
The Author(s) BMC Bioinformatics 2017, 18(Suppl 7):248
DOI 10.1186/s12859-017-1639-3

RESEARCH Open Access

In silico re-identification of properties of
drug target proteins
Baeksoo Kim1, Jihoon Jo2, Jonghyun Han1, Chungoo Park2* and Hyunju Lee1*

From DTMBIO 2016: The Tenth International Workshop on Data and Text Mining in Biomedical Informatics, Indianapolis,
USA. 28 October 2016

Abstract

Background: Computational approaches in the identification of drug targets are expected to reduce time and effort
in drug development. Advances in genomics and proteomics provide the opportunity to uncover properties of
druggable genomes. Although several studies have been conducted for distinguishing drug targets from non-drug
targets, they mainly focus on the sequences and functional roles of proteins. Many other properties of proteins have
not been fully investigated.

Methods: Using the DrugBank (version 3.0) database containing nearly 6,816 drug entries including 760
FDA-approved drugs and 1822 of their targets and human UniProt/Swiss-Prot databases, we defined 1578
non-redundant drug target and 17,575 non-drug target proteins. To select these non-redundant protein datasets, we
built four datasets (A, B, C, and D) by considering clustering of paralogous proteins.

Results: We first reassessed the widely used properties of drug target proteins. We confirmed and extended that
drug target proteins (1) are likely to have more hydrophobic, less polar, less PEST sequences, and more signal peptide
sequences higher and (2) are more involved in enzyme catalysis, oxidation and reduction in cellular respiration, and
operational genes. In this study, we proposed new properties (essentiality, expression pattern, PTMs, and solvent
accessibility) for effectively identifying drug target proteins. We found that (1) drug targetability and protein
essentiality are decoupled, (2) druggability of proteins has high expression level and tissue specificity, and (3)
functional post-translational modification residues are enriched in drug target proteins. In addition, to predict the
drug targetability of proteins, we exploited two machine learning methods (Support Vector Machine and Random
Forest). When we predicted drug targets by combining previously known protein properties and proposed new
properties, an F-score of 0.8307 was obtained.

Conclusions: When the newly proposed properties are integrated, the prediction performance is improved and
these properties are related to drug targets. We believe that our study will provide a new aspect in inferring
drug-target interactions.
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Background
With the rapid accumulation of drug-related data in pub-
lic databases, much attention has been paid to devel-
oping computational approaches to identify new drug
candidates and to reposition existing drugs because com-
putational tools help reduce time and costs of drug
development [1]. Along with drug-related data, significant
increases in proteomics data encourage researchers to
focus on computational approaches in drug development.
Similarities in amino acids sequences with existing drug
targets and in functional roles of target proteins, includ-
ing G-protein-coupled receptors (GPCRs), enzymes, and
ion channels, have been main resources for inferring
drug-target interactions, and many predictions have been
performed within each functional category [2]. Recently,
more resources, including side effects of drugs, drug-drug
interactions, and protein-protein interactions, have been
incorporated for predicting new drug targets [3, 4].
Such prediction efforts will be advanced if more prop-

erties of drug targets can be revealed. Over the last two
decades, there have been several efforts to curate drug
targets and to categorize them [5–8]. When Hopkins and
Groom [5] identified 399 non-redundant molecular tar-
gets, targets were contained in only 130 protein families,
half of which fall into just six gene families, including
GPCRs and serine/threonine and tyrosine protein kinases.
At that time, they predicted that the numbers of druggable
genomes and drug targets would be approximately 3,000
and around 600-1500, respectively. Imming et al. [6] listed
218 targets and classified them based on “mechanism of
actions", such as enzymes, substrates, metabolites, pro-
teins, receptors, ion channels, transport proteins, DNA,
RNA, ribosome, and targets of monoclonal antibodies.
Recently, information about drugs and their targets have
been systematically deposited in public databases. The
DrugBank database [9], launched in 2006, is a systematic
collection of drug-protein interactions containing infor-
mation on more than 760 Food and Drug Administra-
tion (FDA)-approved drugs and around 2000 drug target
proteins. Moreover, this database contains drug-target
interactions with gene annotations from Swiss-Prot [10].
With the availability of various proteomics data, more

comprehensive analysis about drug targets has become
possible. Bakheet and Doig [11] defined 148 proteins
as drug targets from the DrugBank database to analyze
the protein target properties. They identified several fea-
tures to distinguish targets from non-targets: all amino
acid compositions, the length of proteins, hydropho-
bicity, secondary structure of proteins, transmembrane
helices, and others. Bull and Doig [12] extended pro-
tein properties from Bakheet and Doig by propos-
ing additional properties: protein-protein interactions,
expression levels, and germline variants. However, these
features were not strong indicators for distinguishing

targets from non-targets. They also applied machine
learning approaches such as support vector machine
(SVM) and random forest (RF) to predict drug target
proteins [11–13].
Here, we explore more protein properties favorable to

drug targets. Figure 1 shows our study design. We first
made a protein list and then distinguished drug target pro-
teins and non-target proteins. We then re-evaluated the
protein properties used in Bakheet and Doig [11] by ana-
lyzing an increased number of drugs and targets in the
DrugBank. For some properties, we employed manually
curated datasets or multiple computational tools to esti-
mate protein properties more reliably. We then showed
that novel protein properties, including gene essential-
ity, gene expression levels, tissue specificity, and solvent
accessibility, have different characteristics between targets
and non-targets with statistical significance. Finally, we
predicted drug targets based on these properties using
SVM and RF and evaluated prediction accuracies. We
have designed this study to provide a new guide for select-
ing drug targets.

Methods
Identification of drug target proteins
We used the DrugBank (version 3.0) [14] database to
define drug target proteins. It contains nearly 6816
drug entries, including 760 FDA-approved drugs and
1822 of their targets, including 1661 proteins, 226
enzymes, 110 carriers, and 19 transporters. Using human
UniProt/Swiss-Prot databases (release 2014.02) [10], 1578
non-redundant drug target proteins were defined and
named as human drug target proteins or hDP+. The
remaining 17,575 human proteins were assigned to non-
drug target proteins (named hDP0).
To consider the possibility that the relevance of drug

target protein properties may be over or underestimated
depending on their gene family size, we built four datasets
(A, B, C, and D). The first dataset A is composed of an ini-
tial 1,578 hDP+ and 17,575 hDP0. The second dataset B,
derived from dataset A, contains only one representative
protein from each gene family and thus has 792 hDP+ and
8,361 hDP0. For dataset C and D, if members of a gene
family are derived from both hDP+ and hDP0, all genes in
this gene family were excluded from the hDP0 set. Thus,
the third dataset C, derived from dataset A, has 1578
hDP+ and 15,691 hDP0, and the fourth dataset D, derived
from dataset B, has 792 hDP+ and 7949 hDP0. In cases
where a gene family has multiple members, the longest
coding sequences (CDS) were selected to represent the
gene family.

Widely studied properties of drug target proteins
All properties (simple sequence properties, primary
enzyme commission number, gene ontology terms,
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Fig. 1 Flowchart of study design

subcellular location, signal peptide cleavage, transmem-
brane helices, PEST regions that are rich in proline (P),
glutamic acid (E), serine (S), and threonine (T), and sec-
ondary structure) tested in Bakheet and Doig [11], except
for glycosylation, phosphorylation, and subcellular loca-
tion, were reinvestigated for our four drug target datasets
using the same bioinformatics tools and databases.
For more accurately and quantitatively analyzing post-

translational protein modifications (PTMs), we used the
PhosphoSitePlus database (March 4, 2014) [15], which is
a manually curated collection of PTMs. It has collected
nearly 212,556 PTM sites, and we used the top three
PTMs for this study, including phosphorylation (160,338;
75.4%), ubiquitination (34,293; 16.1%), and acetylation
(17,925; 8.4%).
Because the Swiss-Prot database has explained only

about 18% of human proteins with respect to subcellular
location, we used two additional subcellular localization
databases: (1) manually curated LOCATE [16] database
generated from a high-throughput immunofluorescence-
based assay and peer-reviewed literature and (2) the
comprehensively annotated Cell-PLoc [17] database using

gene ontology, functional domain, and evolutionary con-
servation information. As a result, about 43% of human
proteins had their subcellular location; however, the oth-
ers still remain unrevealed. For these, we used five pre-
diction programs (CELLO, pTarget, Proteome Analyst,
WoLFPSORT, and MultiLoc) [18], and their subcellu-
lar locations were determined if they were supported
by at least three prediction tools. In this study, we
exploited ten subcellular location terms used in the
LOCATE database as follows: cytoplasm, cytoskele-
ton, endoplasmic reticulum, extracellular, Golgi appara-
tus, lysosome, mitochondrion, nucleus, peroxisome, and
plasma membrane.

Newly proposed properties of drug target proteins
We downloaded the gene annotations for gene families
through BioMart in the ENSEMBL database (release 75)
[19], and the gene family was defined if it had at least two
members.
Human essential and non-essential genes were obtained

from Georgi et al. [20], who exploited genes with
lethal and non-lethal phenotypes in the Mouse Genome
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Database. The dataset included 2472 essential genes and
3811 non-essential genes.
Gene expression data for 79 human tissues in U133A

and GNF1H Affymetrix arrays were obtained from
Su et al. [21]. We excluded all genes that were hit with
other genes by a single probe. If multiple probe sets hit one
gene, the probe set with the highest expression value was
selected. The expression level (S) was defined by the aver-
age expression value in 79 tissues. The tissue specificity
was calculated by

τ =
∑n

j=1

(
1 − log2S(j)

log2Smax

)

n − 1
,

where n (= 79) is the number of tissues and S(j) and
Smax are gene expression level in tissue j and highest gene
expression level within all tissues, respectively. Note that
S(j) was set to 100 if it was less than 100 to minimize the
influence of noise in the microarray data from the low
expression level [22]. Higher τ value with ranges from 0 to
1 means a higher tissue specificity (i.e., greater variations
in expression level across tissues).
SABLE [23] was used to predict the solvent accessi-

bility of each amino acid in the protein sequences. The
SABLE score ranged 0 to 99; values close to 0 indicate fully
buried (i.e., solvent inaccessible) and close to 99 indicate
fully exposed (i.e., solvent accessible). We used an aver-
age SABLE value for a protein as the solvent accessibility
score.

Statistical tests
To determine whether there was significantly different
drug properties between hDP+ and hDP0, we performed
two statistical tests: (1) a chi-square test and (2) a
Wilcoxon rank-sum test for properties measured as dis-
crete and continuous values, respectively.

Predicting drug targets
We predicted drug targets by classifying proteins into two
groups: hDP0 proteins and hDP+ proteins. For prediction,
the properties of proteins were used as features for two
machine learning approaches, SVM and RF, and R package
(randomForest) and Liblinear were used for implementa-
tion [24]. Feature values were scaled into normalized val-
ues between 0 to 1 by calculating X = (X−mini)/(maxi−
mini), where X is the feature value and mini and maxi
are, respectively, the minimum and maximum values of
the ith attribute. When we construct SVM and RF classi-
fiers, we made the number of proteins in the two groups
the same by reducing the number of proteins in hDP0 with
random selection. To construct the SVM classifier, the L2-
regularized L2-loss support vector classification was used.
The optimal error parameter (C) and radial bias parame-
ter (ε) were set to 1.3 and 0.01, respectively. For SVM, we

chose the parameter C with the “-C” option provided by
Liblinear, which repeatedly selects the optimal value with
training data [24]. Although the parameter C was recal-
culated during each cross-validation for all four data sets
(A, B, C, and D), the same value was obtained. For the
parameter ε, the default value was used. For RF, the size
of the random subset of features evaluated at each node
was calculated bymtry = log2(numberoffeatures+1), and
the number of trees was set to 100. In general, with the
more trees, the accuracy increases. However, the amount
of improvements decreases when the number of trees
becomes too large. Thus, the benefit of the prediction per-
formance is less than the cost of the computation time to
learn these additional trees [25].
We performed cross-validation to measure an accuracy

of SVM and RF classifier based on widely used (W ) and
newly proposed (N) properties. In addition, we performed
classification using statistically significant widely used
(W ′) and newly proposed (N ′) features. Using only train-
ing data sets, we selected statistically significant features
with p-value less than 0.05 at each cross-validation step.
Recall, precision, and F-score were used asmeasurements:
recall = TP/(TP + FN), precision = TP/(TP + FP),
and F1 = 2 × recall × precision/(recall + precision),
where TP, FN, TN, and FP represent true positive (cor-
rectly predicted as hDP+), false negative (incorrectly pre-
dicted as hDP0), true negative (correctly predicted as
hDP0), and false positive (incorrectly predicted as hDP+),
respectively.

Results and discussion
In this experiment, we essentially used the DrugBank
database (version 3.0) and defined four different hDP+
and hDP0 datasets as described in the Materials and
Methods and in Table 1. In comparison with Bakheet and
Doig [11], who utilized 148 hDP+ and 13,340 hDP0 from
the DrugBank database (version 1.0), our drug target pro-
tein datasets were significantly larger. Indeed, dataset D,
which is the strictest for defining drug target proteins (see
Materials and Methods for detail), has exhibited approxi-
mately five times higher hDP+ (792 vs. 148) than Bakheet
and Doig (2009) [11]. This indicates that our larger hDP+
can have a higher statistical power, resulting in a higher
sensitivity to slightly enriched and more specific prop-
erties of drug target proteins. Although all subsequent
analyses were carried out for all four datasets (Additional
file 1: Table S1), hereinafter we mainly present the results

Table 1 Number of proteins for each dataset

Set A Set B Set C Set D

Number of hDP+ 1578 792 1578 792

Number of hDP0 17,575 8361 15,691 7949
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for dataset D. If there are inconsistent results among the
four datasets, they are described in detail together with a
discussion.

Widely used properties of drug target proteins
We observed that hDP+ tend to have more amino acids
with hydrophobic side chains and less amino acids with
electrically charged side chains than hDP0, which is con-
sistent with the study of Bakheet and Doig [11]. Non-
polar, aromatic, or aliphatic amino acids prefer to be
composed of hDP+, whereas polar or charged (acidic,
basic, and charged) amino acids are likely to be in hDP0
(Fig. 2a, Additional file 2: Figure S1). These observations
were reconfirmed by using hydrophobicity, solubility, and
the isoelectric point(pI). Namely, the average hydropho-
bicity score measured by hmoment [26] was significantly
higher in hDP+ than in hDP0 (119.359 vs. 96.108, P =
3.02 × 10−12), and from solubility of amino acid through
improbability of expression in inclusion bodies, its median
value of hDP+ (0.703) was significantly lower than that of
hDP0 (0.703 vs. 0.733, P = 9.08 × 10−11), confirming that
hDP+ are more hydrophobic and less polar than hDP0.
Further, the hDP0’s pI was higher than that of hDP+(7.457
vs. 7.128, P = 9.63 × 10−4), supporting a preference for
amino acids with charged side chains in hDP0 (Table S1).
It has been known that rapidly degraded proteins com-
monly contain PEST sequences [27]. We observed that
hDP+ have significantly less PEST sequences than hDP0
(0.205 vs. 0.331, P = 4.36 × 10−13), suggesting a longer

lifetime of hDP+. Between the two groups, there is no sig-
nificant difference in the proportion of small (tiny) amino
acids (Fig. 2a). hDP+ are longer than hDP0 in average
number of residues (418 vs. 342, P = 1.14 × 10−12).
Because drug metabolism is closely related to enzymes

[28], we checked and analyzed whether the hDP+ when
compared to hDP0 contain relatively more enzyme pro-
teins and which enzyme classes are dominant in hDP+. As
expected, more than half (453 out of 792, 57.1%) of hDP+
are involved in enzyme activity, whereas 15.2% (1211 out
of 7949) of hDP0 are. All six enzyme classes have a signif-
icantly higher proportion of hDP+ than in hDP0 (Fig. 2b,
Additional file 3: Figure S2), which is inconsistent with
Bakheet and Doig’s results. This inconsistency might have
been caused by using distributions among only enzymes
rather than using proportions of enzymes among all target
proteins or non-target proteins.
We next investigated whether hDP+ specifically include

signal peptide sequences, which play an important role in
the pharmacokinetics [29]. The frequency of signal pep-
tide sequences in hDP+ (347 out of 792) was significantly
higher (0.452 vs. 0.226, P = 1.49 × 10−04) than that in
hDP0 (1796 out of 7949), suggesting that hDP+ are more
likely to be secreted. Thus, we further explored which sub-
cellular locations are preferentially associated with hDP+.
From the top five subcellular locations with a propor-
tion > 10% in hDP+, the plasma membrane, extracellular
region, and mitochondrion were significantly favored as
hDP+ locations. In contrast, hDP0 were frequently located

A B C

Fig. 2 Analysis of widely used properties. The asterisk(*) represents the p-value of the statistical test. One asterisk means that the p-value is less than
0.05. Two asterisk means that the p-value is less than 0.001. Three asterisk means that the p-value is less than 0.0001. (a) Amino acid groups. (b)
Primary enzyme class. (c) Subcellular location
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in the nucleus and cytoplasm (Fig. 2c, Additional file 4:
Figure S3).
From the analysis of gene ontology (GO) annotation1

[30] using the DAVID tool2 [31], we classified signifi-
cantly enriched gene functional categories for hDP+ and
hDP0. For the biological processes ontology, the signifi-
cantly enriched gene categories for hDP+ were oxidation
reduction, mitochondrial electron transport, NADH to
ubiquinone, cellular respiration, and energy derivation
by oxidation of organic compounds, whereas RNA pro-
cessing, translation, and DNA metabolic process were
involved in hDP0 (Fig. 3a), indicating that drug target pro-
teins are frequently involved in oxidation and reduction
in cellular respiration. For the cellular component ontol-
ogy, mitochondrion and membrane-related terms were
enriched in hDP+; however, hDP0 had organelle favored
categories including ribosome, nuclear, and intracellular
(Fig. 3b), suggesting, consistent with the result of Bakheet
and Doig [11], that drug target proteins favor mito-
chondrial membrane but not organelles. For the molec-
ular function ontology, the gene categories favored for
hDP+ and hDP0 included a set of NADH dehydrogenase
activity, oxidoreductase activity, cofactor binding, vitamin
binding, and carboxylic acid binding and a set of RNA
binding, nuclease activity, hormone activity, translation

factor activity, and RNA polymerase activity, respectively
(Fig. 3c), arguing that operational and informational genes
[32] are preferentially involved in drug target and non-
target proteins, respectively. The same analyses were per-
formed by using the remaining three datasets (Additional
file 5: Figure S4 for dataset A, Additional file 6: Figure S5
for dataset B, Additional file 7: Figure S6 for dataset C).

Newly proposed properties of drug target proteins
PTMs play a central role in a wide range of cellular pro-
cesses, including cellular activity, localization, differenti-
ation, protein degradation, regulation and signaling, and
interaction with other cellular molecules [33–36]. Folded
proteins to attain their native state for proper biological
function have distinct surface characteristics determin-
ing other molecules they interact with. Thus, to inves-
tigate whether proteins modified by major PTM types
tend to be a target of drugs, we compared the propor-
tions of proteins with PTMs between hDP+ and hDP0.
Considering major PTM types, such as phosphorylation,
ubiquitination, and acetylation [37, 38], hDP+ contained
relatively higher number of PTM residues than hDP0. This
type of pattern was likewise observed in all three PTM
types (Fig. 4a), which is inconsistent with Bakheet and
Doig’s results. This inconsistency might have been caused

Fig. 3 Analysis of gene ontology annotation. The line graph is the number of genes belonging to the corresponding GO term and the bar graph is
taken from -log base 2 of the p-value calculated via DAVID. (a) Biological processes. (b) Cellular component. (c) Molecular function
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A B

Fig. 4 Analysis of PTMs. In phosphorylation, “S” indicate phosphorylation site in serin, “T” indicate threonine, and “Y” indicate tyrosine. The asterisk(*)
represents the p-value of the statistical test. One asterisk means that the p-value is less than 0.05. Two asterisk means that the p-value is less than
0.001. Three asterisk means that the p-value is less than 0.0001. (a) Average proportion. (b) Average proportion in solvent accessible protein

by using computationally predicted PTM residues ver-
sus a manually curated collection of PTMs as used in
this study. Because functional PTM residues are known
to be enriched on the surface (i.e., solvent accessible) of
folded proteins [23, 39, 40], we tested whether hDP+ are
more likely to hold potential functional PTM residues
than hDP0. We observed similar results (Fig. 4b), confirm-
ing that proteins modified by major PTM types are more
likely to be a target of drugs.
In general, drug target proteins have more interac-

tion partner in protein-protein interaction network, and
essential genes are enriched in protein complexes and
tend to be highly expressed [20, 41, 42]. In this study,
we addressed two issues. First, whether drug target pro-
teins tend to be essential. Using predicted human essential
proteins [20] (see methods in detail) it was shown that
hDP+ have more essential genes, but same pattern was
also observed in non-essential genes (Fig. 5a), indicat-
ing that as Yildirim et al. showed earlier [42], drug target
proteins are not necessarily shown as higher essentials.
Second, whether the gene expression level and tissue
specificity influence the druggability of proteins. Using
large-scale transcriptional profiling in 79 humans [21], it
was revealed that hDP+ have significantly higher expres-
sion level (Fig. 5b) and greater tissue specificity (Fig. 5c)
than hDP0.

Predicting drug targets
We predicted drug targets using four datasets, A, B, C,
and D, and the performance of the classification is shown
in Table 2. Dataset C showed the best performance across
all different combinations of features used. This may

be because dataset C, which is derived from dataset A,
excluded hDP0 proteins that have the same gene family
proteins in hDP+. In addition, statistically significant fea-
tures (W ′+N ′) outperformed other features. Of all 75 fea-
tures, 50 to 59 statistically significant features were chosen
depending on training sets in the five-fold cross-validation
(Additional file 8: Table S2), showing the importance of
more relevant features for predicting drug targets. If a fea-
ture was not statistically significant in all cross-validation
steps, it was indicated as “partially.” We also addition-
ally performed 10-fold and 10x10-fold cross-validations,
and the F-scores and standard derivations of 10-fold and
10x10-fold cross-validations are shown in Additional file
9: Figure S7. Although there were differences depending
on the data sets, it is consistently shown that the best per-
formances were obtained from the W ′ + N ′ feature of
dataset C. Importantly, when newly proposed properties,
like gene essentiality, gene expression levels, tissue speci-
ficity, and solvent accessibility, were incorporated, predic-
tion performance increased, confirming the relevance of
these features to the drug targets.
Bull and Doig [12] and Huang et al. [13] also predicted

drug targets. Bull and Doig [12] employed the RF method
with extended protein properties from Bakheet and Doig
[11], and Huang et al. [13] used the SVM method with
the same protein properties as those in Bakheet and Doig
[11]. The accuracy of Bull and Doig [12] and Huang et al.
[13] were an F-score of 0.8237 and a G-mean of 0.7813,
respectively. Because datasets used in Bull and Doig [12],
Huang et al. [13], and this study were somewhat different
due to different versions of DrugBank, it is hard to directly
compare their results with ours. However, the accuracy
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A

B

C

Fig. 5 Analysis of newly proposed properties. The asterisk(*)
represents the p-value of the statistical test. One asterisk means that
the p-value is less than 0.05. Two asterisk means that the p-value is less
than 0.001. Three asterisk means that the p-value is less than 0.0001.
(a) Essential proteins. (b) Expression levels. (c) Tissue specificity

Table 2 Result for drug target protein prediction using machine
learning methods

SVM Recall Precision F1

Set A,W 0.7326 0.6594 0.6941

Set A,W ′ 0.7516 0.7422 0.7469

Set A,W+N 0.7947 0.6681 0.7259

Set A,W ′+N′ 0.8137 0.6982 0.7515

Set B,W 0.7866 0.6416 0.7067

Set B,W ′ 0.7374 0.6496 0.6907

Set B,W+N 0.7424 0.6585 0.6979

Set B,W ′+N′ 0.8018 0.6580 0.7228

Set C,W 0.7516 0.7808 0.7659

Set C,W ′ 0.7972 0.8003 0.7987

Set C,W+N 0.8137 0.7965 0.8050

Set C,W ′+N′ 0.8409 0.8207 0.8307

Set D,W 0.7820 0.7367 0.7587

Set D,W ′ 0.8083 0.7588 0.7828

Set D,W+N 0.8120 0.7500 0.7798

Set D,W ′+N′ 0.8271 0.7710 0.7981

RF

Set A,W 0.7541 0.7682 0.7605

Set A,W ′ 0.6483 0.8130 0.7260

Set A,W+N 0.7936 0.6763 0.7299

Set A,W ′+N′ 0.8229 0.6986 0.7556

Set B,W 0.7821 0.6547 0.7124

Set B,W ′ 0.7490 0.6493 0.6953

Set B,W+N 0.7551 0.7805 0.7677

Set B,W ′+N′ 0.8076 0.6767 0.7363

Set C,W 0.7847 0.7358 0.7589

Set C,W ′ 0.8165 0.7960 0.8057

Set C,W+N 0.8292 0.8118 0.8200

Set C,W ′+N′ 0.8509 0.8218 0.8354

Set D,W 0.7885 0.7409 0.7636

Set D,W ′ 0.8343 0.7564 0.7934

Set D,W+N 0.8305 0.7550 0.7908

Set D,W ′+N′ 0.8382 0.7818 0.8088

Feature setsW and N represent widely used and newly proposed properties,
respectively.W ′ and N′ represent statistically significant widely used and newly
proposed properties, respectively
The underline bold numbers indicate the highest values in each evaluation

values of the F-score of our approach incorporating newly
proposed properties were higher than those from the pre-
vious two approaches. In addition, because the approach
in Huang et al. [13] was similar to that of our study using
dataset A with features of W ′, we can infer that dataset
C with features of W ′ + N ′ outperforms the approach in
Huang et al. [13].
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Conclusions
In this study, we proposed new properties (essential-
ity, expression pattern, PTMs, and solvent accessibility)
for effectively identifying drug target proteins. To this
end, we performed a highly controlled experimental study
(in silico) in order to minimize statistical biases due to
involvement of redundant duplicated genes. Although it
has been known that essential proteins are indispens-
able to the viability of an organism and the loss of just
one of them is sufficient to lead to lethality or infertility
[41, 42], intriguingly we observed drug targetability and
protein essentiality are decoupled. We also revealed that
druggability of proteins has high expression level and tis-
sue specificity. To investigate whether drug target proteins
appear to be PTMs, as different from previous studies
[11, 12], we used a manually curated large collection of
PTMs with protein structure information. Using three
major types of PTM (phosphorylation, acetylation, and
ubiquitination), functional PTM residues are enriched in
drug target proteins. We also reassessed the widely used
properties of drug target proteins. Using more compre-
hensive and refined set of protein properties with more
powerful methodologies, we confirmed and extended that
drug target proteins (1) are likely to have more hydropho-
bic, less polar, less PEST sequences, no preference in the
proportion of small amino acids, more increase in length
of residues, and more signal peptide sequences higher and
(2) are more involved in enzyme catalysis, oxidation and
reduction in cellular respiration, and operational genes.
To build a classifier distinguishing between drug and non-
drug target proteins, we utilized both newly proposed
properties and widely used properties and we achieved
much higher accuracy rate compared to that using exist-
ing the widely used properties. As a result, we expect that
our new properties as well as extended existing ones will
help to infer drug-target interactions more reliably.

Endnotes
1 http://geneontology.org
2 http://david.abcc.ncifcrf.gov
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20. Georgi B, Voight BF, Bućan M. From mouse to human: evolutionary
genomics analysis of human orthologs of essential genes. PLoS Genet.
2013;9(5):1003484.

21. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden
R, Hayakawa M, Kreiman G, et al. A gene atlas of the mouse and human
protein-encoding transcriptomes. Proc Natl Acad Sci USA. 2004;101(16):
6062–7.

22. Liao BY, Scott NM, Zhang J. Impacts of gene essentiality, expression
pattern, and gene compactness on the evolutionary rate of mammalian
proteins. Mol Biol Evol. 2006;23(11):2072–80.

23. Chen SC-C, Chen FC, Li WH. Phosphorylated and nonphosphorylated
serine and threonine residues evolve at different rates in mammals. Mol
Biol Evol. 2010;27(11):2548–54.

24. Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ. Liblinear: A library for
large linear classification. J Mach Learn Res. 2008;9(Aug):1871–4.

25. Oshiro TM, Perez PS, Baranauskas JA. How many trees in a random
forest? In: Perner P, editor. Machine Learning and Data Mining in Pattern
Recognition. MLDM, Lecture Notes in Computer Science, vol 7376. Berlin:
Springer; 2012. p. 154–68.

26. Rice P, Longden I, Bleasby A. Emboss: The european molecular biology
open software suite. Trends Genet. 2000;16(6):276–7.

27. Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to
rapidly degraded proteins: the pest hypothesis. Science. 1986;234(4774):
364–8.

28. Copeland RA, Harpel MR, Tummino PJ. Targeting enzyme inhibitors in
drug discovery. Expert Opin Ther Targets. 2007;11(7):967–78.

29. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X,
Dahlin A, Evers R, Fischer V, Hillgren KM, et al. Membrane transporters in
drug development. Nat Rev Drug Discov. 2010;9(3):215–36.

30. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis
AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the
unification of biology. Nat Genet. 2000;25(1):25–9.

31. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative
analysis of large gene lists using david bioinformatics resources. Nat
Protoc. 2008;4(1):44–57.

32. Rivera MC, Jain R, Moore JE, Lake JA. Genomic evidence for two
functionally distinct gene classes. Proc Natl Acad Sci. 1998;95(11):6239–44.

33. Grotenbreg G, Ploegh H. Chemical biology: dressed-up proteins. Nature.
2007;446(7139):993–5.

34. Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on.
Nat Rev Mol Cell Biol. 2007;8(12):947–56.

35. Wang YC, Peterson SE, Loring JF. Protein post-translational modifications
and regulation of pluripotency in human stem cells. Cell Res. 2014;24(2):
143–60.

36. Walsh CT. Protein phosphorylation by protein kinases. Posttranslational
modification of proteins: Expanding nature’s inventory. Englewood:
Roberts and Company Publishers; 2006.

37. Lu CT, Huang KY, Su MG, Lee TY, Bretaña NA, Chang WC, Chen YJ,
Chen YJ, Huang HD. Dbptm 3.0: an informative resource for investigating
substrate site specificity and functional association of protein
post-translational modifications. Nucleic Acids Res. 2013;41(D1):
D295–305.

38. Li J, Jia J, Li H, Yu J, Sun H, He Y, Lv D, Yang X, Glocker MO, Ma L, et al.
Sysptm 2.0: an updated systematic resource for post-translational
modification. Database. 2014;2014:025.

39. Zielinska DF, Gnad F, Wiśniewski JR, Mann M. Precision mapping of an in
vivo n-glycoproteome reveals rigid topological and sequence constraints.
Cell. 2010;141(5):897–907.

40. Landry CR, Levy ED, Michnick SW. Weak functional constraints on
phosphoproteomes. Trends Genet. 2009;25(5):193–7.

41. He X, Zhang J. Why do hubs tend to be essential in protein networks.
PLoS Genet. 2006;2(6):88.

42. Yıldırım MA, Goh KI, Cusick ME, Barabási AL, Vidal M. Drug—target
network. Nat Biotechnol. 2007;25(10):1119–26.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.1371/journal.pone.0117955

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Identification of drug target proteins
	Widely studied properties of drug target proteins
	Newly proposed properties of drug target proteins
	Statistical tests
	Predicting drug targets

	Results and discussion
	Widely used properties of drug target proteins
	Newly proposed properties of drug target proteins
	Predicting drug targets

	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7
	Additional file 8
	Additional file 9

	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	About this supplement
	Publisher's Note
	References

