Afyounian et al. BMC Bioinformatics (2017) 18:215
DOI 10.1186/512859-017-1626-8

Segmentum: a tool for copy number

BMC Bioinformatics

@ CrossMark

analysis of cancer genomes

Ebrahim Afyounian, Matti Annala and Matti Nykter’

Abstract

Background: Somatic alterations, including loss of heterozygosity, can affect the expression of oncogenes and
tumor suppressor genes. Whole genome sequencing enables detailed characterization of such aberrations.
However, due to the limitations of current high throughput sequencing technologies, this task remains challenging.
Hence, accurate and reliable detection of such events is crucial for the identification of cancer-related alterations.

Results: We introduce a new tool called Segmentum for determining somatic copy numbers using whole genome
sequencing from paired tumor/normal samples. In our approach, read depth and B-allele fraction signals

are smoothed, and double sliding windows are used to detect breakpoints, which makes our approach

fast and straightforward. Because the breakpoint detection is performed simultaneously at different scales,

it allows accurate detection as suggested by the evaluation results from simulated and real data. We applied
Segmentum to paired tumor/normal whole genome sequencing samples from 38 patients with low-grade glioma
from the TCGA dataset and were able to confirm the recurrence of copy-neutral loss of heterozygosity in chromosome
17p in low-grade astrocytoma characterized by IDH1/2 mutation and lack of 1p/19q co-deletion, which was previously

reported using SNP array data.

Conclusions: Segmentum is an accurate, user-friendly tool for somatic copy number analysis of tumor samples. We
demonstrate that this tool is suitable for the analysis of large cohorts, such as the TCGA dataset.
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Background

Somatic copy number alterations (SCNA) are a group
of genomic aberrations commonly observed in many
cancers [1]. Copy number is the number of copies
per cell of a particular gene or DNA sequence. Som-
atically acquired chromosomal rearrangements such
as deletions and duplications may change the copy
number of a gene. Consequently, the expression level
of a gene is often correlated with its copy number [2]
- a phenomenon known as the gene dosage effect.
Loss of heterozygosity (LOH) is an event in which
one of the two alleles at a heterozygous locus is lost
due to segmental aneuploidy, gene conversion, mitotic
recombination, or mitotic nondisjunction [3]. LOH
events involving tumor suppressor genes such as
PTEN, RB1, and TP53 have been observed in many
cancer. LOH may alter gene expression. For example,
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monoallelic expression (MAE), which is the expres-
sion of a gene from only one of two alleles in a dip-
loid organism, is associated with LOH [3]. By
analyzing a cohort of 23 triple-negative breast cancer
patients, Ha et al. [3] have shown that LOH is a
prominent aberration in this type of cancer, and mod-
ulates a significant portion of the transcriptome in
the form of MAE. Copy-neutral LOH (cnLOH) is a
specific type of LOH that occurs when the lost allele
is replaced with a duplicated copy of the surviving
allele, resulting in the copy number remaining
unchanged. Suzuki et al. have shown recurring
c¢nLOH at chromosome 17p (harboring TP53 gene) in
low-grade astrocytoma [4]. The altered expression of
genes with allelic imbalance due to LOH events may
bring about selective advantages for tumorigenesis
and tumor progression. Additionally, regions with
cnLOH may harbor genes with driver mutations [5].
Hence, accurate and reliable detection and
characterization of events, such as SCNAs and LOH,
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are crucial for the identification of prospective
cancer-related genes, such as tumor suppressor genes
and oncogenes, and eventually for informing new
approaches to treat cancer [6].

High throughput sequencing (HTS)-based SCNA
detection approaches (including both whole exome
sequencing (WES) and whole genome sequencing (WGS))
have become popular due to their potential for accurate
copy number estimation and breakpoint detection with
single nucleotide accuracy. However, the short read length
of current HTS technologies makes it difficult to map
some reads to unique locations in the genome. Further-
more, due to GC-content bias, GC-content-rich regions in
the genome will have increased number of reads. These
ambiguities make accurate estimation of coverage and
consequently copy number a challenge [7]. Additionally,
tumor ploidy and normal cell contamination introduce
further challenges in SCNA detection [8].

HTS-based copy number analysis is, in most cases,
based on read depth (RD) estimations at each gen-
omic location and further segmentation and quantifi-
cation of the RD profiles into segments of consistent
copy number (Additional file 1: Table S1 for a list of
SCNA tools) [9, 10]. However, such tools are only
capable of detecting deletions and duplications. Recently,
RD-based analysis has been augmented to identify cnLOH
events by incorporating information from an alternate
allele’s fraction at heterozygous single nucleotide poly-
morphism (SNP) positions (or B-allele fraction (BAF)). The
BAF of a heterozygous SNP has an expected value of 0.5 in
normal diploid cells. Deviation from 0.5 in the heterozy-
gous SNP BAF points to an aberration. In the case of
c¢nLLOH, BAF values are expected to be either 0 or 1 in a
pure tumor population. Tools such as Control-FREEC
[11], Patchwork [12], and CLImAT [13] incorporate BAF
data to extend SCNA detection. Control-FREEC deter-
mines the breakpoints using a least absolute shrinkage
estimator (LASSO) regression. Sample ploidy is provided
by the user to Control-FREEC. It also evaluates and cor-
rects for normal cell contamination, GC-content, and map-
ability biases while inferring the copy number profile of a
tumor genome. Patchwork performs GC and positional
normalization and segments the genome using a circular
binary segmentation (CBS) algorithm. It also estimates nor-
mal cell contamination and tumor ploidy. CLImAT imple-
ments corrections for GC-content and mapability bias and
models the RD and BAF data with a hidden Markov model
(HMM) to infer the somatic copy number variation, nor-
mal cell contamination and tumor ploidy (Additional file 1:
Overview of Tools section for more details on these tools).
While the above tools are well-suited for SCNA detection,
their use has some limitations. Control-FREEC and Patch-
work utilize computationally costly models, which leads to
long analysis times. The main motivation of our study was
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to develop an accurate and user-friendly tool that could be
used to analyze large WGS datasets, such as the cancer
genome atlas (TCGA) datasets. In our approach, the RD
and BAF signals are smoothed, and double sliding windows
subsequently are used to detect breakpoints, which makes
our approach fast and straightforward. Because the break-
point detection is performed simultaneously at different
scales, it allows accurate detection. Our tool, Segmentum,
is freely available under MIT license at: https://github.-
com/eafyounian/Segmentum (Additional file 2 contains
the software code. For the lates version of the software
code please visit the project’s online repository).

Implementation

Pipeline

Segmentum was developed and written in the Python
programming language (version 3) and requires the
SciPy library to be installed (If the user wishes to use the
‘plot’ sub-command to inform parameter value selection,
matplotlib library is also required). Segmentum employs
SAMtools to extract RD and heterozygous SNPs BAF
data from BAM files containing WGS data. These con-
stitute the inputs required by Segmentum to perform
copy number analysis. Figure 1 illustrates the
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Fig. 1 Segmentum pipeline. Normal and tumor RDs are used to
calculate RD log-ratios. RD log-ratios are then corrected for biases.
BAF data are simultaneously mirrored and smoothed. Using RD
log-ratios and BAF, the genome is segmented with a double sliding
window method. Segmentation results are used to identify cnLOH
regions in the genome (see the following sections for more details
on each step)
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Segmentum pipeline. Each step is explained in more de-
tail in the following sections.

RD extraction and BAF calculation for heterozygous SNPs
To extract the RD from the BAM files, the genome is
divided into bins of user-defined length (2 kbp by
default) and the number of reads overlapping each bin is
counted to determine the RD at each bin. To calculate
the BAF values, heterozygous SNPs in the normal sam-
ple are identified at known SNP sites in the human gen-
ome (based on SNP annotations such as those produced
by the 1000 Genomes project). Next, the number of ref-
erence and alternative alleles at each heterozygous SNP
position is extracted from the tumor sample and the
BAF for the i heterozygous SNP is calculated using the
following equation:

where alt; and ref; refer to the alternative and reference
allele, respectively, of the i heterozygous SNP.

It should be noted that by default reads with mapping
quality score 10 are filtered out before RD extraction
and BAF calculation in order to address the challenges
raised by reads not mapping to a unique region in the
genome (the read filtration criterion based on the map-
ping quality score is a parameter to Segmentum and can
be set by the user).

Log-ratio calculation
The RD log-ratio is calculated using the following
equation:

tRD;
logr; = log2< "RD. )

where logr; is the log-ratio of the i genomic window
and fRD; and nRD; are RDs extracted from the i gen-
omic window of a specific size (determined by user;
default is 2 kbp) for the tumor and normal samples,
respectively.

Differences in the total number of aligned reads in the
normal and tumor samples may bias the estimation of
the RD log-ratios. The correction was performed by
finding the mode of log-ratio values for each chromo-
some and subtracting the median of all of the modes
from each log-ratio value. It should be noted that
median, in the correction step, is robust to the changes
in one mode. For instance, one chromosomal arm
having a copy number change has no effect on the
correction since it only affects one of the chromosomal
modes.
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Mirroring and smoothing of the BAF values

The BAF of a heterozygous SNP has an expected value
of 0.5 in normal diploid cells. In the presence of somatic
copy number alterations, the BAF can diverge from 0.5
if the relative abundance of the two alleles changes. To
make smoothing and segmentation of BAF data possible,
the BAF values must be mirrored about the 0.5 axis so
that the B allele fraction always represents the allele
fraction of the dominant allele. Without this mirroring
step, the BAF values will be symmetric about the BAF =
0.5 axis and smoothing will underestimate the absolute
divergence from 0.5 [14]. In this study, a median filter is
used for smoothing the BAF data. Simultaneous mirror-
ing and smoothing is implemented using the following
equation:

¢BAF; = H % |0.5-Mo(BAF;)| + (1-H) * Mo(|0.5-BAF;|).

where BAF; is the BAF value for the i heterozygous SNP,
cBAF; is the simultaneously mirrored and smoothed BAF;,
H is a heterozygosity measurement calculated with the
following equation: H=1-2%]0.5—x|, and M, refers to
applying a median filter to 9 SNPs in the vicinity of and
including the i/ SNP.

Segmentation using a double sliding window approach
To detect changes in the RD log-ratio and BAF signals,
two non-overlapping, fixed-sized windows (determined
by the user) are slid over the RD log-ratio and BAF
values and a compound score (S) is calculated for each
of the adjacent two windows. If the compound score is
greater than 1, a change is detected and a breakpoint is
placed at the place where the two windows touch each
other. The compound score is calculated using the
following equation:

S = | logTwin, — 1087 win,,, |2 n ’cBAFWmi — ¢BAF i, |2

Tlogr TBAF

where logry,, is the mean of the RD log-ratio values in
the i window, ¢BAF iy, is the mean of the mirrored
and smoothed BAF values in the i window, Tjogr and
Tpar are thresholds for the absolute mean difference in
the RD log-ratios and the absolute mean difference in
the BAF wvalues in the two adjacent windows,
respectively.

It is possible that some breakpoints will not be de-
tected by a single pass of a double sliding window due
to a given window size. Thus, to increase the sensitivity,
Segmentum analyzes the signals for the detection of
breakpoints multiple times with different window-sizes
and thresholds. Each new window is 1.5 times larger
than the previous one. The increase in the window size
decreases the detection thresholds. This is due to the
fact that increasing the window size increases the sample
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size (assuming sampling from normal distribution with
N(u, %)) and consequently decreases the standard devi-
ation of the mean (mean having probability distribution

of N <u, o / ) ). The new standard deviation of the

mean when window size is increased 1.5 times is \7%

times the old standard deviation. Let 7= ao where 7 is
the threshold and «a is a scalar and ¢ is the standard de-
viation. It follows that:

1 1
Tnew = QA.Opew = \Z/T_5 A.0old = \Z/T_S Told

Thus both the 7, and 7g4r thresholds are updated
using the following equation:

1

Tnew = * Told
V1.5

The process of increasing the window-size is contin-
ued as long as the updated thresholds are greater than
the thresholds for the merging two consecutive seg-
ments (see below). After detecting all the breakpoints, a
consensus list of breakpoints is created by accepting all
of the breakpoints detected by the first pass of the
double sliding window and adding the breakpoints de-
tected from the larger windows to the list only if the
breakpoint is not in the vicinity of an existing breakpoint
in the list (i.e., |CPcurrent = CPexisting| > Window size, where
¢p is a detected breakpoint). Consensus breakpoints are
used to create the segments. Two consecutive break-
points constitute a segment. For each segment, the aver-
age RD log-ratio and average mirrored and smoothed
BAF is calculated. Two consecutive segments are
merged if the following conditions are met:

’ logrseg[ - log’"segprl | < Tmerge,agr

and | cBAF s, ~cBAF g, | | < Timergepar

where logrg, is the mean RD log-ratio of the " seg-
ment, cBAF,, is the mean mirrored and smoothed BAF
of the i segment, and Tyuerge,,, aNd Tierges,, (determined
by user) are the RD log-ratio and BAF merging thresh-
olds, respectively.

Detection of cnLOH events within a single sample
A segment is considered to be a cnLOH segment if the
following conditions are met:

|logrsegl} < TenLOH g and (0.5— cBAFsggi) < TcnlOHpsr

where logrg, is the mean RD log-ratio of the " seg-
ment, cBAF e, is the mean mirrored and smoothed BAF
of the i segment, Tu0H,, and Teurom,, (determined
by the user) are thresholds for calling a cnLOH segment.

Page 4 of 10

Detection of recurrent ¢cnLOH regions across multiple
samples

To find genomic regions with recurrent c¢cnLOH
events, all cnLOH regions for individual samples are
identified following the procedure described earlier.
Then, the number of occurrences of a cnLOH event
for a specific region across multiple samples is
counted using an interval tree data structure
(Additional file 1: Figure S1).

Simulator

To evaluate Segmentum in terms of segmentation ac-
curacy, a simulator capable of simulating whole-
genome RD for both normal and tumor samples and
BAF based on events such as deletions, amplifications
and ¢cnLOH was developed. The simulator receives a
normal sample RD data and outputs 4 sets of data in-
cluding the simulated normal and tumor RD, BAF
data and a ground truth. First, the simulator learns
the distribution of the RD data from the provided
normal sample by simply counting the number of
times two consecutive RD values (e.g., 368 and 299)
occur together throughout the genome (Additional
file 1: Figure S2). The learned distribution also ac-
counts for the inherent noise in the RD data. Next,
inverse transform sampling (Smirnov transform) is
used to generate RD values for each position in the
genome based on the learned distribution. Then,
noise is removed using a median filter. A normal RD
is constructed by adding independent Poisson noise
to the simulated RD data. To construct the tumor
RD, two copy number tracks (because autosomal
chromosomes come in maternal and paternal pairs)
harboring random SCNAs are constructed. The tumor
sample RD is calculated using the copy number
tracks, the simulated normal sample RD and the nor-
mal sample contamination (i.e., a parameter deter-
mined by wuser). To construct the BAF data,
heterozygous SNPs are initially randomly distributed
across the genome (1 heterozygous SNP per 1.5 Kbp).
The number of B-alleles at a heterozygous SNP is cal-
culated using a binomial distribution with the param-
eters n (total number of reads at heterozygous SNP
position) and p (probability that a read is coming
from the B-allele). n is extracted from the simulated
normal RD at heterozygous SNP positions. p is calcu-
lated using the two constructed copy number tracks
and the normal sample contamination. Once the
number of B-alleles is calculated, it is used to calcu-
late the BAF values (Additional file 1: Figures S3 and
S4 for the simulator pipeline and the simulated data
visualized in the integrative genomics viewer (IGV)
[15], respectively).



Afyounian et al. BMC Bioinformatics (2017) 18:215

Results

Segmentum segmentation accuracy for the simulated
data

Using the simulator (see the ‘Simulator’ section for more
details), RD data for both normal and tumor samples
and BAF values for heterozygous SNPs from the tumor
sample as well as a ground truth were simulated with
different percentages of normal contamination (an ex-
ample set of simulated data is available at Segmentum’s
online repository. See the ‘Availability and requirements’
section for the link to the repository). The simulated
data were analyzed by Segmentum. The segmentation
results were evaluated against the ground truth. The
precision, recall, and the F-measure values were calcu-
lated based on this evaluation (Fig. 2 and Additional file
1 for the definitions of precision, recall, and F-measure).

Segmentum segmentation accuracy for real data
compared to other tools

To assess segmentation accuracy of Segmentum for real
data, paired tumor/normal whole genome sequencing
samples (30x < coverage < 100x) from 10 individuals
diagnosed with low-grade glioma (LGG) were down-
loaded from the TCGA dataset and used as is. Further-
more, segmentation results from SNP-array data (level 3
data) (completed by TCGA using an Affymetrix
Genome-wide human SNP array 6.0) was used as
ground truth (Additional file 1: Table S3). Segmentum’s
results were evaluated against Control-FREEC, Patch-
work, and CLImAT as competing tools. To evaluate the
segmentation accuracy, the genome was broken into
100 bp. blocks (excluding all blocks in centromeres and
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different tools, genome-wide proportions of the blocks
annotated as SCNA by different combinations of tools
were calculated and the results were illustrated by a
Venn diagram (Fig. 3).

Additionally, to measure the pairwise degree of simi-
larity of the segmentation results between two tools, the
Jaccard similarity index (JSI) was calculated for all of
the pairs using the following equation:

JSI — [n pm:r|

|U pair|

where | n pair| and | U pair| are the cardinalities of inter-
section and union, respectively. Intersection and union
values were extracted from the Venn diagrams. Figure 4
represents a heat map of the JSI values for each pair of
tools averaged over 10 TCGA LGG samples. According
to the heat map, on average, Segmentum produces the
most similar results to the SNP array segmentation
results with a JSI score of 0.9, followed by Patchwork
with a JSI score of 0.86.

Similar evaluations using low coverage data (6x aver-
age coverage) are shown in Additional file 1: Figures S5
and S6. The low coverage data is comprised of the
paired tumor/normal whole genome sequencing samples
of 10 individuals diagnosed with prostate adenocarcin-
oma (PRAD). With regard to the low coverage data,
Patchwork produces the most similar results to the SNP
array segmentation results with a JSI score of 0.93,
followed by Segmentum with a JSI score of 0.88. Add-
itional file 1: Table S4 contains the names of the 10
TCGA PRAD samples (Additional file 1: Tables S6-S10

sex chromosomes). Using block annotations from represent the parameter values used for running the
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Fig. 2 Segmentation accuracy of Segmentum for simulated data with different degrees of normal contamination. Estimated precision, recall, and
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Fig. 3 Comparison of the SCNA results with different tools and the
SNP array (ground truth). Venn diagram values (averaged over ten
TCGA LGG samples) represent the percentage of overlap among the
SCNA calls

competing tools. Additional file 1: Segmentum’s param-
eter value selection section provides guidance on select-
ing parameter values for Segmentum. Additional file 1:
Figure S9 represents an example plot made by Segmen-
tum’s 'plot' sub-command that can be used to guide the
parameter value selection).

Segmentum segmentation accuracy for the subsampled
real data

To assess the segmentation accuracy of Segmentum for
real data with respect to sample’s coverage, we
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Fig. 4 Pairwise JSI scores averaged over ten TCGA LGG samples.
JSI scores range between 0 and 1, where O means no similarity and
1 represents identical results between two tools
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subsampled one of the LGG samples (i.e. TCGA-CS-
5395) at different subsampling fractions (i.e. 75%, 50%,
25%, 10%, and 5%) using Samtools (version 1.3.1). We
analyzed each subsample by Segmentum and bench-
marked it against ground truth in the same manner as
explained earlier. Figure 5 represents the JSI scores for
each subsample (Additional file 1: Figure S7 shows the
average coverage of the subsamples for normal and
tumor pairs). It can be seen that Segmentum reaches
high accuracies even with low coverage data. For in-
stance, the accuracy for the 10%-fraction subsample was
93.4% (where the average coverage for tumor and nor-
mal subsamples were 3 and 4 respectively).

It should be noted that as the coverage decreases the
number of identified heterozygous SNPs decreases
(Additional file 1: Figure S8). For instance, for the 10%-
fraction subsample only 1997 heterozygous SNPs were
identified from the entire genome (in contrast to the
original sample where the number of identified heterozy-
gous SNPs was more than 3 million SNPs). Even though
Segmentum is shown to work with low coverage data,
one should note the implications of low amounts of
detected heterozygous SNPs on the reliable detection of
cnLOH events.

Time usage evaluation

All of the computations were completed on the same
UNIX server. Table 1 shows the average time required
by each tool to perform the analysis for 10 TCGA LGG
samples (30x < coverage < 100x). Based on the results, on
average, CLImAT appears to be the fastest, followed by
Segmentum, Patchwork, and Control-FREEC. It should
be noted that to assign the allele-specific copy number
to genomic segments, Patchwork requires users to deter-
mine some parameter values by interpreting plots pro-
duced by the tool, and this interpretation time is not
included here. Additionally, the time required to create
the pileup files used by Patchwork and Control-FREEC
is different due to the use of different parameter values
in SAMtools. It should be noted that time required for
making pileup files can be decreased by parallelizing the
process on machines with multiple cores or on com-
puter clusters (e.g. by assigning one core to each
chromosome). Similarly, BAF calculation for Segmentum
can be parallelized. However, since this is not a core fea-
ture of the benchmarked tools and not all tools support
parallelization, to be fair, only the required linear time is
reported here. A similar time usage evaluation, using
low coverage data (average coverage 6x), is shown in
Additional file 1: Table S2. With regard to the low cover-
age data, Segmentum comes second after CLImAT in
terms of analysis time, which is consistent with the
results from the high coverage data.
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Recurrent cnLOH detection case study

In a study of lower grade gliomas (LGGs), i.e., grade II
and III gliomas, Suzuki et al. [4] characterized the muta-
tional landscape of these glioma types by dividing them
into 3 distinct subtypes based on their distinct sets of
mutations and clinical behaviors. These subtypes are dis-
tinguished with the following criteria: (1) mutation in
IDH1/2 accompanied by co-deletion of chromosomes 1p
and 19q (subtype I), (2) mutation in IDHI1/2 without co-
deletion of chromosomes 1p and 19q (subtype II), and
(3) IDH1/2 wild type (subtype III). Of interest to our
study was the recurrence of cnLOH events in chromo-
some 17p in subtype II [4]. To show the ability of
Segmentum to detect such aberrations from large data-
sets, 38 paired-end WGS samples from the TCGA data-
set (30x < coverage < 100x)) for patients diagnosed with
LGG were downloaded and analyzed by Segmentum.
We were able to distinguish all three subtypes as charac-
terized in [4], including the recurrence of ¢nLOH in
subtype II at chromosome 17p. We also identified a

Table 1 Average tool analysis time for high coverage data
(30x < coverage < 100x)

Tool Average preparation time Average analysis
time
Segmentum - 10 h 34 min for extracting RD -1 min45s
from normal or tumor BAM file
-4 h 25 min for calculating BAF
values
Patchwork - 29 h 37 min for creating pileups - 3 h 56 min
from normal or tumor BAM file
Control-FREEC - 33 h 28 min for creating pileups -7 h 11 min
from normal or tumor BAM file
CLImAT -2 h 12 min for extracting RD -29 min

fourth subtype with a mutation in IDHI/2 without co-
deletion of chromosomes 1p and 19q and no ¢cnLOH at
17p (Fig. 6).

Discussion

By comparing the simulated (Fig. 2) and real data (Figs. 3,
4 and 5 and Additional file 1: Figures S5 and S6), we can
conclude that Segmentum can recover true copy
number aberrations with high accuracy even when the
coverage is as low as ~4 reads (Fig. 5, Additional file 1:
Figure S7). On average, Segmentum produces results
that are the most concordant with the copy number ab-
errations identified from the SNP array data (i.e. ~90%
of concordance) (Fig. 4). As shown in Table 1, our tool
is more than twice as fast as the second best performing
tool in terms of accuracy. Segmentum is also the second
fastest tool after CLImAT compared to the other tools
evaluated in this study (Table 1). However, CLImAT
ranks last in terms of accuracy (Fig. 4). One explanation
for the speed of CLImAT is that it computes the BAF
values for a subset of known SNPs (~13.7 million SNPs
that are retrieved from the dbSNP database [16]). In
contrast, Segmentum, computes the BAF values for het-
erozygous SNPs determined from the 1000 Genomes
project’s SNP list (~85 million SNPs) [17]. The other
reason for the speed of CLImAT might be that it does
not require a normal sample for analysis.

As the normal contamination in the simulated data in-
creases, the number of false negatives increases and the
recall rate decreases (Fig. 2). However, within the ranges
of realistic amounts of normal contamination (i.e. ~30%
to 40%), Segmentum performs consistently well.

Segmentum is able to report recurrent cnLOH regions
across multiple cancer genome samples; a characteristic
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deletion or amplification is detected at that region (Additional file 1: Table S5 for TCGA LGG sample barcode names)
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Fig. 6 SCNA landscape in grade Il and Il gliomas. WHO-grade, histological class, and molecular subtype classification are shown by color
as indicated. The thirty-eight samples are divided into 4 distinct subtypes based on the occurrence of a mutation in IDH1/2, co-deletion
of chromosomes 1p and 19g and the presence of 17p cnLOH. Deletions and amplifications are visualized by boxes with different shades
of blue and red, respectively. White regions are either normal or cnLOH regions. The bar charts below each box represent the mirrored
and smoothed BAF values. Large mirrored and smoothed BAF values (close to 0.5) point to heterozygous SNP allelic imbalance. In the second subtype
(from the top), at chromosome 17p, recurring cnLOH is apparent where the bar charts point to large mirrored and smoothed BAF values, though no




Afyounian et al. BMC Bioinformatics (2017) 18:215

of cancer genomes that has been neglected until recently
[4]. By applying Segmentum to TCGA data, we were
able to recover recurrent cnLOH events from low-grade
glioma samples that were reported earlier by SNP array-
based data analysis. It is worth mentioning that Segmen-
tum can work in two modes, i.e., with or without BAF
value. In the case where BAF values are not used, Seg-
mentum cannot detect regions with ¢cnLOH. Further-
more, Segmentum is capable of reliably segmenting the
cancer genome using both high (Figs. 3 and 4) and low
(Fig. 5 and Additional file 1: Figures S5 and S6) sequence
coverage data. However, with the low sequence coverage
data, the estimated BAF values for the heterozygous
SNPs will be less reliable. This is also reflected in
Additional file 1: Figure S8, where it is shown that the
number of detected heterozygous SNPs drop as the aver-
age coverage decreases. The implications of low
amounts of detected heterozygous SNPs on the reliable
detection of cnLOH events should not be overlooked.

Even though we have shown that Segmentum is
highly accurate at recovering the true copy number,
other tools in this study do more than just segment-
ing the genome. For instance, CLImAT and Patch-
work are capable of estimating tumor ploidy and
tumor purity and consequently, reporting the integral
copy numbers for each segment. Patchwork and
Control-FREEC are also capable of reporting the
genotype of each segment and CLImAT reports the
genotype for each SNP within each segment. This is
in contrast to Segmentum that only reports the mean
RD log-ratio and BAF value of each segment. How-
ever, tools such as ABSOLUTE [18] or THetA [19]
can be used to estimate tumor impurity and ploidy
from Segmentum’s segmentation result, meaning that
Segmentum can be used as part of a larger tumor
evolution analysis pipeline. Finally, a strength of our
tool is its minimum dependence on third party tools,
with the exception of SAMtools, for calculating the
RD and BAF.

Conclusions

We have developed Segmentum as a tool for the
identification of SCNAs, including ¢cnLOH in tumor
samples, using WGS data. We have shown that Seg-
mentum is accurate and fast with regards to other
state-of-the-art tools, making it suitable for analyzing
cohorts with a large number of samples, such as
TCGA cohorts.

Availability and requirements

Project name: Segmentum

Project homepage: https://github.com/eafyounian/Segm
entum
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Operating system(s): Linux

Programming language: Python

Other requirements: SciPy, Samtools, and matplotlib if
the ‘plot’ sub-command is used.

License: MIT license

Any restrictions to use by non-academics: None

Additional files

Additional file 1: This file contains supplementary information, tables
and figures supporting the manuscript. Figure S1. Detection of regions
harboring recurrent cnLOH across multiple samples. Figure S2. Read
depth spatial correlation. Figure S3. Simulator pipeline. Figure S4.
Simulated data visualized in Integrative Genomics Viewer (IGV). Figure S5.
Comparison of SCNA results from different tools and SNP array (ground
truth) for low sequence coverage data. Figure S6. Pairwise JSI
scores for low sequence coverage data (averaged of 10 TCGA PRAD
samples) Figure S7. Subsample average coverages in the subsampling
evaluation. Figure S8 Detected number of heterozygous SNPs in different
subsamples Figure S9. Copy number — B-allele fraction clusters. Table S1.
List of SCNA tools using WGS data. Table S2. Average tool analysis time
for low sequence coverage data (average coverage 6x). Table S3 TCGA
LGG sample barcode names and the estimated sample purity by ABSOLUTE.
Table S4. TCGA PRAD sample barcode names and the estimated
sample purity by ABSOLUTE. Table S5. TCGA LGG sample barcode
names categorized based on inferred subtype. Table S6. Parameter
values for running DFExtract. Table S7. Parameter values for running
CLIMmAT. Table S8. Parameter values for running Patchwork for 10
TCGA LGG samples. Table S9. Parameter values for running Patchwork for
10 TCGA PRAD samples. Table S10. Parameter values for running Control-
FREEC. (DOCX 857 kb)

Additional file 2: Software code. This compressed file contains the
software code (for the latest version of the software code please visit
the project’s online repository). (ZIP 32 kb)
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