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Abstract

Background: Spectral imaging with polarity-sensitive fluorescent probes enables the quantification of cell and model
membrane physical properties, including local hydration, fluidity, and lateral lipid packing, usually characterized by the
generalized polarization (GP) parameter. With the development of commercial microscopes equipped with spectral
detectors, spectral imaging has become a convenient and powerful technique for measuring GP and other membrane
properties. The existing tools for spectral image processing, however, are insufficient for processing the large data sets
afforded by this technological advancement, and are unsuitable for processing images acquired with rapidly
internalized fluorescent probes.

Results: Here we present a MATLAB spectral imaging toolbox with the aim of overcoming these limitations. In addition
to common operations, such as the calculation of distributions of GP values, generation of pseudo-colored GP maps,
and spectral analysis, a key highlight of this tool is reliable membrane segmentation for probes that are rapidly
internalized. Furthermore, handling for hyperstacks, 3D reconstruction and batch processing facilitates analysis of data
sets generated by time series, z-stack, and area scan microscope operations. Finally, the object size distribution is
determined, which can provide insight into the mechanisms underlying changes in membrane properties and is
desirable for e.g. studies involving model membranes and surfactant coated particles. Analysis is demonstrated
for cell membranes, cell-derived vesicles, model membranes, and microbubbles with environmentally-sensitive
probes Laurdan, carboxyl-modified Laurdan (C-Laurdan), Di-4-ANEPPDHQ, and Di-4-AN(F)EPPTEA (FE), for quantification
of the local lateral density of lipids or lipid packing.

Conclusions: The Spectral Imaging Toolbox is a powerful tool for the segmentation and processing of large spectral
imaging datasets with a reliable method for membrane segmentation and no ability in programming required. The
Spectral Imaging Toolbox can be downloaded from https://uk.mathworks.com/matlabcentral/fileexchange/62617-
spectral-imaging-toolbox.
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Background
An increasing body of evidence suggests that the dy-
namic reorganization of lipids in cellular membranes
can compartmentalize membrane proteins, influencing
a cell’s response to extracellular stimuli and its mem-
brane permeability [1, 2]. It follows that drug-
carrying agents, such as liposomes or gas microbubbles,
with optimized lipid compositions can exploit these
processes for enhanced drug-delivery via membrane
fusion or membrane permeabilization [3–5]. To
facilitate the characterization of such drug-delivery de-
vices and to deepen our understanding of the funda-
mental biology of the cell membrane, a non-destructive
method for evaluating intrinsic membrane physico-
chemical properties is required. As an example, packing
or molecular order of membrane lipids can be sensed
by fluorescent polarity-sensitive probes such as Laurdan
or Di-4-ANEPPDHQ, whose emission spectrum shifts in
response to changes in the molecular order of the
membrane environment, usually quantified by a param-
eter denoted Generalized Polarization (GP) [6–11]. With
the advent of commercial microscopes equipped with
spectral detectors, shifts in the fluorescence emission
spectra, and thus the GP parameter, can now be deter-
mined with much higher spatial accuracy using spectral
imaging [10]. Owing to the internalization of many
polarity-sensitive fluorescent probes in living cells, how-
ever, membrane segmentation must be performed to ac-
curately measure membrane lipid packing and to remove
cytosolic contributions [7, 12]. Membrane segmentation is
often performed using a secondary fluorophore which in-
creases experimental cost and complexity.
To this end, we have developed the Spectral Imaging

Toolbox, a toolbox for spectral analysis with reliable
membrane segmentation without the need for a second-
ary imaging probe. In the Spectral Imaging Toolbox, we
have included batch and hyperstack processing as well
as 3D reconstruction of confocal z-stacks to facilitate
processing of large datasets and experiments with multiple
exposures. We demonstrate the utility of this tool with
images of giant plasma membrane vesicles (GPMVs, cell-
derived vesicles) labelled with either polarity-sensitive
Laurdan or Di-4-ANEPPDHQ, images of live cancer
cells and microbubbles labelled with carboxyl-modified
Laurdan (C-Laurdan), and giant unilamellar vesicles
(GUVs) labelled with Di-4-AN(F)EPPTEA (FE). In
addition to the more commonly employed Laurdan
and Di-4-ANEPPDHQ dyes, we chose FE and C-
Laurdan for their superior photostability and emission
spectrum range [8, 12].

Implementation
The Spectral Imaging Toolbox was designed for spec-
tral analysis of high magnification images of single or

sub-confluent cells, vesicles and microbubbles in
MATLAB [13].

Inputs and outputs
In spectral imaging, a stack of images of a sample region
is recorded with each image in the stack monitoring a
different wavelength range, such that the information
from the whole stack discloses the spectrum of emitted
fluorescence for each image pixel [10]. The Spectral
Imaging Toolbox is designed for batch processing and 3-
4D stacks. Using the Spectral Imaging Toolbox, we were
able to process and analyze a dataset containing over
1500 cells in a few hours [3]. To our knowledge, this is
the largest study using the GP parameter of cell mem-
branes as a metric for membrane lipid order, highlight-
ing the utility of our toolbox. For an input directory of
spectral image stacks, the Spectral Imaging Toolbox out-
puts pseudo-colored GP maps, fitted GP histograms,
and plotted spectra at the whole image, whole object,
and segmented membrane levels for each image in the
folder, as well as a spreadsheet summarizing the results.
Input images and metadata are automatically converted
to the OME-TIFF data standard using the Bio-Formats
Library (144 image formats currently supported) [14].
Options for automatic 3D reconstruction of confocal
spectral z-stacks [15] and plotted size distributions of
spherical vesicles are also available.

Graphical user interface (GUI)
A graphical user interface (GUI) guides the user through
the analysis such that no programming skills are re-
quired. The GUI has a three panel design whereby the
left panel displays instructions and menu items, the cen-
ter panel allows for navigation through the images and
user interaction (i.e., cropping and region of interest se-
lection), and the right panel displays a gallery of images
providing an overview of the results. The processing
allows for user interaction at three steps. First, the user
selects settings for which to run the Spectral Imaging
Toolbox, such as whether to include membrane segmen-
tation or a GP correction factor. Then following auto-
matic object detection, the user has the option to
segment each detected object further using one or more
of several segmentation routines. Finally, the user can
review the results and remove unwanted objects from
the analysis as necessary.

Segmentation
Spectral image stacks are thresholded using an intensity
threshold determined automatically by Otsu’s method
[16]. Objects of interest are then segmented and cropped
using connected-component labelling of the binary
thresholding mask [17]. The resultant cropped images
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are displayed for the user to discard off-target cropped
images as necessary.
If a cropped image contains connected objects, such

as fused GUVs or touching cell membranes, the user can
readily separate them using a watershed-based segmen-
tation approach. Prior to taking the watershed transform
which identifies objects as catchment basins separated
by watershed lines [18], a series of operations are con-
ducted to improve performance. Namely, the distance
transform of the complement of the binarized image is
computed. The watershed transform of the negated dis-
tance transform is then taken. This process is demon-
strated in Fig. 1d. By our method, the threshold level for
suppressing shallow minima in this image is chosen such
that the watershed transform labels n objects for seg-
mentation, where n is input through the GUI. In other
words, if the user specifies that a cropped image con-
tains n cells, n cells are segmented. Owing to the sensi-
tivity of this method to non-convex shaped cells and
intracellular intensity variations, the user also has the
option to segment manually using lasso-segmentation.
Furthermore, lasso-segmentation can be used to conduct

spectral analysis on any user-defined region of interest,
including intracellular vesicles.
Since the cropped images contain only a single object,

the membrane segmentation is simple and reliable. The
objects in the binarized cropped images are filled and
the membranes detected using Sobel edge detection
[19–21]. The membranes are then segmented using
the edge-detected pixels following dilation with a hori-
zontal line element [22]. The Spectral Imaging Toolbox
also has a spherical object mode designed for micro-
bubbles and spherical vesicles, where objects are seg-
mented by finding circles using the circular Hough
transform [23, 24].

Generalized polarization (GP)
As highlighted before, the GP parameter is introduced
for quantification of the spectral shift in emission of a
polarity-sensitive probe due to differences in lipid
membrane order. GP is commonly calculated using
fluorescence intensities collected at two emission wave-
lengths, λB and λR, occurring at the emission maxima of
the probe in a liquid-ordered and liquid-disordered

Fig. 1 The Spectral Imaging Toolbox. a An auto-thresholded spectral image stack containing images of C-Laurdan fluorescence emission from
labelled A-549 cells collected at wavelengths ranging from 410 to 528 nm. b Generalized polarization (GP) is then calculated at each pixel using
the intensities (IB and IR) from the images collected at λB and λR (left) using the equation (center). Pseudocolored GP maps can then be generated
(right, color bar same as Fig. 2). Segmentation can then performed on the GP maps using lasso-based segmentation (c), where the user draws a
region-of-interest (ROI) (left) used to generate a segmentation mask (right). Segmentation can alternately be performed using a watershed-based
approach (d). From left to right in (d), the distance transform, the negated distance transform, and the labelled components following the watershed
transform. Either segmentation routine will result in the segmented objects (e), from which a given number of border pixels are taken as the
segmented membranes (f)
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reference solution respectively [9, 10]. GP, which varies
from -1 to 1, is calculated for each pixel in the spectral
image from the following equation,

GP ¼ IB−IR
IB þ IR

; ð1Þ

where IB and IR correspond to the fluorescence intensity
at λB and λR emission wavelengths, respectively. Conse-
quently, low GP values indicate more disordered
environments.
To clarify, only the intensities of the images at λB and

λR are required for GP calculation, even with spectral
image stacks consisting of images collected at many
wavelengths (e.g. Fig. 1a). Thus, the spectral image stack
is reduced to two images at λB and λR, and these two
images are reduced to the single-valued GP parameter at
each pixel (Fig. 1b).
The calculated GP values are then visualized using a

pseudo-colored map with a look-up table scaled from -1
to 1 [11]. Finally, the distribution of GP values is fitted
to either a one or two-peak Gaussian chosen by the
lower root-mean squared error. The resultant GP histo-
gram can be used to calculate changes in mean lipid
order or, for a well-defined two-peak Gaussian, to indi-
cate the presence of two phases [6]. To facilitate addi-
tional spectral analysis, spectra are generated from the
mean intensities of images at each wavelength of the
stack.

Generalized polarization (GP) correction factor
As GP is an intensity-based measurement, it is strongly
influenced by microscope settings including detector
gain and filter settings. When GP is calculated using in-
tensities IB and IR from two channels detecting at wave-
lengths λB and λR, respectively, the relative intensities of
the two channels must be calibrated to obtain absolute
GP values. By acquiring an image of a reference solution
with corresponding GP also measured with a fluorimeter
(GPref ), a correction factor, G, can be introduced,

G ¼ IB; ref � 1−GPref
� �

IR; ref � 1þ GPref
� � ; ð2Þ

where IB,ref and IR,ref correspond to the fluorescence in-
tensity of the microscope image at λB and λR emission
wavelengths, respectively [25]. GP is then calculated as
follows,

GP ¼ IB−G � IR
IB þ G � IR

: ð3Þ

In the Spectral Imaging Toolbox, GPref and a reference
image can be specified in order to determine G for sub-
sequent GP calculations.

Results
Here we present several examples of spectral imaging
data processed with the Spectral Imaging Toolbox.

Spectral imaging by confocal microscopy
Spectral imaging was performed on a Zeiss LSM 780
confocal microscope equipped with a 32-channel gallium
arsenide phosphide (GaAsP) detector array, as reported
previously [10]. Laurdan, C-Laurdan, FE, and Di-4-
ANEPPDHQ were excited at 405, 405, 488 and 488 nm
respectively and the lambda detection ranges set between
410 nm and 695 nm, 415 nm and 691 nm, 500 nm and
650 nm, and 490 nm and 695 nm respectively. The
resulting spectral image stacks were processed and ana-
lyzed using the Spectral Imaging Toolbox.

Sample preparation
A-549 cells, immortalized human alveolar adenocarci-
nomic epithelial cells, were grown in standard culture
conditions with Dulbecco’s modified eagle medium
(DMEM) containing 10% fetal bovine serum (FBS) and
1% penicillin/streptomycin. Giant unilamellar vesicles
(GUVs) made of dioleoyl phosphatidylcholine (DOPC),
brain sphingomyelin (brain SM), and cholesterol from
Avanti Polar Lipids were produced in a 2:2:1 molar ratio
by electroformation by a modification of the protocol
proposed by Angelova et al. [10, 26]. Phospholipid shelled
microbubbles with a 9:1 molar ratio of 1,2-Distearoyl-sn-
glycero-3-phosphocholine (DSPC, Avanti Polar Lipids,
USA) and polyoxyethylene (40) stearate (PEG40S, Sigma
Aldrich, UK) were produced using a batch sonication
protocol previously reported [27]. Samples were labelled
with either C-Laurdan (400 nM for A-549 cells and 100
nM for GUVs and microbubbles) or Di-4-AN(F)EPPTEA
(FE) (100 nM for GUVs) in phosphate-buffered saline
(PBS). Giant plasma membrane vesicles (GPMVs) were
isolated from rat basophilic leukemia cells labelled with
100 nM Laurdan or 100 nM Di-4-ANEPPDHQ as de-
scribed by Sezgin et al. [28]. Briefly, cells were exposed for
1 h at 37 °C to GPMV buffer (10 mM HEPES, 150 mM
NaCl, 2 mM CaCl2, pH 7.4) containing 25 mM parafor-
maldehyde and 2 mM dithiothreitol for inducing vesicula-
tion. After vesiculation, the GPMV-rich supernatant was
collected by pipetting and resuspended in GPMV buffer
for imaging. For all samples, spectral imaging was per-
formed with samples on 170 μm thick glass coverslips.

Segmentation of cells, GUVs, and microbubbles
Image segmentation and spectral analysis using the
Spectral Imaging Toolbox are demonstrated in Fig. 2.
Pseudo-colored Generalized Polarization (GP) maps,
fluorescence spectra generated from the mean intensities
of images at each wavelength of the spectral image stack,
and histograms of GP values fitted with either a single
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or double peak Gaussian are provided for each example.
Spectral analysis is demonstrated with images of cells
stained with C-Laurdan (Fig. 2a and c) and segmented
by either the watershed method (Fig. 2b) or manually by
lasso-segmentation (see Fig. 2d). The value of membrane
segmentation in spectral analysis is highlighted by com-
paring the spectra and GP distributions of the seg-
mented cells in Fig. 2b and d with the pre-segmentation
results in Fig. 2a and c. The segmented spectra are blue-
shifted and the GP increased reflecting the higher lipid
order of cell membranes compared to the intracellular
milieu. This is also indicated by the double-peak Gauss-
ian GP distributions in the pre-segmentation results in
Fig. 2a and c. Spectral analysis is also demonstrated with
images of GUVs composed of a mixture of DOPC, brain
SM, and cholesterol (2:2:1 molar ratio) labelled with FE
(Fig. 2e). The presence of DOPC, brain SM, and choles-
terol clearly give rise to phase separation as indicated by

the distinct peaks in the GP histogram and in the
pseudo-colored GP map. The Spectral Imaging Toolbox
was used to auto-crop the fused GUVs and remove
background objects for spectral analysis. In this case,
membrane segmentation was not necessary because the
interior of the GUVs was not fluorescent like in the ex-
amples with cells. The lower lipid order region on the
GP map (blue pixels), however, is thicker due to this re-
gion having higher fluorescence intensity. Membrane
segmentation could be used to take an equal-thickness
sampling of pixels around the GUV, for consistency of
analysis across a population of multiple GUVs. Vesicles
derived from cell membranes (GPMVs) and labelled with
Laurdan (Fig. 2g) or Di-4-ANEPPDHQ (Fig. 2h) also ex-
hibit phase separation as indicated by their respective
GP maps. The GP histograms from the GUVs and
GPMVs illustrate a key difference between these two
constructs. The phases present in GPMVs are much

Fig. 2 Segmentation and spectral analysis with the Spectral Imaging Toolbox. Each panel contains from left to right: a pseudo-colored GP map,
the spectra calculated from all pixels of the spectral image stack with significant signal values, and a histogram of GP values fitted with either a
single or double peak Gaussian. a A-549 cells stained with C-Laurdan, labeling both the plasma membrane and the cytosol. Scale bar 27 μm.
b The same cells from (a) but now surface-segmented for plasma membrane only using the watershed method. c A-549 cells stained with
C-Laurdan, labeling both the plasma membrane and the cytosol. Scale bar 33 μm. d The same cells from (c) but now surface-segmented for
plasma membrane only using lasso-segmentation. In (b) and (d) the GP histograms and spectra are for the images indicated with an asterisk.
e GUVs composed of DOPC, brain SM, and cholesterol (2:2:1 molar ratio) labelled with FE (Di-4-AN(F)EPPTEA). Unsegmented (far left), cropped
and isolated GUVs in the adjacent image. Scale bar 17 μm. f GP image of C-Laurdan-labelled microbubbles (far left) was auto-segmented using
the spherical object mode of the Spectral Imaging Toolbox. Scale bar 13 μm. One of the microbubbles, indicated by the arrow in the far left
image, is shown post-segmentation in the adjacent image. Due to few pixels in the segmented microbubble, the GP distribution is shown for
the unsegmented image. g GPMV labelled with Laurdan. Scale bar 5 μm. h GPMV labelled with Di-4-ANEPPDHQ. Scale bar 5 μm. Color bar
legend gives GP values and is valid for all images
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closer in lipid order than those present in GUVs. Spec-
tral analysis with the spherical object segmentation
mode of the Spectral Imaging Toolbox is demonstrated
in Fig. 2f with an image of C-Laurdan-labelled micro-
bubbles. The automated segmentation of a microbubble
from a cluster of microbubbles is demonstrated.

3D reconstruction of pseudo-colored GP maps
A 3D reconstruction of pseudo-colored GP values calcu-
lated from a spectral z-stack of FE-labelled GUVs is
demonstrated in Fig. 3. A single slice of the stack can be
seen in Fig. 2e. The two phase-separated GUVs in the
foreground are connected at their lower end through
more lipid-ordered domains (GP < 0).

Microbubble size distribution
Ten spectral image stacks of DSPC-PEG 9:1 molar ratio
microbubbles labelled with C-Laurdan were analysed
with the spherical object segmentation mode of the
Spectral Imaging Toolbox. The resultant pseudo-colored
GP maps, size distribution of segmented microbubbles
(n = 71), and distribution of mean GP values for the seg-
mented microbubbles (n = 71) are displayed in Fig. 4.

Discussion
Novel aspects
The Spectral Imaging Toolbox is the first free and open-
source software to accurately measure cell membrane
lipid packing without cytosolic contributions using a sin-
gle dye. Furthermore, by implementing batch and hyper-
stack processing as well as 3D reconstruction of
confocal z-stacks, it addresses a growing need to process
large spectral imaging datasets and data from experi-
ments with multiple exposures. It is also the only

spectral imaging software to our knowledge to leverage
different processing routines for vesicles, for adherent
cells, and for regions of interest (i.e., sub-cellular) re-
spectively. Finally, while the algorithms used are not
individually novel, their implementation for spectral
imaging is not available elsewhere to our knowledge.

Comparison with existing software
Without using membrane segmentation, it is common
to decompose the GP histogram into two Gaussian com-
ponents whereby the lower GP component corresponds
primarily to the intracellular regions and the higher GP
component to the cell membrane [29]. While this tech-
nique is valuable for localizing high and low lipid order
regions, it is not appropriate for determining plasma
membrane lipid order. Low lipid order domains in the
membrane and high lipid order vesicles inside the cell,
for instance, could not be attributed to their respective
sub-cellular components without some form of segmen-
tation. Thus, more advanced software is required for ac-
curately determining membrane lipid order.
Existing tools of note for processing spectral imaging

data with the GP parameter include the ImageJ plugins
of Sezgin et al. and Owen et al., and SimFCS developed
by Professor Enrico Gratton [10, 30, 31]. These tools all
provide adequate means of calculating GP, generating
GP visualizations, and histograms for a single spectral
image.
The plugin of Owen et al. provides batch processing

and enables membrane segmentation with the require-
ment of a secondary image acquisition and fluorescent
membrane label. The Spectral Imaging Toolbox does
not require an additional membrane label or image ac-
quisition step to achieve membrane segmentation.

Fig. 3 3D reconstructed GP image calculated from a spectral image stack of FE-labelled GUVs using the Spectral Imaging Toolbox. Axes give
spatial dimensions along all three dimensions and color bar legend indicates GP values
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Sezgin et al. allow for fitting the spectra of each pixel
with either a Gaussian or gamma-variate function to
interpolate the intensities, IB and IR, for reducing noise
in the GP calculation. We found that the gamma-variate
fit is most appropriate for spectral imaging data but was
too computationally expensive for batch and hyperstack
processing. The Spectral Imaging Toolbox instead allows
for optionally smoothing the intensity images using a
median filter prior to GP calculation, much like SimFCS.
The power of SimFCS is its ability to process many

types of advanced imaging data with one software suite.
SimFCS does not, however, support batch processing,
ROI segmentation, membrane segmentation, or z-stack
GP analysis and visualization - core features of the Spectral
Imaging Toolbox.
Regarding availability, ImageJ is free [32], as is SimFCS

2 from Globals Software (although the laboratory license
for the updated version, SimFCS 4, is $2000). Most re-
search institutions have MATLAB licenses and without
a site license, students can purchase MATLAB with the
necessary add-ons for only $60.
Another benefit of our software is the ease of

customization. SimFCS is not designed for user modifi-
cation of the source code, and ImageJ provides only a
limited macro language and plugin facility. Conversely,
the Spectral Imaging Toolbox can be readily extended
using MATLAB vector operations well-suited to rapid and
complex image processing and analysis. The open-source

code will be maintained on the MATLAB Central File
Exchange at the URL provided where updates and feature
requests can be publicly discussed.

Conclusion
The Spectral Imaging Toolbox provides an easy-to-use
means of analyzing large spectral imaging datasets. It re-
quires no programming experience, outputs publication-
quality figures, enables reliable membrane segmentation
without the requirement of a counter stain, and incorpo-
rates batch and hyperstack processing. It is our intention
to continue to develop this free and open-source toolbox
with input from the community to further facilitate
ambitious research with spectral imaging.

Availability and requirements
Project name: Spectral Imaging Toolbox
Project web page: https://ora.ox.ac.uk/objects/uuid:
4375842f-3598-418d-8aa3-9b31f5023401
Operating system: Tested on Windows 7
Programming language: MATLAB 2015+
Other requirements: Image Processing Toolbox https://
uk.mathworks.com/matlabcentral/fileexchange/62617-
spectral-imaging-toolbox
License: GPL
Any restrictions on use by non-academics: none

Fig. 4 Spectral analysis and size distribution of microbubbles. a Pseudo-colored GP images from 10 spectral image stacks of microbubbles labelled
with C-Laurdan. Microbubbles were auto-segmented and analyzed using the spherical object mode of the Spectral Imaging Toolbox. Scale bar 30 μm.
Color bar legend gives GP values. b Size distribution (diameter) of the segmented microbubbles (n = 71). c Distribution of mean GP values for the
segmented microbubbles (n = 71)
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