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Abstract

Background: Pandemic is a typical spreading phenomenon that can be observed in the human society and is
dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes
spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models
are trying to reflect the social network, but the real structure is difficult to uncover.

Methods: We have developed a spreading phenomenon simulator that can input the epidemic parameters and network
parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a
new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models.

Results: We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between
the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the
various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed
model, the configuration model, and the degree-based model respectively in the mathematical function form for
the insights on the relationship between experimental simulation and theoretical consideration.

Conclusions: We discover the coupling effect between SIR spreading and SF network through devising novel
marker VRTP which reflects the shifting effect and relates to entropy.

Keywords: Epidemics, Social network structure, Scale-free, Susceptible-infected-recovered, Value of recovered on
turning point, Spreading phenomena, Contagiousness, Recovery rate

Background
Epidemics, information, memes, cultural fads are represen-
tative spreading phenomena observed in human society.
The pattern of spreading differs with the structure of the
social network. SIR is one of models describing spreading
phenomena suggested by A. G. McKendrick et al. [1] in
1924. The model expresses spreading in the form of differ-
ential equation among population compartments; suscepti-
bles, infected, and removed. However, this model cannot
reflect individual interactions. The network theory
emerged since random graph model of Erdős–Rényi model

(ER) [2] in the 1960s. Milgram showed the small world
structure separated into 6 step distance through the experi-
ment of mail forward which is reflecting interpersonal con-
nection [3]. The interaction of each person can be
represented by nodes and edges via network theory. There
are three major network models of different features; scale-
free network (SF) by Barabasi [4], small-world network
(SW) by Strogatz [5] and ER random network. There are
many types of research of spreading phenomena reflecting
individual interactions through random network models.
Keeling et al. [6] review of this research with the basis of
epidemiological theory and network theory and suggest
how the two fields of network theory and epidemiological
modeling can deliver an improved understanding of
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disease dynamics and better public health through effective
disease control. Shirley et al. [7] also compared epidemio-
logical properties of some networks with different levels of
heterogeneity in connectedness and mentioned that scale-
free was fastest and reached largest in size, then random
graph and the small world. Spreading phenomena are
highly dependent on the network structure and under-
standing the structure is important to figure out and pre-
dict spreading phenomena. However, understanding the
network structure is difficult because of its large scale,
privacy, and difficulty in control. We devised a novel
marker and observed changes in patterns of SIR epidemic
spreading consequently on SF network model by simula-
tion with various epidemic parameters and network pa-
rameters. It enables us to find an interesting aspect of
coupling between the structure of the social network and
the spreading phenomena.

Network model
The scale-free model was suggested by A. Barabasi in 1999
[4]. This model shows fast, large-scale spreading because net-
works following this model are made up of many nodes of
small degree and few nodes of large degree, “Hubs” (Fig. 1).
Many types of research on spreading phenomena used

scale-free networks such as finding reproduction num-
ber [8], meme spreading [9] and analyzing computer
virus data [10].
The small-world model was presented by Strogatz et

al. in 1998 [5]. This network model has the possibility of
the bridging link between distant nodes in spreading.
Researches like percolation [11] [12] and transition to
oscillation in epidemics [13] are based on the small-
world network model. In this study, we used scale-free
networks to reflect the fast and large-scale spreading.

Close nodes are connected each other while some
bridging links which connect between far nodes appear
(red stroke) (Fig. 2).

Epidemic model
Many models are describing epidemic spreading. Those
models are different in how they define population com-
partments. In this study, we used simple SIR model
which considers two spreading factors; infection and
recovery. SIR model uses three compartments;
susceptible, infected, and recovered. In 1927, Kermeck
and McKendrick presents three differential equation
describing the relationship among three compartments.

ds
dt

¼ − βsi;
di
dt

¼ βsi−γi;
dr
dt

¼ γi ð1Þ

where s, i and r represents susceptible, infected, and re-
covered respectively [14]. Solving these nonlinear
differential equations by the numerical approach, we can
get the solution with the form of the time-series func-
tion of each compartment.
Figure 3 shows the time-series change of the popula-

tion of three compartments. The blue, red and green
curve represent the change of Susceptible, Infective, and
Recovered population respectively. The number of popu-
lation of susceptible decreases steadily while population
of infected increases in the early part and decreases after
the turning point (TP) and population of recovered in-
creases continuously. The Eq. (1) was modeled and de-
rived on the assumption of the fully-mixed model, and it
cannot reflect the epidemic spreading by the individual
contacts.
In this study, as we applied the SF network model to

our computational epidemic simulator, we devised a
novel marker and observed the changes in each
epidemic spreading in the networks. Figure 4 shows a
snapshot of network spreading situation with the

Fig. 1 Scale-Free network with hubs. An example of a scale-free
network. Highlighted two nodes are hub nodes, whose degree is
larger than non-hub nodes

Fig. 2 Small world network with bridging links. An example of small
world network. Nodes in small world network are mainly connected
with physically adjacent nodes. Based on probability, small world
network has bridging edges which connect distant nodes. Two
bridging edges are highlighted
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representation of each individual in compartments by
using the graph theory with vertex and edge.
The blue “S”, red “I” and green “R” represent suscep-

tible, infected, recovered individuals respectively, and the
gray dashed line represents the contact relationship
between individuals. Newman [9] calculated the SIR
model solution in many different network models in his
study. Trying to represent the real aspect of the social
network, we used the scale-free network. We observed
some features of the novel marker through the simula-
tion of the epidemic spreading on SF network for differ-
ent spreading parameters and network parameters.

Methods
Devising novel marker VRTP
Here, we devise a marker VRTP which is the value of
recovered population on the turning point. The turning

point means the time point at the peak of the infected
population. The turning point exists in the curves of the
infected population in the SIR model. The number of
the infected increases till the time is at turning point
and after this point, the number of infected nodes
decreases. We chose to observe the number of the re-
covered population as VRTP, the value of recovered
population in turning point (Fig. 5). In general, many
epidemics researches focused on the number of the
infected population instead of the number of the suscep-
tible and the recovered. As we see the relationship in the
SIR model, the number of infected changes depending
on the recovery parameter, which means that both
curves are not independent. However, to understand and
predict spreading in the social network in the other
aspect, it is necessary to observe the number of S and R
also. Through mathematical consideration and simula-
tion for acquiring the maps of VRTP by the parameters,
we found a coupling relationship between spreading
parameter and network parameter.

Epidemic simulation overview
We built an epidemic simulator for observing the
spreading phenomena on the network. For the develop-
ment of simulator and the simulation, we devise a simu-
lation algorithm. The Inputs of the simulation algorithm
include the network (adjacency matrix), β (contagious-
ness), γ (recovery factor), T (epidemic duration), and q
(initial infect ratio). Epidemic duration T is the number
of time steps of the simulation, and initial infection ratio
q is the ratio of infective vertices to the whole popula-
tion. First, it generates an SF network for simulation
with given number of population and network param-
eter. It creates an array z, containing the status of the

Fig. 4 Example of an epidemic situation by applying SIR model to
scale-free network. Snapshot of an epidemic spreading simulation
on a network. Individual nodes are considered as people. Status of
each people is expressed by character. S: susceptible, I: infective,
R: recovered

Fig. 5 The value of marker, Value of Recovered at Turning Point
(VRTP). The value of recovered at a turning point on SIR population
graph. The number of recovered nodes when the number of
infective node hits a peak

Fig. 3 Change of epidemic populations in SIR. Time-series changes
of the number of susceptible, infective, recovered nodes on SIR
model. The blue, red, green curve shows the number of susceptible
nodes, infective node, and recovered node respectively
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nth vertex in time t. For each vertex, the value of z at
time t can be one of 0, 1, and 2 respectively represents
that vertex is susceptible, infective, or recovered. We set
every z to 0 at t = 0 because all vertices are susceptible
before the epidemic spreading. It places the infective
vertices randomly according to the initial infect ratio q.
After the initial adoption, epidemic spreading simulation
repeatedly works during epidemic spreading. Then the
vertex falls into two kinds of random process stages, the
recovery and immunization stage or the infection stage
through contacts. In every cycle of epidemic spreading,
firstly we search and find the infected vertices and then
find infected nodes and their neighboring nodes. We
adopted the Monte-Carlo probability experiment using β
to determine whether the adjacent node becomes in-
fected or not. In the recovery and immunization stage,
through the Monte-Carlo probability experiment using γ
again, we decide to make those infected vertices to be
recovered or not. With this kind of process, the infected
vertex in time t (z[n, t] = 1) become recovered vertex in
time t + 1 (z[n, t + 1] = 2) if 1/γ is bigger than a random
real number between 0 and 1. After this stage, in the
stage of infection, we find susceptible vertices adjacent
to infective vertices in time t (z[n, t] = 0, with the adja-
cent infective node). Among those susceptible vertices, a
vertex becomes an infective vertex in time t + 1 (z[n, t +
1] = 1), which represents epidemic transmission, if β is
bigger than a random real number between 0 and 1. For
each time step, we recorded the number of susceptible,
infective, recovered vertices during epidemic spreading
process (Fig. 6).

Construction of VRTP distribution
From the result of the epidemic simulation, we can get the
time series data of populations of each compartment. To
make the time-series function smooth, we interpolate the
discrete time-series data with the cubic spline function.
Because the randomness exists in every trial of the epi-
demic simulation, we gather the result of every simulation
trial by each parameter and calculate VRTP value in each
trial and construct the distribution of the VRTPs to select
the representative value. With Kolmogorov-Smirnov (K-S)
statistical test [15], we figure out the distribution be the
parametric Gaussian or not. Each mean value of VRTPs
distribution from each simulation result by network and
epidemic parameters was calculated for further analysis.

Results
Derivation of VRTP formula
For mathematical consideration of VRTP, we derive the
VRTP formula with three theoretical assumption model.
Those are the fully-mixed model (mean field model), the
pairwise approximation model and the degree-based
model.

For fully-mixed model based on ‘mass action
principle’[16], we solved the nonlinear differential Eq. (1)
algebraically remaining r at TP. The exact form of r at
TP is like following,

rTP ¼ ln s0R0ð Þ
R0

ð2Þ

where rTP is VRTP and R0 is reproduction number, s0 is
the initial value of the susceptible population.
Likewise, we solve the differential equations in the

pairwise approximations model or moment closure
method [17] (configuration model),

< ri t ¼ TPð Þ >¼ ln < si 0ð Þ > R0kið Þ
R0ki

ð3Þ

where ki is the degree of the ith node.
And in the degree-based model [18],

Fig. 6 Overview of the epidemic simulation algorithm. The overall
process of epidemic simulation algorithm. For network generated
with certain parameters, we performed epidemic spreading
simulation. After initial infection of random nodes, recovery stage
and infection stage are repeated T (epidemic duration) times.
Varying network parameter, we generated new networks and
performed the epidemic simulation
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X∞

k¼0

qkrk tð Þ ¼ ln R0ksk 0ð Þð Þ
R0k

ð4Þ

where qk is the probability that a vertex with degree k is
present.
As we can see, the whole form of the functions is like

ln(x)/x for s0 ~ 1 and x is the reproduction number. The
following figure (Fig. 7) shows the change of VRTP
values by reproduction number.
From the result of theoretical consideration, finally, we

can guess the range of the VRTP values in the SIR spread-
ing model. In observation of the function form of VRTP,
we can see that VRTP is low than 1/e ~ 37% at R0 = e.
So, the range of VRTP is [0, 1/e] and epidemic charac-

teristics is divided into two regions, lower (R0 < e) and
upper (R0 > e) region. The VRTP increases by R0 till the
R0 = e and after that point, R0 decreases by R0. From the
value of recovered population has the upper bound of
30% of the whole population when the infected popula-
tion is maximum, we concluded that before the recov-
ered being under 37%, and infected population would be
decreased.

VRTP surface and curves
As far as we know, the reproduction number R0 consists
of two parameters, contagiousness β and recovery rate γ
and specifically R0 = β/γ. We did the epidemic simula-
tion by the parameters of two epidemic parameters, con-
tagiousness β and recovery rate γ and of one network
structure parameter k. From the simulation result, we
constructed the distribution of VRTP and calculated the
representative mean value of VRTP. Then we con-
structed the surface of VRTP and observed the change
of VRTP varying those epidemic parameters.

With both β and γ, VRTP increased rapidly from 0 to
maximum value and decreased. The surface of VRTP
shows some fluctuations while k increases, and the loca-
tion of the peak of VRTP moves toward β = 0, γ = 0.
Also, VRTP always has its maximum value below 30% of
the whole population (Fig. 8).
If we magnify the surface of k = 2 and k = 10, we can

observe the area of the low beta area, we can see the
smooth change between two curves of low β with
sustaining same function form (Figs. 9 and 10).
With network parameter k, VRTP surface changes

drastically in the region of low γd. If we magnify the sur-
face and observe the curve of low γd by k, we do not
miss that the change between VRTP curves of low γd
with changing the function form (Figs. 11 and 12).
We can observe same findings again in the VRTP

surfaces with varying k (Fig. 13), which we find out in
the previous curves.

Discussion
Derivation of VRTP formula Speed of spreading under
fixed γ
k and β affect epidemic spreading speed under fixed γ. β
is the probability of infection between the infective ver-
tex and its neighboring susceptible vertex, so higher β
results in the increase of speed. Likewise, parameter k
used to decide the overall structure of network influ-
ences to the speed, vertices in networks with higher k
shows higher network density than vertices in networks
with lower k, which means more chances to spread
epidemic to neighbors. γd is the inverse of γ and repre-
sents the recovery time after infection. Epidemics with
high γd results in large number of infective vertices
because they can stay in infective vertex for long time
steps and infect neighboring susceptible vertices. These

Fig. 7 Theoretical VRTP values by reproduction number. The theoretical result which is calculated using the differential equation of SIR model
without networks. The result of theoretical calculation shows the approximate range of VRTP, which is lower than 1/e ~ 37% at R0 = e
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large γ cases are applicable to diseases like acquired im-
mune deficiency syndrome (AIDS) in real-world. On the
other hand, the number of recovered vertices increases
rapidly in the event of epidemics with low γd. In this
case, the epidemic spreading is obstructed by recovered
vertices because they are considered as disconnected
vertices from the network. As a result, epidemics sub-
sided because the recovery speed exceeds the speed of
infection.

Shifting the location of saddle point of VRTP curve
VRTP curves normally have two peaks and a saddle
point (Fig. 14). With the observation of VRTP curves,

we can conclude that two independent factors influen-
cing the shape of VRTP curve, γ and β-k. Changes of β
and k result similar effects. The increase of these values
results in the faster spreading of epidemics. That makes
a slight shift to the left of VRTP curve. On the contrary,
the increase of γ results shift of VRTP curve to the right.
Because the speed of epidemic spreading goes slower
while connections of the networks become disconnected
quickly as γ increases. However, VRTP curves with
parameters k = 4 or larger γ do not show fluctuation. In
the case of former, the speed of epidemic spreading
becomes too slow to make fluctuation although β
increases to 0.95. The latter case, in large γ, the

Fig. 8 Example of VRTP surface. An example of VRTP surface. It shows some fluctuations while k increases, and the location of the peak of VRTP
moves toward β = 0, γ = 0. VRTP always has its maximum value below about 30% of the whole population as we calculated theoretically

Fig. 9 VRTP curves with varying β, in k = 2 network. VRTP curve in k = 2 scale-free network varying β and fixed γd
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obstructing power of γ by disconnecting vertices goes
too weak to make fluctuation. We concluded that the
saddle point appears to the point that satisfying 4 ~ γ ×
β × k.

Network structure change by k and scaling effect
Eqs. (3) and (4) shows the characteristics of VRTP
depends on R0 and also on k which is related the density
of the network. In the case of low k, Eqs. (3) and (4)
converse to Eq. (2). But in the case of high k, the
ln(x)/x part can be considered as 1/x. And if we
consider the effect of the network parameter, the
reproduction number R0 should be adjusted as like
R0k. That is a scaling effect on VRTP. It is coincident
with the result of Bartlett [19].

Some aspect of VRTP function form
All of the VRTP formula has the function ln(x)/x. If we
set s0 = 1 and substitute the inverse of reproduction
number 1/R0 as the probability P, the function form
would be the form − P ln(P). It is the form of Gibbs En-
tropy [20]. So we can infer that the VRTP may be related
to the epidemic system information. And it is necessary
for investigating more in the future work.

Needs of the number of the recovered
There are not many epidemics spreading situations
that we can draw the VRTP surface. For to draw the
surface, we must know the VRTP values of whole epi-
demic parameters. But if get them, we figure out the
network characteristics. We need the data which

Fig. 10 VRTP curves with varying β, in k = 10 network. VRTP curve in k = 10 scale-free network varying β and fixed γd

Fig. 11 VRTP curves with varying γd, in k = 2 network. VRTP curve in k = 10 scale-free network varying γd and fixed β
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contains the time-series number of the recovered
population with the infected population simultan-
eously. That makes us understand the characteristics
of coupling effects in VRTP between the network and
the SIR epidemics. For an example, in the prevalence
of Influenza-Like-Illness (ILI), we must gather not only

the data of the number of the infected but also of the
recovered.

Conclusions
We developed an epidemic simulator for the SIR spreading
on the SF network. It has a handy ability to parameterize

Fig. 12 VRTP curves with varying γd, in k = 10 network. VRTP curve in k = 10 scale-free network varying γd and fixed β

Fig. 13 VRTP surface with varying k. VRTP curve in various scale-free networks varying k
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the epidemic processes, network types, node characteristics.
And we devise the marker VRTP to reflect the epidemic
turning points coupled to the recovered population and to
discover the coupling effect between SIR spreading and SF
network with the function form of the rough estimation
among the parameters k, γ, β. We derive the analytic for-
mulation of VRTP in the fully mixed model, the configur-
ation model, and the degree-based model respectively in
the form of entropy.
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ER: Erdos-Renyi; ILI: Influenza-like-illness; K-S: Kolmogorov-Smirnov; SF:
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VRTP: Value of recovered on turning point
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