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Abstract

Background: Exponentially increasing numbers of NGS-based epigenomic datasets in public repositories like GEO
constitute an enormous source of information that is invaluable for integrative and comparative studies of gene
regulatory mechanisms. One of today’s challenges for such studies is to identify functionally informative local and
global patterns of chromatin states in order to describe the regulatory impact of the epigenome in normal cell
physiology and in case of pathological aberrations. Critically, the most preferred Chromatin ImmunoPrecipitation-
Sequencing (ChIP-Seq) is inherently prone to significant variability between assays, which poses significant
challenge on comparative studies. One challenge concerns data normalization to adjust sequencing depth
variation.

Results: Currently existing tools either apply linear scaling corrections and/or are restricted to specific genomic
regions, which can be prone to biases. To overcome these restrictions without any external biases, we developed
Epimetheus, a genome-wide quantile-based multi-profile normalization tool for histone modification data and
related datasets.

Conclusions: Epimetheus has been successfully used to normalize epigenomics data in previous studies on X
inactivation in breast cancer and in integrative studies of neuronal cell fate acquisition and tumorigenic
transformation; Epimetheus is freely available to the scientific community.
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Background
Epigenetics is a complex and multi-layered process with
potentially profound implications in cell fate decisions,
including phenomena such as differentiation or tumori-
genesis. With the advancements and cost-reduction in
high-throughput sequencing, next generation sequen-
cing (NGS) has become inevitable for epigenome re-
search. Studying the epigenome and its dynamics
involves sequencing to associate histone and DNA modi-
fications to the genome of a particular cell with the aim
of characterising the state of chromatin – the cumulated
histone and DNA modifications in different genomic re-
gions, over time during (patho)physiological processes
(cell fate changes) and between different samples.

However, its assessment via chromatin immunoprecip-
itation is inherently prone to significant variability, pos-
ing different bioinformatic challenges for comparative
studies - a general caveat in Big Data integrative analysis.
Multiple factors like antibody efficacy, sequencing library
accuracy and depth have a direct impact on data quality
and thus on any downstream analysis. Therefore, it is
imperative to evaluate the quality of data prior to com-
parative studies (see for example, www.ngs-qc.org) [1].
However, even high quality datasets generally exhibit
significant technology/user-derived signal amplitude dif-
ferences, which require normalization prior to compara-
tive analysis.
While significant computational efforts have been

made in the past for single ChIP-seq data analysis, so-
phisticated computational and experimental methods to
correct technical variability among multi-sample ChIP-
seq analyses is acquiring importance recently. Initially, a
simple linear normalization approach was widely used,
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where the counts were represented relative to the total
number of reads to correct the throughput differences.
However, such linear normalization, as used by RNA-
seq-based tools like DESeq [2] and EdgeR [3] does not
address the inherent differences in signal-to-noise ratios
among samples. As there can be a significant dispropor-
tionate fraction of reads falling in background regions,
the normalization of the total number of reads can lead
to biased results for certain regions and for the entire
global profile. This proved linear normalization to be
unsuitable for ChIP-seq. Further, Taslim et al., proposed
a two-step non-linear approach, based on a locally
weighted regression (LOESS) method to correct such
differences among ChIP-seq data [4]. LOESS’s restriction
to pairwise normalization led us to develop Polyphemus
[5], a multi-profile normalization approach for RNA
polymerase II (RNA PolII) datasets based on quantile
correction, a method widely used in microarray studies
[6]. Since then, other quantile based normalization tools
have been developed, including ChIPnorm [7] or Epigen-
omix, [8], both of which focus on the identification of
differentially enriched regions or genes.
All the above-mentioned tools suffer from a number of

important limitations, namely (i) their annotation depend-
ency, (ii) their restriction to specific regions, (iii) less user-
friendliness, especially for non-bioinformaticians, and (iv)
their inability to produce output files that are compatible
with downstream analyses. Moreover, the existing ap-
proaches are mostly intended for a particular analysis,
thus their normalization outputs are not readily export-
able to other tools for multi-dimensional sample analysis
and require programming skills. To overcome all these re-
strictions, we developed Epimetheus, a quantile-based
multi-profile normalization tool. The genome-wide
normalization procedure applied by Epimetheus enables
optimal processing of datasets from different enrichment
patterns, including broad/sharp histone modification or
PolII-seq profiles, chromatin accessibility profiles gener-
ated by FAIRE-seq [9] and ATAC-seq [10], DNase-seq
[11] and DNA methylome profiles generated by MeDIP-
seq or related approaches [12, 13]. Furthermore, users
have the possibility to exclude specific genomic regions
like, for example, repetitive elements or any other gen-
omic locations for which artefactual enrichments might
be expected.

Methods
The basic assumption underlying quantile normalization
is the presence of a common read-count distribution in
the compared datasets. In cases where the compared en-
richment events comprise factors that are implicated in
house-keeping events, it is reasonable to assume that the
distribution of the read counts for a given target will be
similar across cell types [7].

As for gene expression analysis (RNA-seq and micro-
arrays) or RNA polymerase II enrichment (Polyphemus
[5]), where quantile has been widely used, histone modi-
fications are expected to occur at both house-keeping
and cell/tissue-specifically regulated genes. With this as-
sumption, we apply genome-wide quantile normalization
on multiple samples for each chromatin modification.
Subsequently Z-score scaling is used, such that each
dataset is represented relative to its mean of distribution,
which renders different target histone data comparable.
The Epimetheus pipeline involves four main steps: (i)
processing of the raw alignment data, (ii) generation of
read count intensity (RCI) matrices, (iii) computation of
two subsequent levels of normalization (quantile and Z-
score) and (iv) generation of outputs and plots (schemat-
ically depicted in Additional file 1: Figure S1).

Processing of data
As quantile normalization is an absolute read count-
based approach, any region-specific or technical bias will
over/under-represent the read counts and lead to in-
accurate downstream analyses. Clonal reads (i.e., PCR
duplicates) constitute one such technical bias. Unfortu-
nately, some level of clonal read contamination is un-
avoidable in sequencing datasets involving PCR.
Epimetheus will remove such clonal reads from the raw
alignment data, unless otherwise specified by the user.
There are a few alignment and platform-specific biases
that should be addressed prior to analysis as these are
specific to each data and pipeline. Particularly recom-
mended is to remove reads with more than one perfect
alignment and those aligned to repeat and centromere
regions. Also, a user can opt to exclude tricky regions
from analysis using the respective option available in
Epimetheus. Reads are elongated to a specified length to
represent the average fragment length (150-300 bp), as
typically only the first 50–100 base pairs are sequenced
in ChIP-seq.

Read count intensities
For quantile normalization, an approach similar to that
of Xu et al. [14] and Mendoza-Parra et al., [5] is
followed, where the reference genome ‘G’ (or custom re-
gions for target-specific normalization) is divided into
small non-overlapping sequential bins and the RCI for
each bin is calculated. The size (‘S’) of the bin can range
from 100 ≥ S ≤ 500 bp depending on the enrichment pat-
tern (sharp/broad) of the histone mark. This bin size
range is optimal to preserve the shape of enrichment
patterns but users can nevertheless choose larger bin
sizes, if required.
If X is a target histone mark and Xa & Xb are two sam-

ples of same target, then genomic bins for Xa will be xa1,
xa2, xa3…xan and for Xb they will be xb1, xb2, xb3…xbn,
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where ‘n’ depends on the sizes of ‘S’ and ‘G’ (G/S). Reads
in each bin are counted to calculate the reads per bin
(RpB) distribution for each sample, thus generating the
two libraries Xa = {xai | 1 ≥ i ≤ n} and Xb = {xbi | 1 ≥ i ≤ n}.
Similarly, Ya and Yb will specify two different libraries
for another target profile.

Normalization
Using RCI calculation results, a B × N matrix is built,
where B is the total number of bins (for a given ‘G’ and
‘S’) and N is the number of samples. In case of multiple
histone marks, B × N1, B × N2, etc., will be similarly gen-
erated. The differences in coverage among samples are
adjusted to same level by (i) sorting each sample’s RpB
in ascending order individually, (ii) ranking the values
for each sample individually, (iii) calculating the average
of the corresponding rank values and (iv) assigning nor-
malized values back to the original positions. This re-
sults in a normalized matrix norm(B × N), where each
sample has normalized-RpB (nRpB). Subsequently, Z-
score scaling is applied to the normalized matrix to gen-
erate znorm(B × N), which is calculated from the
distance of each nRpB to a mean value of total nRpB in
the sample, divided by the standard deviation.
Note that quantile-based normalization cannot be ap-

plied to profiles of different histone marks, as the signal
distribution and amplitude can be highly dissimilar,
which is incompatible with the initial assumption. Simi-
larly, users should not apply quantile normalization in
cases where major differences are expected between the
datasets. For example, inhibitors of epigenetic enzymes
are likely to exert global effects histone mark deposition
[15]; quantile normalization of such systematically diver-
gent profiles will very likely inappropriately alter the en-
richment pattern. In principle, quantile normalization
cannot not be applied to profiles with highly divergent
patterns. An example is the estrogen receptor, a ligand-
inducible transcription factor [16] which does not sig-
nificantly bind chromatin in the absence of cognate
estrogens; any normalization would artificially alter the
compared profiles. Finally, normalization requires prior
quality assessment for the same reasoning; a universal
quality assessment tool and a large database (www.ngs-
qc.org) can be consulted for guidance [1].

Output
In contrast to previously described methods, Epimetheus
produces normalized BED files by adding/removing
reads with respect to normalized per-bin RCIs using raw
alignment BED files as reference. Increasing counts is
done by adding new reads aligned randomly to a new
position within the concerned bin; existing reads are
randomly removed to decrease read counts. As the BED
format is the preferred input format in most of the

ChIP-seq tools, Epimetheus enables the direct use of
normalized data for downstream analysis.
Along with normalized BED output, Epimetheus pro-

duces three additional types of outputs: (a) visualization
files, (b) plots and (c) normalized BED files.
Visualization files are text files (in bedgraph format)
generated for raw and normalized RCI, which can be
used for other downstream analyses as well. To assess
the difference among samples and the effect of
normalization, MA transformation plots [17] are gener-
ated to compare samples pairwise before and after
normalization. The tool is also capable of generating
read counts matrix for targeted regions (promoter/gene-
body/custom) and average RCI plots for the same.

Results
Before initiating normalization, the datasets were sub-
jected to quality control using NGS-QC (www.ngs-
qc.org) to assess any influence of datasets quality in
normalization. To avoid bias, clonal reads were excluded
from the analysis in all datasets. The detailed materials
and methods about the tools and their parameters used
in different analysis followed are explained in the Add-
itional file 1.

Biological replicates
Epimetheus performance has been tested by using bio-
logical replicates of H3K4me3 mark datasets from nine
different cell lines (GEO file GSE26320) [18]. The com-
parison of biological replicates is a standard procedure
to reveal the effect of normalization, as the datasets are
expected to be highly similar but they may differ, for ex-
ample, in enrichment amplitudes and signal-noise ratio.
Indeed, some of these replicates exhibited significant dif-
ferences in signal-noise ratios and for the number of en-
richment sites. To illustrate the effect of linear and
quantile normalization for profiles with variable signal-
noise ratio, examples of an enriched region in GM12878
cell replicates and of average RCI plots around transcrip-
tion start sites (TSSs) for two HMEC replicates with dif-
ferent levels of global enrichment (background, less,
medium and high) are shown in the Additional file 1:
Figures S2A and S2B (top panels), respectively. The bio-
logical replicates (Rep1 and Rep2) of GM12878 exhibited
varying signal-noise ratios, whereas those of HMEC ex-
hibited a similar background and similar levels of weakly
enriched sites but revealed major differences for highly
enriched sites. In such a situation, linear normalization
fails to properly correct (see the relative sizes of left
peaks in the two replicates; Additional file 1: Figure S2A
and S2B; middle panel). Using quantile normalization
Epimetheus adjusted such amplitude differences along
with the signal-to-noise ratio disparity among samples
given its ranking-based approach (Additional file 1:
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Figure S2A and S2B; bottom panel). This is most con-
vincingly seen in the average RCI TSS plots displayed in
the Additional file 1: Figure S2B. While no major differ-
ences are seen for bins with low read counts, the TSS
plots before and after normalization reveal major ampli-
tude differences at medium (maximum RCIs between 25
and 50) and high (maximum RCIs above 50). An illustra-
tive MA transformation plot displays the overall transi-
tion effect of normalization between the replicates with
perfect LOESS line fit (Additional file 1: Figure S2C).
To evaluate the consequence of quantile normalization

on a regular ChIP-seq peak calling approach, MACS
peak calling was performed for the H3K4me3 HepG2
dataset with raw and normalized BED files (GSM646364;
GSM646365). While normalization led to very small dif-
ferences in the number of identified peaks (Fig. 1a),
which was generally seen for less enriched sites, the cor-
rection of the overall amplitude, particularly towards
higher read counts, was very obvious from the LOWESS
fit line in the MA transformation plots of the raw and
normalized data between replicates (Fig. 1b). Notably, in
TSS plots the few replicate 1-specific peaks were en-
hanced by normalization both in number and intensity,
and exhibited also weak (but apparently not peak caller-
identified) signals in replicate 2, while the amplitude of
unique peaks in replicate 2, which were invisible in both
the raw and normalized replicate 1 TSS plots, got de-
creased (Fig. 1c). In contrast, the common peaks were in
both replicates adjusted in opposite directions.
We conclude from these studies with biological repli-

cates, which should in principle generate identical pro-
files that normalization results in a significant
adjustment of peak intensities and increased the accur-
acy of identifying bona fide common peaks.

Chromatin state analysis and Peak calling with
normalization
To illustrate Epimetheus’ performance in multi-profile
integrative analysis, chromatin state analysis was per-
formed using ChromHMM [19] with published data sets
for nine histone marks of nine cell-lines (GSE26320) be-
fore and after normalization. Biological replicates of each
sample were merged into one to increase the coverage.
To consider also local background variation, which is ig-
nored in the Poisson distribution-based ChromHMM,
peak calling was carried out on raw and normalized data
and identified peak regions were used for chromatin
state analysis. A comparison of the peaks identified in
raw and normalized data sets revealed that seven profiles
showed at most 50% peak overlap, while the other pro-
files had a higher overlap rate (Fig. 2a). Interestingly, the
datasets that show less overlaps between raw and nor-
malized data were either of poor data quality (as
assessed with NGS-QC Generator) or had a low

coverage. For example, the H3K27ac profile of H1 cells
for which only 25% of normalized data peaks overlapped
with raw data peaks was constructed from only 17 M
reads and its quality was rated CCD by NGS-QC (AAA
is highest and DDD lowest quality). Similarly, several
other datasets that showed a poor rate of overlaps were
of either poor quality or coverage, highlighting the im-
portance of quality control prior to analysis.
In general, the raw and Epimetheus-normalized data

revealed the same overall prediction of chromatin states
(Fig. 2b and c). However, in depth comparison showed
that 2–7% of the genomic bins changed chromatin an-
notation post normalization; a handful of these were lo-
cated in regulatory or gene regions (Fig. 2d). While the
GM12878, NHEK and NHLF cell lines exhibited very
few changes, the other cell-lines showed more than 5%
of chromatin annotation changes. Importantly, some of
these corrected a false-positive state annotation observed
in raw data. For example, the chromatin state annotation
at the MYO7A gene in H1 cells changed from “active” to
“poised”; this is due to a more prominent enrichment of
H3K27me3 after normalization (Fig. 2e). Importantly,
transcriptome data from ENCODE [20] confirm that no
MYO7A is expressed in H1 cells, which correlates well
with the chromatin state annotation assessed after, but
not with the one before normalization.
Together the above data reveal that normalization in

general does not alter chromatin state annotation by
ChromHMM but about 5% of them can be affected, thus
leading to changes in the prediction of the functional
states of a particular gene. In such cases normalization
by Epimetheus improves chromatin state predictions.

Temporal epigenetics dynamics during retinoic acid-
induced F9 cell differentiation
We then evaluated Epimetheus performance for time-
series data, where a distinct gradual gain or loss of the
signal amplitudes is expected. For this we used the well-
characterized F9 mouse embryonal carcinoma (EC) cell
model, which differentiates upon retinoic acid treatment
[21]. Cells were grown as described [22, 23] and col-
lected after 0 h, 2 h, 6 h, 24 or 48 h treatment with all-
trans retinoic acid (RA). Each of the collected samples
was used for assessing the epigenetic status by profiling
the repressive histone modification mark H3K27me3,
the transcriptionally active modification mark H3K4me3
and recruitment of RNA polymerase II [22]. It has been
reported that the Hoxa cluster exhibits a collinear gene
activation pattern during differentiation with a gradual
gain of H3K4me3 and PolII recruitment, concomitant
with a loss of H3K27me3 over the time [24, 25]. How-
ever, the statistical analysis of the raw data displays a ra-
ther non-uniform disparity for enrichment among
samples and the profiles of the Hoxa cluster for the
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three targets did not show a clear temporal development
over time points when raw data were used (particularly
apparent for the 0 h, 2 h and 6 h time points in Fig. 3,
top left panel). However, after normalization by Epi-
metheus, the H3K27me3 mark displayed a gradual de-
crease, whereas the active H3K4me3 mark and PolII

recruitment showed a gradual temporal gain in signal in-
tensities (right panel), both of which is entirely consist-
ent with the previously described collinear gene
activation pattern.
To further support the normalization results, we vali-

dated the H3K27me3 enrichment levels on various

A B

C

Fig. 1 Effects of data normalization. a Pie charts illustrating the changes in number of common and replicate-specific promoter-associated
H3K4me3 peaks for HepG2 cell line datasets (GSM646364; GSM646365) before and after normalization (Blue: Rep1-specific peaks, Red: Rep2-
specific peaks and Green: Peaks common between replicates). While mostly peaks overlap rate are conserved, some changes are observed post
normalization in less enriched peaks, thus influencing peak calling thresholds. b An illustrative MA transformation plot shows the overall transition
of RCI differences between replicates before and after normalization. The LOESS fit line (blue) shows the overall correction change after normalization.
c Average RCI plots over annotated promoters (TSS with flanking regions of 1.5Kb) show that significant amplitude difference exists with peaks that are
common between replicates (Blue: Rep1 and Red: Rep2). However, after normalization such amplitude differences are corrected and replicate-specific
enrichments become more distinctive
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Fig. 2 Chromatin state analysis using ChromHMM. a Illustration of peak consistency between raw and normalized data for nine histone marks that
were used for chromatin state analysis for nine different cell lines, as indicated. X and Y-axis of the plot are the percentage of peaks overlapping
between normalized and raw data, respectively. The least overlapping rate was observed for the H3K27ac profile of H1 cells, where all
the peaks from raw data (100%) were retained post normalization but only 25% of peaks from normalized data overlapped with raw data
peaks showing that additional peaks were identified post normalization. As for the H3K27ac profile of H1 cells, the poor overlap between
peaks predicted from raw and normalized profiles was generally due to either poor quality and/or low coverage. b Emission parameters
of ChromHMM describing chromatin state differences between raw and normalized peaks. Though the predicted chromatin states were
conserved, three significant differences in enrichment levels are highlighted as red-framed boxes. c An example region illustrating the
change after normalization of chromatin state 14 in Fig. 2b, where H3K27ac peaks become prominent after normalization. d Stacked bar
chart indicating the percentage of chromatin state annotations per bin that changed upon normalization. While the GM12878, NHEK and
NHLF datasets show few changes after normalization, the other datasets show more than 5% changed bin annotations. e Illustration of
change in chromatin state annotation for the MYO7A locus using the same dataset processed with ChromHMM; note that the MYO7A
promoter was annotated ‘active’ from the raw data and changed to ‘poised’ post normalization, which correlates perfectly with the absence of gene
expression [Encode data: ENCSR962TBJ]
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regions of the Hoxa cluster using quantitative PCR
(qPCR). As illustrated in Fig. 3 (bottom panels), the
qPCR results fully support the results obtained after
normalization by Epimetheus. We conclude that
normalization of temporal epigenetic data is imperative
for unbiased data analysis.

Discussion
Here we have demonstrated the effect of quantile
normalization on a variety of datasets and show that

normalization is imperative when performing a com-
parative analysis of the relative signal amplitude levels of
NGS-profiles. Even though normalization appears to
have a minor effect on the global data analysis by peak-
finding algorithms, we show here that (i) normalization
minimizes amplitude differences in replicates and in-
creases confidence in the temporal evolution of signal
amplitude of enrichment patterns and (ii) improves
chromatin state annotations when using binarized en-
richment data, as with ChromHMM.

Fig. 3 Signal intensity profiles of H3K4me3, H3K27me3 and RNAPolII enrichments at the Hoxa cluster; shown is the temporal signal evolution
from consecutive ChIP-seq experiments during retinoic acid-induced differentiation of F9 cells. Most of the genes in Hoxa cluster have been
shown to follow collinear gene activation pattern during differentiation with gradual increase of active marks and decrease of repressive marks.
However, such pattern was not apparent from the raw RCI profiles. Data normalization resulted in the expected gradual spatio-temporal decrease
of the H3K27me3 profile and concomitant increase of H3K4me3 & RNA PolII intensity profiles. The bottom panels reveal ChIP-qPCR analyses for
H3K27me3, thus validating the normalization. Specifically Hoxa1, Hoxa3 and Hoxa4 genes - but not the Hoxa10 gene –follows a collinear gene
activation pattern, as observed in both the normalized data and the qPCR results
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In contrast to existing normalization tools, Epi-
metheus provides analytical outputs compatible with a
variety of downstream analyses and illustrative plots.
Indeed, previously described tools depend on peak
caller predictions and/or external control datasets, the
latter of which is generally the profile of the “input”,
i.e. the whole cell extract (WCE) used for the ChIP.
Given the diversity in available peak callers – each of
which can be used with different parameters - and
the potential bias introduced by a poor quality WCE,
this approach could possibly lead to artefactual
normalization. Specifically, even though control data-
sets exhibit in general an “ideal” (i.e., non-enriched)
pattern, a few WCE controls show an artefactual
enrichment-like pattern (examples are GSM788366
and GSM768313). Such patterns will significantly in-
fluence the normalization outcomes produced by tools
like ChIP-norm.
In this context we have compared genome-wide and

target-specific normalization using Epimetheus for
genome-wide and a ChIP-norm (7)-like approach for
normalization using a pre-selected bins displaying sig-
nificant enrichment over the input control. We com-
pared both the approaches by using datasets with
different enrichment patterns (ChIP-seq datasets for
the temporal evolution of H3K4me3, H3K27me3 and
FAIRE-seq during retinoic acid-induced F9 cell differ-
entiation; for details and dataset IDs, see Additional
file 1: Supplementary Note). This comparison in-
cluded an evaluation of the effect of the enrichment-
factor of the selected population on normalization.
Specifically, we asked, if ‘fold changes’ greater than 0,
1, 2, 3 or 4 between the IP and the input would in-
fluence the normalization. Indeed, this analysis re-
vealed significant population-related biases relative to
the genome-wide normalization of Epimetheus (Add-
itional file 1: Figure S3); not only the normalization
values are changed upon population selection (Add-
itional file 1: Figure S3A) but also the resulting
changes in signal intensities between samples from a
temporal analysis (T48 vs. T0), which could lead to
false interpretation of the temporal epigenome/chro-
matin changes during cell differentiation (Additional
file 1: Figure S3B). Thus, while poor quality input
samples can bias normalization approaches that use
procedures similar to those of ChIP-norm, the gen-
ome wide normalization used by Epimetheus exhib-
ited a robust performance across the datasets, as is
revealed by MA plots, which display a perfect LOESS
fit line (Additional file 1: Figure S3C, right panel). It
is however apparent from this display that also the
ChIP-norm-like procedure results in a major improve-
ment of the datasets compared to the raw data (mid-
dle and left panels).

Conclusions
To compensate for systematic technical variations be-
tween assays, normalization is requisite for any com-
parative multi-profile analysis of epigenome data
provided that the datasets are indeed comparable with
respect to their nature and quality (see above). In fact,
datasets with systemic modifications of enrichment pat-
terns or major differences in quality should obviously
not be normalized. While most of the existing tools
focus on normalization only for differential analysis, the
present study with biological replicates and chromatin
state analyses supports the necessity of normalization
for any comparative, integrative or differential analysis.
Relative to existing tools, the more robust and sophisti-
cated options in Epimetheus are that (i) it can be custo-
mised to variety of requirements, (ii) it can be applied
genome-wide or to specific regions (when justified), and
(iii) it can exclude specific regions, such as repetitive ele-
ments, which would bias global normalization. We and
others have shown previously that linear scaling-based
tools cannot correct for the technical variations in ChIP-
seq data. Other less user-friendly non-linear
normalization tools are restricted to specific regions and
their outputs cannot be usable easily for downstream
analyses, such as binarized chromatin state annotations.
For all these reasons, we have used Epimetheus in previ-
ous studies [22, 26, 27] and recommend Epimetheus for
non-linear normalization with scalability for various
downstream analysis pipelines.

Additional file

Additional file 1: Figure S1. Scheme of the workflow of Epimetheus
with illustrative plots. Figure S2: Epimetheus-based normalization of
biological replicates using GSE26320. Figure S3: Comparison of
normalization using genome-wide (Epimetheus) and ChIP-norm-based
approaches. Supplementary note: Detailed summary of the Epimetheus
methodology and the comparative studies, and of the datasets used.
(PDF 723 kb)
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