSC, and phenotypes were generated under
the null and alternative hypotheses. Seven probe inten-
sity measurements were generated, so that T2 followed
the chi-square distribution with seven degrees of free-
dom under the null hypothesis. For the statistical validity
of the proposed methods, empirical type-1 error esti-
mates at the various significance levels were calculated
from 5000 replicates; Table 2 shows that for our
methods the nominal significance levels were always
preserved under BSC, MSC and WSC. The quantile
quantile (QQ) plots in Fig. 1 also indicate the validity of
T1 and T2.
To evaluate statistical efficiency, empirical power esti-

mates for T1 and T2 were calculated from 2000 repli-
cates under the alternative hypothesis, and compared
with the FBAT statistic which directly utilizes the inten-
sity measurement [11]. We considered various choices
of β, and the probe intensity measurements for BSC,
MSC and WSC were generated. Table 3 shows that the
proposed statistics T1 and T2 performed better than
FBAT, and T1 was always more powerful than T2 under
all scenarios. The power loss of T2 compared to T1 is
the largest for BSC and we can conclude that the statis-
tical power of T2 is more affected by proportions of
noise in the probe intensity measurement. We calculated
empirical type 1 error and power estimates when M = 6 in
Additional file 1: Tables S6 and S7, and the same patterns
as M = 3 are observed. Moreover, we compared T1 with the
statistic with the most probable copy number, and found
that T1 is more powerful to estimate the parameters, espe-
cially under the BSC scenario (Additional file 1: Tables S8
and S9). Therefore, we conclude that T1 should be selected
for a CNV association analysis.
.1 .2

4 ± 0.0061 0.1018 ± 0.0084 0.2082 ± 0.0113

0 ± 0.0063 0.1008 ± 0.0086 0.2072 ± 0.0112

6 ± 0.0060 0.1006 ± 0.0083 0.2104 ± 0.0113

2 ± 0.0059 0.0956 ± 0.0082 0.1884 ± 0.0108

6 ± 0.0061 0.0962 ± 0.0082 0.2006 ± 0.0111

8 ± 0.0060 0.0968 ± 0.0082 0.1922 ± 0.0109

ethods were calculated from 5000 replicates at four significance levels under



Fig. 1 The QQ plots without genome control for T1 and T2 from simulated data. The empirical p-values adjusted by genomic control for the
proposed methods were calculated under the null hypothesis with 5000 replicates under BSC, MSC and WSC, and their QQ plots are shown

Table 3 Empirical power estimates (M = 3)

Significance
Level

β

.1 .2 .3 .4 .5 .6

.001 BSC T1 0.0135 0.1390 0.4830 0.8410 0.9830 0.9985

T2 0.0065 0.0510 0.2370 0.5745 0.8860 0.9795

FBAT 5e-4 0.0060 0.0340 0.1300 0.3570 0.6005

MSC T1 0.0160 0.1570 0.5530 0.8740 0.9885 1.0000

T2 0.0085 0.0685 0.3200 0.6900 0.9290 0.9945

FBAT 0.0000 0.0100 0.0695 0.2505 0.5575 0.8385

WSC T1 0.0195 0.1615 0.5375 0.8935 0.9910 0.9980

T2 0.0075 0.0815 0.3300 0.7240 0.9545 0.9970

FBAT 0.0010 0.0115 0.0915 0.3240 0.6460 0.8955

.01 BSC T1 0.0710 0.3585 0.7510 0.9605 0.9990 1.0000

T2 0.0265 0.1780 0.4630 0.7900 0.9685 0.9950

FBAT 0.0155 0.0455 0.1540 0.3775 0.6620 0.8430

MSC T1 0.0725 0.3805 0.8070 0.9690 0.9990 1.0000

T2 0.0340 0.2100 0.5640 0.8660 0.9790 0.9980

FBAT 0.0150 0.0550 0.2400 0.5385 0.8155 0.9645

WSC T1 0.0800 0.3795 0.7925 0.9740 0.9985 1.0000

T2 0.0370 0.2115 0.5730 0.8855 0.9920 0.9995

FBAT 0.0175 0.0710 0.2740 0.6350 0.8775 0.9740

.05 BSC T1 0.1905 0.5930 0.9075 0.9920 1.0000 1.0000

T2 0.0975 0.3505 0.6880 0.9080 0.9910 0.9990

FBAT 0.0575 0.9610 0.3660 0.6310 0.8555 0.9525

MSC T1 0.2050 0.6190 0.9295 0.9900 1.0000 1.0000

T2 0.1110 0.3915 0.7650 0.9495 0.9970 1.0000

FBAT 0.0725 0.2080 0.4990 0.7585 0.9305 0.993

WSC T1 0.2095 0.6145 0.9260 0.9950 0.9995 1.0000

T2 0.1255 0.3995 0.7650 0.9530 0.9990 1.0000

FBAT 0.0790 0.2240 0.5460 0.8415 0.9705 0.9960

The empirical power for the proposed methods have been estimated at various significance levels based on 2000 replicates for different values of β
under BSC, MSC and WSC, when there are three copy number clusters. The score test using the inferred CNVs is denoted by T1. The score test using
the intensity measurements is denoted by T2. For comparison, we also calculated the power using FBAT
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Table 4 The most significant results of T1 and T2 from analyzing
the family data

Chr Position 0/1/2 T1 T2

8 94141469–94142527 42/226/253 1.38e-03 4.67e-02

5 147534018–147534337 119/265/137 1.19e-02 3.92e-03
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Results of real data analysis
CNV association
500 well-separated multi-class CNVs were chosen for an
association study. The 0.05 genome-wide significance
level by Bonferroni correction for 500 CNVs is 10−4 and
association analyses of Hct were conducted with the
proposed methods. Figure 2 shows QQ and Manhattan
plots for the statistics T1 and T2. We listed the most
significant results of T1 and T2 respectively in Table 4.
There is no genome-wide significant CNV and this is
partially attributable to the insufficient sample size. In
our analyses, 521 subjects are utilized, and if the effect
size is 0.206 and sigma is 0.957, 1563 subjects are re-
quired to achieve 0.8 power at the 10−4 significant level.
The difference between T1 and T2 may be attributable
to the low accuracy of the clustering, because the
performance of T1 depends on the accuracy of the
clustering. However, T2 models the relationship be-
tween intensity and phenotypes without estimating
copy numbers; but there is also the possibility of poor
fit, including nonnormality.

CNV validation
Among 500 multi-class CNVs, the CNV region
(chr7:81279592–81280418) was randomly selected for
evaluation of CNV genotype estimation. In total, 41 sub-
jects were selected from each CNV cluster and a PCR
experiment was conducted for them. Among these sam-
ples, 38 subjects (92.7%) had the same copy numbers as
the estimates from the proposed methods (Additional
file 1: Figures S3 and S4).

Discussion
Even though CNV has been expected to be an important
genetic factor for many diseases, CNV association ana-
lysis has often been limited because of uncertainty of the
copy number, and several statistical methods [8, 27] have
been proposed to handle this uncertainty. However, even
Fig. 2 The QQ plot and Manhattan plots for T1 and T2 from analysis of the
though some of the existing methods are relatively ac-
curate, the estimated copy numbers are not accurate in
some situations, which might cause a power loss for
CNV association analysis. In this report, we propose new
statistical methods for CNV association analysis with
family-based samples. With extensive simulations, we
showed that the proposed methods perform much better
than the existing approaches. The proposed method was
implemented in the R package, pedCNV and the main
function in our R package was implemented with C++.
We found that association analyses of 300 trios were
completed within one minute using an Intel (R) Xeon
(R) E5-2620 0 CPU at 2.00GHz, with a single node and
80 gigabyte memory.
Furthermore, the proposed method is flexible and can

be extended to various scenarios. First, the proposed
methods consist of T1 and T2. The former is based on
the estimated copy number and the latter is on the
probe intensity measurements. Our simulation studies
show that the most efficient statistic is always the statis-
tic with the expected copy numbers. However, if the ac-
curacy of the estimated copy numbers is not clear and
there is a systematic bias, the statistical power of T1 can
be substantially affected, and some modification can be
made to the proposed methods. For instance, the mini-
mum of the p-values for T1 and T2 could be considered
as a test statistic and permutation-based p-values could
be calculated. Alternatively, the posterior probabilities
for each copy number estimated from the E step in T1

can be utilized as classified copy numbers. These modifi-
cations are computationally feasible and may provide
family data



Liu et al. BMC Bioinformatics  (2017) 18:217 Page 10 of 11
less sensitive results compared to T1 and T2. Second, the
presence of population substructure has been known to
be a factor that leads to violation of the assumptions
underlying statistical association analysis. In our real
data analysis, the genomic control approach [28] was
adopted, but the linear mixed model is known to be the
most efficient if the polygenic effects are substantial
[29]. The correlations between individuals can be
estimated with large-scale genetic data such as genome-
wide SNPs, and this can be incorporated into the pheno-
type model in the proposed method. Third, the proposed
methods can be simply extended to the sequencing data
with a minor modification even though it only applied
to aCGH data in this report. This will be investigated in
our future work.
However, in spite of the practical advantage of the pro-

posed methods, there exist some limitations, and further
investigation is necessary. First, the incorporation of
Mendelian transmission into the signal model induces a
substantial computational burden for large families. In
our PedCNV package, Mendelian transmission for a sig-
nal model is considered, but only for nuclear families.
We found with simulation studies that the drop of ac-
curacy is not substantial when Mendelian transmission
is not considered, but its effect can be substantial if only
a few large families are available. A peeling algorithm
[30] has been developed that minimizes the computation
of likelihoods for large families and it will be imple-
mented in the PedCNV package. Second, the proposed
method assumes that there is no de novo mutation and
recombination. In such cases, the statistic T2 may be a
better choice. Third, it has been observed that the bias
in CNV calls can be different between parents and off-
spring, and our first statistic, T1, can suffer from this dif-
ferential bias. Our simulation studies do not examine
any such violation of statistical assumptions, but its ef-
fect on T1 could be substantial in CNV association ana-
lysis with large families. Third, copy numbers for each
individual were identified by calculating the expectation of
copy numbers using the posterior probability and the ex-
pected copy numbers were utilized as λ in T1. Although
this maximum likelihood approach for classification can
yield inconsistent estimators of parameters [31, 32], the
simulation studies show that the accuracy of this method
is higher. Thus we continued adopting this method in
spite of its deficiencies.
In recent decades various types of genetic data have

been used to detect the genetic factors underlying many
diseases and many disease susceptibility loci have been
found. Even though CNVs have been expected to be an
important genetic factor, the findings of CNV association
analysis have been limited and the proposed methods
may bridge this gap by alleviating the issue of copy num-
ber uncertainty.
Conclusion
PedCNV presents a computationally efficient R package
that provides two statistics for family-based CNV associ-
ation analysis: first, the copy number is estimated by
maximum likelihood and association of the estimated
copy number with the phenotype is tested; second, the
observed probe intensity measurements is directly used
to detect association of CNV with the phenotypes of.
The simulation studies showed that the proposed
methods outperform other existing approaches. In par-
ticular, we found that statistical analysis with the ex-
pected copy number is more powerful than the statistic
with the probe intensity measurements regardless of the
accuracy of the estimation of copy numbers.
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