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Abstract

Background: Knowing the three-dimensional (3D) structure of the chromatin is important for obtaining a complete
picture of the regulatory landscape. Changes in the 3D structure have been implicated in diseases. While there exist
approaches that attempt to predict the long-range chromatin interactions, they focus only on interactions between
specific genomic regions — the promoters and enhancers, neglecting other possibilities, for instance, the so-called
structural interactions involving intervening chromatin.

Results: We present a method that can be trained on 5C data using the genetic sequence of the candidate loci to
predict potential genome-wide interaction partners of a particular locus of interest. We have built locus-specific
support vector machine (SVM)-based predictors using the oligomer distance histograms (ODH) representation. The
method shows good performance with a mean test AUC (area under the receiver operating characteristic (ROC)
curve) of 0.7 or higher for various regions across cell lines GM12878, K562 and HeLa-S3. In cases where any locus did
not have sufficient candidate interaction partners for model training, we employed multitask learning to share
knowledge between models of different loci. In this scenario, across the three cell lines, the method attained an
average performance increase of 0.09 in the AUC. Performance evaluation of the models trained on 5C data regarding
prediction on an independent high-resolution Hi-C dataset (which is a rather hard problem) shows 0.56 AUC, on
average. Additionally, we have developed new, intuitive visualization methods that enable interpretation of sequence
signals that contributed towards prediction of locus-specific interaction partners. The analysis of these sequence
signals suggests a potential general role of short tandem repeat sequences in genome organization.

Conclusions: We demonstrated how our approach can 1) provide insights into sequence features of locus-specific
interaction partners, and 2) also identify their cell-line specificity. That our models deem short tandem repeat
sequences as discriminative for prediction of potential interaction partners, suggests that they could play a larger role
in genome organization. Thus, our approach can (a) be beneficial to broadly understand, at the sequence-level,
chromatin interactions and higher-order structures like (meta-) topologically associating domains (TADs); (b) study
regions omitted from existing prediction approaches using various information sources (e.g., epigenetic information);
and (c) improve methods that predict the 3D structure of the chromatin.
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Background
It is well known that chromatin, a complex of DNA and
proteins, is packed in three-dimensional (3D) space inside
the nucleus of the cell in a highly regulated fashion. The
spatial conformation of chromosomes is governed by cer-
tain principles [1–3]. The structure of chromatin depends
on the functional state of the cell (viz. normal/diseased)
and gene activity among other cellular properties.
Thus, a better understanding of 3D chromatin structure
and the underlying mechanisms determining this struc-
ture helps in gaining an enhanced comprehension of many
genomic functions. With the advent of chromosome con-
formation capture (3C)-based technologies in the last
decade, starting with 3C itself in 2002, chromosome
conformation capture-on-chip and circular chromosome
conformation capture (both abbreviated as 4C), and 3C-
carbon copy (5C) in 2006, chromatin interaction analysis
by paired-end tag sequencing (ChIA-PET), 2009 [4–8],
more recently Hi-C [9] and in situ high-resolution Hi-C
[10] which is still quite expensive, genome-wide analysis of
the interaction profiles is now possible [11]. Studies
have revealed a correlation between long-range chromatin
interactions and the functional state of the cell, e.g., in
[12] and more generally, cell-type specificity as evidenced
by [11]. These long-range interactions comprise pairs of
loci that are close in space, but not necessarily close in
sequence. The spatial co-localization of different chromo-
somal regions (cis as well as trans) can be due to a mix
of factors, for example specific, direct contacts between
two loci, nonspecific binding as a result of the packing of
the chromatin fibre or co-localization due to functional
association or having the same subnuclear structure [13].
Any long-range interaction (i.e., interaction between

genomic loci separated by >1 or 2 mega base pairs) can
typically occur to bring about or increase the likelihood
of a certain activity at either of these loci itself (e.g.,
between an enhancer and a promoter region) or so that
they can trigger or play an important role in any activity
(e.g., facilitating binding of a protein) taking place at these
loci or in their neighborhood on the genome. Knowledge
of which loci interact over a long-range and evaluat-
ing the effect of such interactions can help us further
our understanding of genome regulation and organiza-
tion. Thus, it is of general interest to be able to pre-
dict whether a given pair of loci lying very far apart
on the chromosome would interact. There exist machine
learning-based approaches for predicting such long-range
interactions between enhancer and promoter regions, for
example, [14]. They combine the contact information
output by a chromatin interaction experiment with
various information sources, for example, epigenetic
information [14], to make these predictions, but these
approaches leave out genomic regions for which such
information is not available. A sequence-level model,

in addition to primarily furthering our understanding
of chromatin interactions at the most basic level, can
also be useful to study any genomic region includ-
ing the ones omitted by other approaches. Having a
model that can predict, based on sequence information
alone, whether two regions are likely to interact has
several potential applications. One is to use the pre-
dicted label as additional information for the prediction of
boundaries of topologically associating domains (TADs)
[15]. Another is to assist methods that predict the 3D
structure of the chromosome from Hi-C data [16].
As a word of caution, since the genetic sequence is

only the primary level at which genomic function and
organization information is encoded, it is apparent that
higher levels of modifications will have the final say
towards these chromatin interactions, more so for
cell line-specificity. In other words, one would not
expect a model using sequence information alone to
outshine one that (also) utilizes additional informa-
tion sources in terms of prediction accuracy. But,
a sequence-level model has its advantages as already
stated. Thus, we would like to stress upon our aim in
performing this study:

(a) Answer the question: To what extent can the
genetic sequence alone predict these long-range
chromosomal interactions? We report on various
computational experiments, using our genetic-
sequence based prediction method, to establish that
the DNA sequence is informative to identify potential
interaction partners of a given genomic locus, and
(b) Understand the characteristic sequence features
underlying such long-range interactions. This is
achieved with the help of our two new visualization
methods that aid in interpreting the sequence signals
that contributed towards predicting locus-specific
interaction partners and reveal interesting biological
connections.

In general, we believe that such an approach using
sequence-level information could be useful to study
sequence peculiarities among the interaction partners of
a particular locus. Our approach could augment existing
methods for prediction of 3D chromatin structure and
also TAD boundary predictions methods.

Approach
In this study we built a method based on support vec-
tor machines (SVMs) [17] to predict which genomic loci
potentially interact with a given locus based on the genetic
sequence. In a nutshell, we do the following: given a
contact matrix delineating interactions between various
genomic loci, we build a predictor for a locus of inter-
est (LoI) from the contact matrix. This predictor learns
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the characteristics of the genomic loci that happen to sig-
nificantly interact with the LoI as against the set of loci
that do not. Thus, we build a predictor per locus. Such
locus-specific predictors that use the genetic sequence
information at these loci have the potential to uncover
peculiarities of the interacting partners of this particu-
lar locus which can be useful to understand interactions
at the sequence level. Such an understanding can guide
us in our efforts to know the role-players at the genetic
level and comprehend mechanisms of higher levels of
chromatin organization viz. TADs and their hierarchies,
and compartments. When dealing with contact matrices
output from a chromatin interaction experiment where
a large population of non-synchronized cells are studied,
such an approach can still give us a holistic view.
We analyzed 5C contact matrices for three human

cell lines — GM12878, K562 and HeLa-S3 — and
demonstrated that the genetic sequence is predictive
of the long-range interactions. Additionally, we utilized
these locus-specific models, that were trained on the
5C data, to independently predict potential interaction
partners across the chromosome for the same LoI. This
computational validation is done on high-resolution Hi-C
datasets from Rao et al. [10]. Our new visualization meth-
ods help to intuitively visualize the sequence features that
proved useful for discerning the interaction partners of a
LoI from those that do not interact with it, consequently
rendering our models to be more than black boxes. Due
to the models being locus-specific, one is also able to
compare the sequence features found useful by a
model (using our visualization) for a locus in one
cell line to those found useful by the model for the
same locus in another cell line. This is discussed in
“Identifying cell-line specific characteristic signals among
(non-)interactors of the same locus in different cell
lines” section.

Results and discussion
Applicable to information on long-range contacts facil-
itated by a 4C, 5C or a Hi-C experiment, we describe
our pipeline and the corresponding computational
experiments performed on data from a 5C experi-
ment [18] that detects interactions between a group
of transcription start site (TSS)-containing regions
(TCRs [18]) and distal enhancers in the three cell lines
GM12878, K562 and HeLa-S3. Here, for each cell line,
we built a separate classifier per TCR. Given the set
of loci, for which the contact frequency with the TCR
of interest (ToI) is known (from the contact matrix),
we trained an SVM [17] which, when presented with a
new, unseen locus, can classify it as positive or negative
(i.e., interacting with the ToI or not). We use string
kernels, which provide a measure of similarity
between sequences, in conjunction with the SVM.

The aim was to build a pipeline with the best possi-
ble locus-specific classifiers (a separate classifier for
each LoI/ToI), and also be able to determine subse-
quently, which sequence features were most important
for any classifier to distinguish between the positive and
the negative set of genomic loci corresponding to the
LoI. Our pipeline is shown in Fig. 1 and described in the
“Methodical details” section.

Fig. 1 Pipeline for predicting locus-specific long-range chromatin
interactions using the genetic sequence. In the contact matrix, cells
denoted by filled orange boxes correspond to loci that are called
significantly interacting with the LoI in all replicates of any
experiment profiling chromatin interactions. This constitutes the
positive set of sequences for the corresponding classifier. Those
denoted by filled black boxes correspond to loci that are not called
significantly interacting in any of the replicates. This constitutes the
negative set of sequences for the corresponding classifier. This leaves
those loci which are called significantly interacting in at least one, but
not in all of the replicates. They are visualized by unfilled boxes and are
not used by the classifier. The genomic loci along the columns of the
contact matrix (c1, c2, c3,...,cN) are the LoI for which we build
locus-specific classifiers
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Prediction of long-range chromatin interactions is possible
from the sequence alone using non-linear SVMs
To evaluate the potential of the DNA sequence to serve
as the sole information source in predicting the long-
range interactions, we selected ten regions per cell line.
For each cell line, these are the top 10 regions when ranked
based on the number of positive examples available
for them (see Supplementary Table S1 in Additional
file 1). In each model, the varied-length sequences were
represented as fixed-length feature vectors using the
oligomer distance histograms (ODH) [19] representation.
This represents any sequence by the histograms of dis-
tances between K-mers in the sequence (see ‘Methodical
details” section for more details). We performed exper-
iments with K-mer values 3 and 5 and the maximum
distance between K-mers as 100. Intuitively, K-mer value
5 encodes more specificity towards the set of sequences
in a collection for a model while K-mer value 3 maintains
relative generality. Once these are fixed, the ODH kernel
has no other hyper-parameters to be tuned.
Table 1 summarily shows good test AUC (area under the

ROC curve) values for all studied regions in all the three
cell lines resulting from our 5-fold nested cross valida-
tion. Furthermore, our pipeline is also capable of handling
imbalances in the data. For all the regions in our compu-
tational experiments, the positive class is in minority. We
report performances with data imbalance handled (see
“Methodical details”).
The average test AUC values for the individual tasks

are as follows. Oligomer length 3: {GM12878, K562,
HeLa-S3}: {0.7251, 0.7534, 0.6782}; Oligomer length 5:
{GM12878, K562, HeLa-S3}: {0.7443, 0.7716, 0.7153}.
Box plots of all the test performances for different
regions in all three cell lines are given in Fig. 2, and
Additional file 1 (Supplementary Figures S3, S4 and S5
in Additional file 1). Owing to small sample sizes, the
model test performances mostly show high variance
(Fig. 2, and Supplementary Figures S3, S4 and S5 in
Additional file 1).
For any interaction the complete length of the

fragment may not be causal for the interaction, but
only part(s) of it. However, this information is not
available from the chromatin interaction experi-
ments due to the length distribution of the fragments.
Our locus-specific models are able to work around
this situation and capture the features from differ-
ent parts of the locus. This is due to the nature
of ODH feature representations which capture the
relative structure spread across the sequence rather
than occurrences at different absolute positions in
the sequence. Section “Tandem repeat motifs are an
important feature distinguishing interaction partners”
discusses how our visualizations help bring out this
aspect of our models.

Tandem repeat motifs are an important feature
distinguishing interaction partners
Figures 3 and 4 show our new visualizations of the set
of K-mer pairs that influenced the prediction most. In
both these visualizations, any K-mer pair is represented
as an adjoined {2K }-mer separated by ‘|’, e.g., 3-mer pairs
as 6-mers, and we loosely address these K-mer pairs as
‘motifs’, although they are not contiguous. Figure 3 shows
the ‘Absolute Max Per Distance’ (AMPD) visualization for
a region (region 9) in cell line GM12878. The AMPD visu-
alization shows, at each distance value (plotted on vertical
axis), the K-mer pair that contributes the most in predict-
ing a locus as positive and negative. The weights of these
K-mer pairs (fetched from the SVM weight vector) are
plotted on the horizontal axis. In the visualization, the K-
mer pairs at even and odd distance values are segregated
from each other to improve legibility. In the left panel, one
sees 6-mers consisting of the 3-mer pairs separated by ‘|’
(see Fig. 3), and in the right panel are 10-mers consisting of
the 5-mer pairs. Owing to the high dimensionality of the
5-mer case, we observe that the magnitudes of the weights
quickly shrink in this case. We filter this information fur-
ther and visualize only the top few high-scoring features
in the ‘TopN’ visualization shown in Fig. 4. At any distance
value, all motifs that exceeded the threshold (shown as an
inner dashed circle) are collected along with their weight
magnitudes and stacked one over the other to finally rep-
resent them with a consensus motif (refer to “Visualizing
the important features for each prediction model” section
for more details). These consensus motifs are visualized
radially.
Across various regions, among many motifs, tan-

dem repeat sequences are prominently observed, espe-
cially di- and trinucleotide repeats, at various distances.
Our ‘AMPD’ visualizations facilitate spotting of patterns
spread over distances while the ‘TopN’ visualizations,
due to the consensus motifs, can help spot possibly hid-
den shorter K-mer signals. Refer to Fig. 3 for the fol-
lowing discussion. The dinucleotide pattern ‘GT’ being
repeated is observed in both cases, 3-mers and 5-mers,
for distances up to 26 and 34 respectively, to have a
maximal contribution among the various K-mer pairs
towards predicting a locus as a potential interacting part-
ner of locus chr21:34819525-34821921 (region 9)
in GM12878. The 3-mer case shows patterns promi-
nently containing more ‘T’s, from distance ∼30-60 as
compared to the smaller distance values, among nega-
tively contributing pairs, while the maximal positive con-
tributors are devoid of them. Various such patterns are
observed for different regions across cell lines.
Our literature search revealed some relevant stud-

ies on tandem repeat sequences and their poten-
tial biological roles. A 1990 review by Vogt [20]
provides a very comprehensive and extensive account of
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Fig. 2 Box-plots of SVC performances for cell lines GM12878, K562 and Hela-S3. Five regions (numbered ‘A0-A4’, ‘B0-B4’ and ‘C0-C4’ for GM12878,
K562 and Hela-S3 respectively) out of 10 are shown. Individual tasks setting, oligomer lengths = {3, 5} in purple and light blue respectively. MTL with
10 tasks, oligomer lengths = {3, 5} in orange and green. Distances between K-mer pairs upto D = 100. Box-plots for the other five regions among the
10 are given in the Supplementary Figures S3, S4 and S5 in Additional file 1
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Fig. 3 ‘AMPD’ visualization of the informative K-mer pairs from the predictor for region 9 in GM12878 (Refer Table 1 for region details). Top: At
distances in {0, . . . , 100} basepairs, the 3-mer pair that maximally contributes towards positive and negative classification of a given locus is shown.
Weights are shown on the horizontal axis, distances on the vertical axis. Bottom: ‘AMPD’ visualization for the 5-mer case

the potential functions of tandem repeat sequences in
the human genome [20]. Among many other things, it
includes an exhaustive discussion of the various repeat
sequences, viz. mono-, di-, tri-, tetranucleotides and
beyond, and the postulates of their association with a
multitude of nuclear proteins that help them assume
specific chromosomal structures. The author terms this
ability of the tandem sequence repeat blocks to render
locus-specific higher order structure and play a role in

organization as the ‘chromatin folding code’ [20]. In the
review [20], the author also points to a specific case of
the dinucleotide ‘TG’ as a simple repeating block, which
has already been shown to have an enhancer function in
vitro [21] in as early as 1984. More recently, a 2014 study
[22] identified dinucleotide repeat motifs (DRMs) as gen-
eral features that can render a nonfunctional sequence
into an active enhancer element. Another comprehensive
study of the simple sequence repeats in 2014 [23] suggests
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Fig. 4 ‘Top25’ visualization of the informative 3-mer pairs separated by various distances and their magnitudes from the predictor for region 9 in
GM12878 (Refer Table 1 for region details). Top-25 3-mer pairs, with weight magnitudes higher than the threshold (dashed inner circle), for the
positive class (blue). The dashed inner circle is the threshold to select the top-25 entries of the averaged SVM weight vector

their potential role in genome regulation and organiza-
tion. Variable number tandem repeats (VNTRs), as these
sequence repeats are broadly termed, have already been
implicated in many complex neurological disorders (e.g.,
Huntington disease [24]) and are generally known to be
polymorphic [25].
With this backdrop, it is interesting that, enabled by the

visualizations, our models using sequence-level informa-
tion also reveal such tandem repeatmotif signals (at times,
even lengths of their tracts) as distinguishing characteris-
tics between potential locus-specific interaction partners,
suggesting a potentially important role of such sequence
repeats in genome organization and regulation.

Identifying cell-line specific characteristic signals among
(non-)interactors of the same locus in different cell lines
As discussed in “Prediction of long-range chro-
matin interactions is possible from the sequence
alone using non-linear SVMs” section, an advantage
of studying locus-specific interactions at the sequence-
level is realized when our models can reveal the

characteristic signals among interaction partners of
the same locus in two different cell lines. Consider the
locus chr22:32170492-32188129 which is, both,
region 6 and region 7 among our models for HeLa-S3 and
K562 respectively (see Table 1). Refer to their ‘AMPD’
visualizations with 3-mers in Fig. 5. For K562, the ‘CA’ din-
ucleotide repeat sequence stretch of length ∼20 markedly
denotes a non-interacting partner while this same
repeat sequence seems to be interrupted with a
short stretch of ‘T’s in HeLa-S3. Also, another repeat
sequence, ‘AGA’, is notable beyond distance values 50
among the non-interacting partners for this locus in
K562 as compared to HeLa-S3 where it is only inter-
mittently observed. These signals are, similarly, also
picked up by our 5-mer models. The 3-mer and 5-mer
‘AMPD’ visualizations for region 7 in cell line K562 and
region 6 in HeLa-S3 are given in Supplementary
Figures S9 and S12 respectively in Additional file 1. The
corresponding ‘Top25’ visualizations for these regions are
given in Supplementary Figures S10, S11, S13 and S14 in
Additional file 1.
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Fig. 5 ‘AMPD’ visualization of the informative 3-mer pairs from the classifiers for locus chr22:32170492-32188129 which is, both, region 7 in
K562 and region 6 in HeLa-S3 (Refer Table 1 for region details). Top panel: At distances in (0-100) basepairs, the 3-mer pair that maximally contributes
towards positive and negative classification of a given locus is shown. Weights are shown on the horizontal axis, distances on the vertical axis.
Bottom panel: 3-mer ‘AMPD’ visualization of the same locus in HeLa-S3

Multitask learning (MTL) helps mitigate issue of having too
few interacting partners per locus
Each locus-specific prediction problem in our scenario
is termed as a task in the MTL setting. The small sam-
ple sizes in the single-task setting can be mitigated with
the help of the so-called ‘multitask’ setting (see “Method-
ical details” for more details). In order to evaluate the
efficacy of MTL for this problem, we used the available
10 individual tasks. Here, to compute the task similarity,

we used the ‘model-defining’ locus (the LoI) informa-
tion. The locus sequence of every ‘model-defining’ region
was represented as an ODH feature vector using the K-
mer values 3 and 5, separately, and maximum distance
100. The similarities between these regions, the tasks,
were given by the resulting dot products. For models
that used oligomer length 3 and 5 representations for the
sample sequences, we used the corresponding task simi-
larities also with oligomer length 3 and 5 respectively. The



Nikumbh and Pfeifer BMC Bioinformatics  (2017) 18:218 Page 10 of 16

mean test AUC values for the multitask setting with 10
tasks are shown in columns marked ‘C’ and ‘D’ (oligomer
length 3 and 5 respectively) of Table 1. Mean performance
increase across all regions: Oligomer length 3: {GM12878,
K562, HeLa-S3}: {0.13, 0.06, 0.13}; Oligomer length 5:
{GM12878, K562, HeLa-S3}: {0.09, 0.06, 0.11}. Their box
plots are shown in Fig. 2 and Supplementary Figures S3,
S4 and S5 (Additional file 1). Performances in the MTL
setting mostly show reduced variance as compared to the
single-task performances.
Thus, our pipeline in the MTL setting can (a) mitigate

the issue of having either too few interacting partners per
locus, or (b) in the extreme case, identify putative interac-
tion partners of a locus not profiled in the 5C experiment
provided that at least some regions from the same cell line
have been profiled in a chromatin interaction experiment,
for example, 4C or 5C.

Computational validation with high-resolution Hi-C
Rao et al. performed Hi-C experiments resulting in con-
tact matrices at very high-resolution e.g. 1k, 5k, 10k,
25k base pairs (bps), etc. for various cell lines includ-
ing GM12878, K562 [10]. Corresponding to the ‘model-
defining’ regions, we picked relevant columns from the
5k Hi-C cis-contact matrix of the relevant chromo-
some. For example, if the ‘model-defining’ genomic region
was 12,000 bps long, we collected candidate regions
(across the rows) corresponding to three column loci.
The candidate regions are those which have a non-
zero KR-normalized [26] interaction frequency with the
LoI. After normalizing, to identify significantly interact-
ing partners at any given resolution, we computed their
observed/expected (O/E) values and used an ad-hoc cut-
off of 2.5 (i.e., a locus with a normalized O/E value ≥ 2.5
was considered significantly interacting with the LoI), as
used earlier in [9]. This criterion is made more stringent
as follows. The final set of loci that are considered sig-

nificantly interacting with any individual ‘model-defining’
region are only those that are significant at 5k resolution
and also at 10k or 25k resolutions (all using the same cut-
off ). In other words, if a locus was deemed significant only
at 5k resolution but not at 10 or 25k, then we did not
consider it a true positive.
These cis-interacting genomic loci from the high-

resolution contact maps are treated as unseen test
sequences for the classifiers built for each region using the
5C data. In the pipeline, these are thus treated similarly
to the 20% hold-out set: their ODH feature representa-
tions are fed to the classifier to predict their labels. We
performed this experiment for cell lines GM12878 and
K562.
When evaluating performances of our models regarding

predictions on unseen loci from Hi-C data, we did so for
two scenarios: (a) all chromosome-wide loci together; and
(b) considering only loci lying beyond 1M bps from the
‘model-defining’ locus, i.e., excluding the regions probed
in the 5C experiment [18] for the evaluation. Using
this stringent criterion, the mean AUC values and their
standard deviations are as follows. For prediction with
oligomer length 3 models (a) chromosome-wide interac-
tion partners: {GM12878, K562} : {0.5358±0.025, 0.5122±
0.084}; (b) interaction partners beyond 1M bps: {0.5327±
0.019, 0.5304±0.057}. And, with oligomer length 5models
(a) chromosome-wide interaction partners: {GM12878,
K562} : {0.5278 ± 0.028, 0.5238 ± 0.081}; (b) interaction
partners beyond 1M bps: {0.5220±0.026, 0.5294±0.064}.
For both cell lines, when considering only the first five
regions, the average performance was ∼0.55 test AUC
(see Table 2). Models for K562 show higher variance than
models for GM12878.
We observed that performances of models predict-

ing interaction partners for some LoI are compara-
tively poorer than those of other models. These ‘model-
defining’ LoI either have very few negative samples to

Table 2 Computational validation with high-resolution Hi-C data

Cell-type Oligomer length 3 (mean±s.d.) Oligomer length 5 (mean±s.d.)

Chromosome-wide interaction partners

GM12878 (regions 0-4) 0.5552 ± 0.009 0.5503 ± 0.006

GM12878 (regions 0-9) 0.5358 ± 0.025 0.5279 ± 0.028

K562 (regions 0-4) 0.5508 ± 0.091 0.5650 ± 0.088

K562 (regions 0-9) 0.5122 ± 0.084 0.5239 ± 0.081

Interaction partners beyond 1M bp

GM12878 (regions 0-4) 0.5468 ± 0.005 0.5419 ± 0.007

GM12878 (regions 0-9) 0.5327 ± 0.019 0.5220 ± 0.026

K562 (regions 0-4) 0.5593 ± 0.062 0.5646 ± 0.064

K562 (regions 0-9) 0.5304 ± 0.058 0.5294 ± 0.064

(s.d.: standard deviation)
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learn from (refer to Table 1) or are themselves rather
long loci (refer to column ‘length (bp)’ in Supplemen-
tary Table S1 in Additional file 1). In general, from
the perspective of training on 5C data and predicting
contacts chromosome-wide, the issues of having few
negative samples to learn from and having a rather
long model-defining region (both, in 5C data) make
the problem harder. This could be due to follow-
ing reasons: (a) the experiments give no information
on the potential causal portion(s)(causal for the said
interaction), if any, along the complete restriction frag-
ment; (b) the interacting as well as non-interacting
partners of a rather long ‘model-defining’ locus could
have varying characteristics in them which may not
be comprehensively captured by the available few sam-
ples in the 5C data; and (c) the 5C experiments are
performed on selected promoter regions and distal
enhancers [18] while we make these models trained on
such restricted 5C data to predict a potential interac-
tion partner anywhere on the genome not just pro-
moter or distal enhancer regions. Thus, learning on
5C data for a very small subset of the chromo-
some and then predicting interactions chromosome-wide
is a very hard problem (see for example [14], and
“Related work” section).

Related work
Recently, Roy et al. [14] developed a model for predict-
ing cell-line specific interactions between only enhancers
and promoters using various regulatory genomic datasets.
Their predictive model learns from interacting and non-
interacting pairs, also from 5C data [18], where the par-
ticipating promoter and enhancer (of a contact-pair) are
encoded as a real or binary vector marking information
from 23 datasets including histone marks and transcrip-
tion factor binding for various cell lines. Additionally,
they also attempt at building a minimal classifier that
uses information from 11 datasets out of the 23. They
achieved a performance (area under precision-recall curve
(auPRC)) of ∼0.75-0.78 when training and predicting on
the same experiment (5C) data. They also performed
tasks of training on 5C data [18] and predicting inter-
actions in high-resolution Hi-C data [10]. For this task,
they consider an interaction involving a 5k bps locus pair
as a true interaction if it is called a peak in any one of
the three resolutions 5k, 10k and 25k, and achieved com-
paratively modest performances (auPRCs) of 0.643 (K562)
and 0.687 (GM12878).
In comparison to the literature for prediction

of promoter-enhancer interactions, we have used
the term long-range chromatin interactions in a
broader sense that includes possible interactions
between intervening chromatin regions in addition to
those (significant looping interactions) between specific

genomic (functional) elements such as the enhancers
and promoters. We hypothesize that the intervening
chromatin could play an important role in maintaining
a favorable landscape for the loci to interact, as also
observed in more recent capture-C experiments data [27],
where there is a possibility of weaker interactions due to
putative low-affinity binding sites (e.g., [28]) which, in
general, have been largely unexplored still. In our work we
have focused on characterizing the long-range chromatin
interactions pertaining to a particular genomic locus and
investigating the capability of genomic sequence alone in
characterizing them. Also, for the task of learning on 5C
data and predicting on high-resolution Hi-C data, we have
used a comparatively more stringent criterion for con-
sidering an interaction a true one. Approaches that use
various additional information sources, e.g., epigenetic
information [14], typically leave out genomic regions
for which these are not available. Our sequence-based
approach can be especially helpful in such scenarios.
Furthermore, we expect that our models can be further
strengthened or supported by utilizing the additional
regulatory (epi)genomic information wherever available.

Conclusion
To the best of our knowledge, from the point of view
of understanding chromatin interactions at the sequence
level, ours is the first approach to do so. In this study,
we have taken a broader view of these interactions and
based on the hypothesis that the sequence at the interven-
ing chromatin and the loci could also play a part in these
interactions given the possibility of such ‘interfacing’ tak-
ing place via various mechanisms, like direct contact or
formation of mini-loops or via diffusion after mere jux-
taposing in physical vicinity [2], and for various reasons
as motivated in the “Background” section. Our compu-
tational experiments using data from 5C experiments,
for three cell lines GM12878, K562 and HeLa-S3 from
[18] achieve good performances of ∼0.75 (with oligomer
length 5, as average test AUC values across various regions
evaluated in this study from the three cell lines) in the
single-task setting.
We developed two new, intuitive visualization methods

that are suited for our problem scenario namely deal-
ing with varied-length sequences and an appropriately
chosen ODH feature representation. Aided by these visu-
alizations, notwithstanding the very high-dimensionality
of the feature space (e.g., the 5-mer case), our per-
locus models shed light on the potential sequence
signals that can characterize the interacting vs. the non-
interacting partners of a LoI. We discussed how this
can help understand which sequence features in the
given region made it interact with one LoI and not
with another LoI. Analysis of the various sequence
signals from our models suggests a potential functional
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and organizational role for tandem repeat sequence
stretches in the genome.
We also demonstrated how knowledge of individ-

ual models could be transferred to those of other
regions (those having too few examples to learn
from) via multitask learning. Mean performance for
the multitask setting, performances of models for
oligomer length 3 and 5 combined together, is 0.83.
We already observed that several models show less
variance in their prediction performances than their
single-task counterparts.
Furthermore, we made our models trained on 5C data

predict interactions between 5k bps long loci from the
recent high-resolution Hi-C [10] data for cell lines where
the Hi-C data was available. Even with a very stringent
criterion to identify true positives in the high-resolution
Hi-C data, we showed that our approach is capable of
predicting interesting loci that could interact although
lying very far away, even further than 1–2M bps, on
the genome using features learned from 5C data that is
limited to this 1–2M bps distance. This ability to iden-
tify potentially interacting loci lying very far away on
the genome could be useful from the point of view of
understanding topologically associating domains at the
sequence level.
An important point to note here is that since our

models do not require any locus to be either a TCR
or an enhancer region per se, in principle, it can be
seamlessly applied to contact matrices output by any 5C-
based or even high resolution Hi-C-based experiments
(as training data). At places, we have used the terms
TCR and enhancers for the interacting regions because
the contact matrices we use in this study come from
5C experiments involving these loci. So, when given a
Hi-C contact matrix, any locus therein could be used
to learn corresponding models in a similar fashion
and it need not necessarily be an enhancer or a pro-
moter region. In comparison, earlier approaches focus
only on promoter-enhancer interactions and exclude all
other genomic loci from their analysis. Thus, we have
preferred to call these genomic loci as simply regions
in this study. The models in this work are not spe-
cific to particular properties of any genomic region and
do not make use of supplementary epigenetic infor-
mation at the locus; we have only used the sequence
information. Even with this much harder premise, we still
achieved a good performance of ∼0.75.
As of today, high resolution Hi-C data is still very

expensive. Therefore, our prediction method could also
be used in a setting where high-resolution 5C data, but
only low-resolution Hi-C data is available to predict
additional interaction partners for any regions of inter-
est. These additional predicted contacts could augment
methods for predicting the 3D structure of the chro-

matin as well as methods for predicting boundaries of
TADs. Thus, we envisage that our approach of using
only sequence-based models can, most importantly, be
helpful in (a) understanding higher-order structures like
(meta-) TADs at the sequence-level; and (b) giving addi-
tional input to methods that estimate the 3D structure
of the chromatin for different organisms from the
interaction data.

Methods
Materials
We use the 5C contact matrices from experiments pub-
lished by Sanyal et al. [18]. They probed a collec-
tion of regions for two tier-I cell lines (GM12878 and
K562) and a tier-II cell line (HeLa-S3) from ENCODE
(The ENCODE Project Consortium, 2012). In these
experiments involving two biological replicates, for each
replicate, upon filtering to exclude certain primers
owing to outlier fragments, the contact frequencies
are normalized for the trans signal in turn correct-
ing for detection biases per restriction fragment [18].
The intra-chromosomally interacting restriction frag-
ments are then tested for significance, accounting for
the inverse relationship between contact frequencies and
the genomic distance between the restriction fragments,
and peaks are called, conservatively, at a false discov-
ery rate (FDR) cutoff of 1%. [18] term the interactions
that are called peaks in both replicates as ‘TruePeaks’
and those not called peaks in either replicate as ‘Non-
Peaks’. Consequently, in our study, positive examples
for any classifier are ‘TruePeaks’ and negative examples,
‘NonPeaks’. We considered different FDR cutoff values
(1%, 10% and 15%) and selected an FDR cutoff of 10% (dis-
cussed in “Relaxation of FDR cutoff to enable studying
of putative ‘bystander’ or structural interactions” section).
Table 1 gives information on the number of ‘TruePeaks’
(#TP) and the number of ‘NonPeaks’ (#NP) for the
genomic regions for which we built our models in this
study to evaluate whether the DNA sequence is infor-
mative in predicting the long-range interactions (Refer
to Supplementary Tables S1–S4 for additional details
about the studied genomic regions). These are the ‘model-
defining’ regions for our study. All genomic coordinates
are w.r.t. hg19, GRCh37 assembly. The ‘model-defining’
loci are among the TSS-containing regions (by GEN-
CODE v7 [29]) and the sets of loci in the positive and
negative class for the individual classifiers are restriction
fragments corresponding to enhancers (also by GEN-
CODE v7 [29]) [18]. All values of #TruePeaks and #Non-
Peaks in Table 1 are for FDR 10%. For the computational
validation with high-resolution Hi-C data, we used the
data from Rao et al. [10] deposited at GEO [30], namely
‘GSE63525_GM12878_combined_contact_matrices.tar.gz’ and
‘GSE63525_K562_intrachromosomal_contact_matrices.tar.gz’.
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Relaxation of FDR cutoff to enable studying of putative
‘bystander’ or structural interactions
From a biological point of view, we attempted to take a
more broader view and defined an interaction that takes
into account not just the significant ‘looping interactions’
but also the possibility of so-called ‘bystander’ or struc-
tural interactions between intervening chromatin [18, 27].
Thus, in all computational experiments, in order to dis-
tinguish significant interactions from non-interactions in
the 5C data, we relaxed the FDR cutoff to 10%, instead
of 1% as in [18]. In other words, we traded off between
being very conservative (which would allow only sig-
nificant ‘looping interactions’ as prevalently defined in
the community) and comparatively liberal in consider-
ing TruePeaks at FDR cutoff 10%. At the same time, this
relaxation still maintained a significantly higher mean z-
score of the interactions for TruePeaks in comparison to
NonPeaks for all the cell lines, similar to the 1% cutoff
case (see Supplementary Figure S1 in Additional file 1).
While, 15% FDR also shows a significant difference, it did
not provide much benefit in the number of additional
TruePeaks per region (i.e., positive examples per classifi-
cation problem in our study) in comparison to relaxing
the FDR from 1 to 10%, consistently across all three
cell lines.

Methodical details
The genomic loci we study in this work are the restric-
tion fragments reported in the 5C experiments in [18]
(see “Materials” section for details). We use string ker-
nels, which provide a measure of similarity between
sequences, in conjunction with an SVM as a classifier.
Because these loci have highly diverse lengths (Supple-
mentary Figure S2 in Additional file 1), we could not
directly use position-aware string kernels like the oligo
kernel [31] or weighted degree (WD) kernels [32, 33] for
representing the loci.

A feature representation based on oligomer distance
histograms (ODH) and the ODH kernel
In 2006 Lingner and Meinicke introduced the ODH fea-
ture representation and the corresponding ODH kernel
[19]. It provides a fixed-length feature space representa-
tion of any arbitrary length sequence based on histograms
of distances between short oligomers in the sequence. For
alphabet

∑
, consider all oligomers (or interchangeably,

K-mers) mi ∈ ∑K , i = 1, . . . ,M. For any sequence s of
length |s| := Lmax, let D = Lmax − K , the maximum dis-
tance between any two K-mers, with distance between a
pair of K-mers defined as the difference in their starting
positions in the sequence s. The distance histogram vec-
tor of s corresponding to the K-mer pair (i, j) is given by
hij(s) =[ h0ij(s), h1ij(s), . . . , hDij (s)]T where T denotes trans-
pose. For all such K-mer pairs over

∑
, the corresponding

distance histogram vectors are concatenated together giv-
ing a complete feature space transformation �(s).

�(s) =
[
hT11(s),h

T
12(s), . . . ,h

T
MM(s)

]T
(1)

The set of feature vectors for N training samples is:
X =[�(s1), . . . ,�(sN )] and the N × N kernel matrix is
given by:

K = XTX (2)

with kij, the entries of matrix K, being proportional to
the similarity between sequence si and sj. Lingner and
Meinicke used this kernel for remote homology detection
in protein sequences [19].

Multitask learning (MTL)
Often, for various reasons across domains, one has to deal
with the issue of having very few training samples for a
given prediction problem also called task. This can affect
the generalization ability of any standard machine learn-
ing technique such as an SVM [34].Whenmultiple related
tasks are to be learnt, MTL attempts to mitigate this
issue by sharing information across these multiple related
tasks. From a different perspective, it can be advantageous
to leverage information from multiple related tasks to
improve the prediction performance of a single task [34].
Depending upon the problem at hand, a suitable measure
of task-relatedness (how similar are two given tasks) needs
to be chosen.
In case of learning with kernels, [35] introduced how

multitask learning can be performed with kernel methods.
Jacob and Vert [36] provided the following formulation
for sharing of information between tasks using a multi-
task kernel. For any two samples sA and sB from tasks
tA and tB respectively, KMTL((sA, tA), (sB, tB)) is the mul-
titask kernel providing a measure of similarity between
these tuples. Mathematically, KMTL((sA, tA), (sB, tB)) =
KS(sA, sB) · KT (tA, tB) where KS is the kernel on the sam-
ples, and KT gives the kernel value between two tasks.
Jacob and Vert [36] used this formulation for predicting
peptide–MHC-I binding. An overview of MTL applica-
tions for problems in computational biology is presented
by [37].

Pipeline for predicting long-range chromatin interactions
Contact matrix output by any experiment profiling chro-
matin interactions must be subjected to normalization
and extraction of significant contacts. Details of the moti-
vation and various approaches for doing so are reviewed
Ay and Noble [38]. Also, these experiments are usually
performed for multiple biological replicates to assess the
impact of experimental errors and other variations.
Figure 1 illustrates our approach for predicting long-

range chromatin interactions. The normalization and
peak-calling procedures that we adopted for analyzing
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the 5C data used in this study are described in
“Materials” section. Once a raw contact matrix has been
normalized and the significant interactions have been
called, we binarize the contact matrix as follows. Genomic
loci (along the rows) not called significant interaction
partners of a particular locus (along the columns) in either
replicate constitute the negative class (see Fig. 1, cells
denoted by filled black boxes) and those called significant
in all replicates constitute the positive class (see Fig. 1,
cells denoted by filled orange boxes). This leaves a lot
of uncalled loci (along the rows). These are denoted by
unfilled boxes (Fig. 1). Then, we build a classifier corre-
sponding to each locus along the column of the matrix.
We call these loci the ‘model-defining’ loci. For each indi-
vidual classifier we collect loci along the rows and falling
under the relevant column of the contact matrix as loci
belonging to the positive and negative class for this classi-
fier or it may not be called at all. This is shown in Fig. 1.
Clearly, any locus that belongs to the positive class in one
model, may belong to either the positive or negative class
in another model. Given a set of sequences belonging to
either class, 80% were used for training a classifier while
20% were held-out as test sequences.
The classifiers are based on SVMs with the ODH

kernel. The cost parameter for each SVM is var-
ied in the range 10{−3,...,3}. For each model, we per-
form a 5-fold nested cross-validation to select the best
performing SVM cost-value while the ODH feature
representation parameters are fixed as described in “Pre-
diction of long-range chromatin interactions is possible
from the sequence alone using non-linear SVMs” section.
Our pipeline also accounts for class-imbalance by propor-
tionately up-weighting the misclassification cost for the
minority class (here, positive class) [39].
Our pipeline, named ‘Samarth’, is available for download

at the supplemental website http://bioinf.mpi-inf.mpg.de/
publications/samarth/.

Visualizing the important features for each predictionmodel
Absolute Max Per Distance (AMPD) visualizations: Recall
from “A feature representation based on oligomer dis-
tance histograms (ODH) and the ODH kernel” section
that the dimensionality of the SVM weight vector for a
model with the DNA sequence alphabet, using oligomer
length K and distances up to D is [(| ∑ |K )2 × (D + 1)]
(i.e., of 413,696 and 105,906,176 dimensions for oligomer
length 3 and 5 respectively). Due to the oligomer distance
histograms-based feature vector representation used in
our models, each entry of the SVM weight vector is the
coefficient assigned to a K-mer pair separated by a dis-
tance d ∈ [0, 1, . . . ,D]. For each of our locus-specific
models, the 5-fold outer cross validation resulted in 5 dif-
ferent SVM weight vectors. These five individual weight
vectors were averaged to obtain one representative weight
vector for a per-locus model. From this averaged weight
vector, we noted two K-mer pairs per distance value, one
that was assigned the most positive coefficient and the
other, most negative. A positive coefficient means the d-
separated K-mer pair is an important feature among the
positive sequences, while a negative coefficient means it is
an important feature to classify the sequence as negative.
All such selected K-mers at the various distance values
are visualized to provide a distance-centric view of the
important features. Such a visualization for an example
region (region 9) for cell line GM12878 is shown in Fig. 3.
We call these visualizations ‘Absolute Max Per Distance’
(AMPD) visualizations. For better readability, the K-mer
pairs at even distance values are arranged in the outer col-
umn and those at odd distance values in the inner column.
Figure 3 and Supplementary Figure S6, S9 and S12 in the
Additional file 1 show examples of ‘AMPD’ visualizations
for different regions across the three cell lines GM12878,
K562 and HeLa-S3.
Position-Wise Weight Matrix (PWWM)-based ‘TopN’

visualizations: Independently, the entries of the averaged

Table 3 A dummy PWWM for selected 3-mer pairs at certain distance d. |w1|, |w2|, and |w3| are magnitudes of the weights for the
example 3-mer pairs

3-mer pairs

|w1| AAA GAA

|w2| GAA AGA

|w3| AAG AAA

‘A’ 1
D (|w1| + |w3|) 1

D (|w1| + |w2| + |w3|) 1
D (|w1| + |w2|) 1

D (|w2| + |w3|) 1
D (|w1| + |w3|) 1

D (|w1| + |w2| + |w3|)
‘C’ 0 0 0 0 0 0

‘G’ 1
D (|w2|) 0 1

D (|w3)
1
D (|w1|) 1

D (|w2) 0

‘T’ 0 0 0 0 0 0

p 1 2 3 4 5 6

‘A’, ‘C’, ‘G’ and ‘T’ are the rows corresponding to the nucleotides. Position, p ∈ {1, . . . , 6}. Each cell is divided by D = (|w1| + |w2| + |w3|)

http://bioinf.mpi-inf.mpg.de/publications/samarth/
http://bioinf.mpi-inf.mpg.de/publications/samarth/
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weight vector were sorted in descending order and then
thresholded to reveal the top 25 scoring entries. Figure 4
visualizes only those selected top-25 K-mer pairs. Here,
the (D + 1) distances are arranged radially. Each spoke
gives the magnitude of the highest-scoring K-mer pair
at the corresponding distance. If the magnitude crosses
the threshold value, that spoke is plotted in either ‘blue’
(see Fig. 4) or ‘red’ (see Additional file 1) for positive and
negative contribution respectively, while otherwise plot-
ted in gray. We call these visualizations ‘Top25’, or more
generally, ‘TopN’ visualizations where one can choose
a suitable value for ‘N’. Note that there can be several
entries at the same distance among the top-25 leading
to sequence logo-like representations. At any distance d,
all motifs that exceeded the threshold are collected along
with their weight magnitudes and stacked one over the
other to finally represent them with a consensus motif.
This is done by constructing a ‘Position-Wise Weight
Matrix’ (PWWM) of dimension (| ∑ | × 2K) which rep-
resents the nucleotides appearing at each position from 1
to 2K along with their relative contribution to the weight
vector. A dummy example illustrating this is shown in
Table 3. This PWWM is computed as follows. For position
p ∈ {1, . . . , 2K}, the matrix cell (‘A’/‘C’/‘G’/‘T’, p)
is populated with the sum of the weight contribution of
those motifs in which the given nucleotide is present at
position p. The matrix is then normalized for the column
entries to sum up to 1. The resulting consensus sequences
are represented as sequence logos [40] in the ‘Top25’ visu-
alizations in Fig. 4. Supplementary Figures S7, S8, S10,
S11, S13 and S14 in the Additional file 1 show exam-
ple ‘Top25’ visualizations for various regions from the cell
lines GM12878, K562 and HeLa-S3.

Additional file

Additional file 1: This file provides additional performance plots and
visualizations, and more detailed description of the data. Figure S1:
Z-scores for various cell lines at different FDRs Figure S2: Lengths of
restriction fragments for various regions in different cell lines Figure S3:
Box-plots of SVC performances for all regions (numbered ‘A0-A9’) in
GM12878 Figure S4: Box-plots of SVC performances for all regions
(numbered ‘B0-B9’) in K562 Figure S5: Box-plots of SVC performances for all
regions (numbered ‘C0-C9’) in HeLa-S3 Figure S6: ‘AMPD’ visualization of
the informative K-mer pairs from the classifier for region 9 in GM12878
Figure S7: ‘Top25’ visualization of the informative 3-mer pairs separated by
various distances and their magnitudes from the classifier for region 7 and
9 in GM12878 Figure S8: ‘Top25’ visualization of the informative 3-mer pairs
separated by various distances and their magnitudes from the classifier for
region 7 and 9 in GM12878 Figure S9: ‘AMPD’ visualization of the
informative K-mer pairs from the classifier for region 7 in K562 Figure S10:
‘Top25’ visualization of the informative 3-mer pairs separated by various
distances and their magnitudes from the classifier for region 7 in K562
Figure S11: ‘Top25’ visualization of the informative 3-mer pairs separated
by various distances and their magnitudes from the classifier for region 7 in
K562 Figure S12: ‘AMPD’ visualization of the informative K-mer pairs from
the classifier for region 6 in HeLa Figure S13: ‘Top25’ visualization of the
informative 3-mer pairs separated by various distances and their
magnitudes from the classifier for region 6 in HeLa Figure S14: ‘Top25’

visualization of the informative 3-mer pairs separated by various distances
and their magnitudes from the classifier for region 6 in HeLa Table S1:
Details of the genomic regions from each cell line Table S2: Overlap of
candidate loci among regions for cell line GM12878 Table S3: Overlap of
candidate loci among regions for cell line K562 Table S4: Overlap of
candidate loci among regions for cell line HeLa. (PDF 1086 kb)
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