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Abstract

Background: The low success rate and high cost of drug discovery requires the development of new paradigms to
identify molecules of therapeutic value. The Anatomical Therapeutic Chemical (ATC) Code System is a World Health
Organization (WHO) proposed classification that assigns multi-level codes to compounds based on their
therapeutic, pharmacological and chemical characteristics as well as the in-vivo sites(s) of activity. The ability to
predict ATC codes of compounds can assist in creation of high-quality chemical libraries for drug screening and in
applications such as drug repositioning. We propose a machine learning architecture called tiered learning for
prediction of ATC codes that relies on the prediction results of the higher levels of the ATC code to simplify the
predictions of the lower levels.

Results: The proposed approach was validated using a number of compounds in both cross-validation and test
setting. The validation experiments compared chemical descriptors, initialization methods and classification
algorithms. The prediction accuracy obtained with tiered learning was found to be either comparable or better
than that of established methods. Additionally, the experiments demonstrated the generalizability of the tiered
learning architecture, in that its use was found to improve prediction rates for a majority of machine learning
algorithms when compared to their stand-alone application.

Conclusion: The basis of our approach lies in the observation that anatomical-therapeutic biological activity of
certain types typically precludes activities of many other types. Thus, there exists a characteristic distribution of the
ATC codes, which can be leveraged to limit the search-space of possible codes that can be ascribed at a particular
level once the codes at the preceding levels are known. Tiered learning utilizes this observation to constrain the
learning space for ATC codes at a particular level based on the ATC code at higher levels. This simplifies the
prediction and allows for improved accuracy.

Background
Discovery of efficacious drugs against diseases is one of the
key challenges of modern science. Drug discovery efforts
typically start by screening a large number of compounds to
identify “leads” which subsequently undergo optimization
and in vivo test of efficacy and pharmacokinetics to identify
candidates for clinical trials. The selection of a large number
of compounds for primary screening is often driven both by

the need to capture chemical diversity, and also because
small structural variations can cardinally influence binding
against a target. However, outside general principles such as
the Lipinski rules [1], few rigorous criteria exist to guide
selection of the initial set of molecules for primary screen-
ing. Finally, repositioning an existing drug to a novel path-
ology is an alluring, though limited, alternative to de novo
drug design [2]. In both the above problems formulations,
the ability to identify compounds that are therapeutically of
interest vis-à-vis a particular pathology is critical.
Automatically determining the ATC code of a com-

pound constitutes an attractive approach to both these
problems. Towards this goal, we present a learning
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architecture called tiered learning that can be utilized by
any prediction method (classifier) to obtain highly accur-
ate ATC predictions. The proposed architecture is based
on the premise that while chemical compounds may
exhibit polypharmacology, that is, compounds may
modulate multiple targets, this phenomenon has limits
and anatomical-therapeutic biological activity of certain
types must preclude activities of many other types. In
other words, ATC classes must have characteristic distri-
butions, which become increasingly specific as one
traverses the ATC classification levels.
To motivate this premise, in Fig. 1, we plot the distri-

bution of ATC classes for the data used by us at the first
and second code levels. As can be seen from this figure,
for each ATC class at the first level, the distribution of
second level is highly specific. Figure 1 thus underlines
the existence of characteristic distribution for ATC
codes–an observation that can be employed to constrain
the search-space of possible codes once preceding levels
are known. Based on this premise, in tiered learning,
prediction of the ATC code at a certain level is
constrained by the ATC code at the higher levels. An ad-
vantage of such an approach is that with each successive

prediction, the learning space not only becomes smaller
but also more specific, reducing thereby the informa-
tional heterogeneity and simplifying the learning task. In
parallel, the biochemical data used to train the predic-
tion methods also becomes more specific in terms of its
therapeutic/pharmacological content.

Anatomical Therapeutic Chemical codes
Created by the World Health Organization (WHO) to aid
in accurately performing drug consumptions studies, the
ATC system assigns a code to drugs based on their thera-
peutic and pharmacological properties. The ATC system
has a tree-based hierarchy with five levels, each describing
a new level of detail of a drug’s therapeutic profile as de-
scribed in the following: first level: One letter signifying
which of the 14 anatomical groups the drug acts on. Second
level: two digits that represent the therapeutic group of the
drug. Third and Fourth levels: one letter each specifying
therapeutic and pharmacological subgroups. Fifth level: two
digits that are used to identify the drug within its group.
Consider, for example, the drug Aspirin, or acetylsalicylic
acid, which is known to have fever and pain relieving prop-
erties. Table 1 lists the ATC Codes for Aspirin. As can be

Fig. 1 The empirical distribution of ATC codes at the top level (Pie chart) and at the second level for each of the fourteen anatomical groups in a
dataset of 2232 compounds from the ChEMBL used in this study. The pie chart presents the distribution of ATC codes at the anatomical group-level. The
bar charts present the distribution of compounds within each of the anatomical groups. It is apparent that each anatomical group has a characteristic
distribution, which becomes increasingly specific as one traverses the ATC hierarchy
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seen, the ATC codes represent each therapeutic effect of
the drug and the information becomes increasingly specific
as we go down the code hierarchy.

Prior work
The problem of ATC code prediction has received sig-
nificant recent attention. In [3], a two-step approach was
used to predict the ATC code of a compound. In the
first step, chemical-chemical interaction data from the
STITCH database [4] were used based on the hypothesis
that drugs that have a high STITCH interaction confi-
dence score would share the first letter of their ATC
code. For compounds which lack a STITCH interaction
confidence score, the second step of the method was in-
voked. In this step, code assignments were made based
on chemical similarity. That is, the ATC code of a com-
pound was assigned to that of its chemically most simi-
lar counterpart. A prediction accuracy of 73% was
reported in [3]. Since compounds often have more than
one ATC code, in [3] the top two predicted ATC codes
for each compound were used for calculating prediction
accuracy; essentially, each compound-ATC code pair
was treated as a unique entity. An updated version of
this method was published in [5]. In it, drug ontology
terms from ChemEBI Ontology [6] were employed as an
additional feature to improve prediction accuracy. Spe-
cifically, the number of gene ontology terms shared by
an input compound with a database compound (for
which the ATC code is known) was used, since a large
number of such shared terms may imply similar
anatomic-therapeutic action. A prediction accuracy of
75.9% was obtained with this updated method.
Another state-of-the-art method is SuperPred [7]. The

original method predicted ATC codes using 2D chemical
structure similarity and reported an accuracy of 67.6% at
code depth of five. An updated version of SuperPred [8]
employed 2D structure similarity, fragment-based simi-
larity, and 3D structure similarity. 2D structure similarity
was defined as the Tanimoto similarity of Extended Con-
nectivity Fingerprints (ECFP) [9]. For determining the
fragment similarity of two compounds, the correspond-
ing n and m fragments were obtained using the linker

rule [10]. Next, the fragments were used to create a
matrix of size n ×m, which contained the Tanimoto
similarity of all fragment-pairs. The similarity scores of
the nCm fragment combinations were next obtained from
this matrix and used for determining the most similar
fragment correspondences. Finally, 3D similarity was de-
termined by structural superimposition computed over
100 low-energy conformers of each compound. The pre-
diction accuracy of SuperPred was reported to be 75.3%
at the fifth ATC code level. When the method was used
to predict the top level ATC code only, an accuracy of
80.3% was achieved. It should be noted that the
SuperPred data sets consisted of compounds that were
structurally similar for each ATC group and compounds
with multiple ATC groups were excluded. Additionally,
certain (similar) ATC codes were combined into single
groups [7]. For example corticosteroids, moderately po-
tent’ (ATC: D07AB), ‘corticosteroids, potent’ (ATC:
D07AC), ‘corticosteroids, very potent’ (ATC: D07AD)
and ‘corticosteroids, plain’ (ATC: S01BA) were all com-
bined into a single coricosteriod class. These steps
helped simplify the learning task.
A Support Vector Machine (SVM) was used in the

NetPredATC method [11], which reported prediction ac-
curacies ranging between 74 and 76.5% on four different
sets of compounds. The kernel of the SVM for a drug
pair-ATC code pair involved information relating both
drugs and ATC codes. In particular, information on the
structural similarity between the drug pair was calcu-
lated using Simcomp [12], a graph based structural simi-
larity method, or the sequence similarity between the
targets of the drugs as calculated by the Smith-
Waterman Algorithm [13] was used. The distance be-
tween the pair of ATC codes in the ATC hierarchy was
also included in the kernel. Experiments showed that
NetPredATC achieved higher accuracy when using the
target similarity over the chemical similarity.
In [14], information related to compound structure,

chemical-chemical associations, gene expression, target
information and similarity of side-effects is utilized to
predict ATC codes. Features were ranked both in terms
of their importance to classification as well as their

Table 1 ATC Codes (in bold) of aspirin

ATC Level ATC Codes of Aspirin

Antiplatelet effects Anti-fever/pain reliever

1: Anatomical main group B : Blood and Blood forming agents N : Nervous System

2: Threaputic main group B01 : Antithrombotic Agents N02: Analgesic

3: Therapeutic/pharmacological subgroup B01A : Antithrombotic Agents N02B: Other analgesics and Antipyretics
(fever reducers)

4: Chemical/therapeutic/pharmacological
subgroup

B01AC : Platelet aggregation inhibitors excl. heparin N02BA: Salicylic acid and derivatives

5: Chemical substance identifiers B01AC06 : Acetylsalicylic acid N02BA01: Acetylsalicylic acid
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redundancy using the minimum redundancy maximum
relevance feature selection method [15]. Logistic regres-
sion was used for evidence combination and prediction.
In particular, chemical similarity was assessed by the
Tanimoto coefficient using FP2 fingerprints [16], which
are hashed based fingerprints created from all the pos-
sible fragments of molecules up to 7 atoms in length,
and functional group vectors, which are binary vectors
that indicate presence or absence of functional groups.
Chemical-chemical associations information was ob-
tained from the STITCH database [4], side effect profiles
were obtained from the SIDER database [17], and gene
expression profiles were retrieved from the Connectivity
Map [18]. Target profiles were represented by a vector
where each element represented a particular protein and
the presence of a “1” or “0” in that position indicated
whether or not the compound targeted that protein. The
results reported in [14] show that this approach results
in improved ROC curves as compared to other methods.
Of other methods, in [19], the hypothesis that drugs

interacting with the same domain tend to share thera-
peutic effects was utilized to predict ATC codes. In [20],
a Bayesian approach was employed to predict ATC
codes for compounds restricted to the C (Cardiovascu-
lar) group. In this method, a vector of Medline terms
[21] was used to represent each compound and ATC
codes were inferred using the similarity of the term-
vectors. The method reported an overall accuracy of
77.12% on a test set of 114 cardiovascular drugs using a
training set of 390 other cardiovascular drugs. A sum-
mary of the key ATC code prediction methods in terms
of data sets, descriptors, prediction algorithm, and ac-
curacy is provided in Table 2.
The research described in this paper varies cardinally

from these prior works in its philosophy; our emphasis
here is neither on feature design nor on design of new
predictors. Rather, we employ the fact that each ATC
code hierarchy has a characteristic distribution to design
a tiered learning architecture, where the prediction of
the ATC code at a particular level is constrained by the
ATC code at higher-levels. This learning architecture is
generic and can therefore be used to improve the per-
formance of most prediction methods and/or feature de-
sign strategies.

Method
The tiered learning architecture
Like the other works surveyed in the previous section,
we too employ a supervised formulation to solve the
ATC code prediction problem. The novelty of our idea
for predicting the ATC code of a compound lies in the
proposed tiered architecture for learning and prediction.
The use of a tiered learning (TL) architecture is based
on the observation, as underlined by the data in Fig. 1,

that anatomical-therapeutic biological activity of certain
types must preclude activities of many other types. That
is, successive levels of the ATC hierarchy map to in-
creasingly conserved and distinct parts of the chemical
space. In TL, during the training phase at the kth level,
the ATC codes of the previous (higher) k-1, k-2, …, 1st

levels are taken into account to train a predictor. In the
testing phase correspondingly, ATC codes at each level
are predicted by selecting an appropriate predictor
instance based on the prior (predicted) code values.
Determining the code at the 1st level (or root of the
ATC classification hierarchy) constitutes the initial value
determination problem, for which a number of strategies
are proposed vide infra.
TL hierarchically tessellates the ATC learning space

based on the premise that the distribution of ATC codes
becomes progressively specific as we traverse the ATC
hierarchy. In it, specific classifier instances are created for
predicting the code at the kth level based on the prior
codes. Operationally, for a compound, after the first letter
of ATC code is determined by solving the initial value de-
termination problem, the training data is filtered so that
only compounds sharing the predicted ATC code of the
prior level are used as the training set for the subsequent
level. This new filtered training set is then used to train a
new classifier instance in order to predict the next level.
In this manner, a new classifier is trained for each kth level
as predicated by the codes in the previous levels.
An illustration of this process is presented in Fig. 2. It

presents the case where the ATC code for the first level of
a compound is predicted to be an “A”. The second level is
then predicted using a classifier instance trained using
only such compounds which have an “A” as their first
level ATC code. Continuing the example, if the predicted
ATC code at the 2nd level is “02”, then the next classifier
instance is trained using compounds that start with the
ATC codes “A02” for the first two levels. This process is
repeated for each subsequent level, leading to an ensemble
of increasingly focused classifiers that progressively tessel-
late the ATC space. For predicting the complete ATC code
of a compound, a total of four levels of classifier instances
would need to be trained. Since the fifth level ATC code is
a chemical substance identifier, in this paper, we limit our-
selves to predicting the first four levels.
Finally, a number of variations in applying the tiered

learning architecture are possible. For instance, chemical
similarity can be used to tessellate the chemical space,
with each tessellate containing similar compounds. Sub-
sequently, TL can be applied within each tessellate to
predict the ATC code.

Strategies for initial value determination
Determining the ATC code at the first level seeds the TL
process. Since there are no prior codes to constrain the
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choice, this constitutes and initial value determination
problem. We propose the following two strategies to
determine the initial code value for seeding the TL
process. Their comparative assessment is conducted in
the experimental section.

� Single-level prediction using supervised learning: In
the approach, the initial value is determined through
supervised classification involving the entire training

data. That is, a special classifier is trained to predict
the first level ATC code only.

� Seeding using external knowledge: In this approach,
the initial code value is determined using external
knowledge, including but not limited to seeding
using another predictor, use of prior chemical
knowledge, use of ATC information in
repositories like ChEMBL, and use of information
from literature.

Fig. 2 Training and prediction using tiered learning. This figure illustrates the TL architecture for a compound with the ATC code “A02BC”. At
each level of the prediction, the prior predicted code is used to successively refine the learning task by creating (during the learning phase) or
selecting (during the test phase) a new classifier instance

Table 2 Summary of key ATC prediction methods from the literature

Method Method details

Data Set Size
(compounds)

Data Source(s) Descriptors Prediction
Algorithm

Accuracy at
ATC Depth 1

Maximum Accuracy
and Prediction Depth

SuperPred [8] 2650 (for drug
classification)

Transformer database,
SuperTarget, ChEMBL,
and BindingDB

2D, fragment, and 3D
Structure-based

Consensus-based 80.90% 75.1% at a depth of 5

Chen et al. [5] 3934 KEGG Chemical interactions,
structure and ontology

Hybrid Method 75.70% (internal
validation set)

75.70% (internal
validation set)

Wang et al. [11] 790 KEGG BRITE,
DrugBank

Information from chemical
structures, target proteins,
and ATC Codes.

Kernel method and
SVM classification

74% 74% at depth 5.

Gurulingappa et al.
[20]

504
(training + test)

Medline Concepts generated from
Medline terms

Naïve Bayes 77.12% 77.12% at depth 4

Note that methods may define the notion of prediction accuracy differently. Consequently, any comparison of numeric accuracy values should factor in
the definitions
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Classifiers used as part of tiered learning
In this work, four learning algorithms (implemented in
the Scikit-learn python library [22]) are used as in the
TL architecture. These include: Naïve Bayes, Multilayer
Perceptrons (MLP), Support Vector Machine (SVM),
and the Random Forest. These algorithms represent a
diverse set of learning philosophies to the machine
learning problem.

Descriptor design
In order to construct the descriptors used in our work,
we extracted structural and interaction data from the
STITCH [4] database. STITCH is a repository for com-
pound interaction data and contains data on 300,000
small molecules and 2.6 million proteins from 1133
organisms. The database includes information on associ-
ations between chemicals as well as associations between
chemicals and targets. A numeric score represents the
strength of these associations. We use structural infor-
mation from the ChEMBL database [23] as well as the
aforementioned information from STITCH to design
three types of chemical descriptors (feature vectors) that
are described in the following.

Representation of compounds based on chemical
structure
A molecule can be represented at various levels of
abstraction, starting from simple abstractions such as
the chemical formula to highly complex ones such as
surface-based representations [24] and ultimately the
Schrödinger equation. In our work each molecule is
structurally represented by its chemical fingerprint. A
fingerprint is a linear bit-string representation of the
connectivity of a molecule. Advanced fingerprint algo-
rithms can also incorporate atom types and other phys-
ical-chemical properties. In particular, two types of
chemical fingerprints are used by us: the RDK Linear
Fingerprint and the RDK Morgan fingerprints [25].
The RDK chemical fingerprint is a linear fingerprint
with each element in the bit string indicating the
presence or absence of a particular structural motif.
The fingerprint length is a parameter and can be set
to encode different numbers of features. Further, the
fingerprint path-size is another important parameter
which dictates the maximum size in bond lengths of
the encoded features each bit represents. For our
method, we use a fingerprints length of 2048 and a
path-size of seven.

Fig. 4 Prediction accuracy of each descriptor at the top-level of the ATC code. The CIP descriptor led to the highest prediction accuracies

Fig. 3 Creation of chemical interaction profiles (CIP) from STITCH data. The CIP is encoded as a vector, where each position represents the chemical-
chemical interaction of the compound to another compound in the database. These vectors are created using chemical-chemical association data
from the STITCH database. Compound-target interaction profiles, which use compound-target interaction data are constructed analogously
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Morgan fingerprints differ from the RDK linear finger-
print in that they encode neighborhoods or groups of
adjacent atoms in the molecule, as opposed to simply
encoding the presence or absence of specific atoms and
substructures. Morgan fingerprints are created through
an iterative process. Initially, each atom in the molecule
is represented by an integer value. Next, these integers
are combined iteratively based on proximity of the
corresponding atoms. Integer values corresponding to
atoms that are separated by a single bond are combined
in an array and a hash function is applied. This process
iterates till a preset inter-atomic radius (set to four in
our case) is reached. Finally, the integers are stored as a
binary sequence. Both fingerprint-based representations
allow for rapid 2D structure representation. In the
following, we abbreviate the chemical fingerprint-based
descriptor as CFP.

Representation of associations between compounds
Here, we seek to design a descriptor that allows captur-
ing the context of a compound based on its associations
with other compounds. To do so, we utilize chemical-
chemical association data from the STITCH database
[26]. In STITCH, associations between chemicals are
established using structural similarity, reactions from
pathway databases, literature-based associations, and
similarity of activity based on Medical Subject Headings
(MeSH) pharmacological action terms and activities in
the NCI60 cell lines. The combined chemical-chemical
association score between two compounds in STITCH
ranges between zero and 1000, with the score of zero

corresponding to no discernable association and the
score of 1000 implying high association. To utilize these
chemical-chemical association scores, we create what we
term hereafter as the chemical interaction profile (CIP)
for each compound. A compound’s CIP represents its
similarity to other compounds in the database and is
based on the corresponding combined STITCH associ-
ation scores. A CIP is encoded as a vector, where each
element represents the association of the given com-
pound to another specific compound in the database.
Associations that are unknown or absent are encoded by
a zero. Compounds can be compared by computing
various similarity measures between their CIP represen-
tation vectors in a manner similar to that for chemical
fingerprints. The process of constructing a CIP is
illustrated in Fig. 3.

Representation of compounds based on interactions with
similar targets
This descriptor is motivated by the observation that for
compounds a large number of interactions with the same
proteins or enzymes (targets) putatively indicate shared
therapeutic activity. The chemical-target interaction data
are extracted from the STITCH database and include in-
teractions such as bindings, inhibitions, and other interac-
tions. We only use high-confidence interactions,
represented by the combined STITCH interaction confi-
dence scores equaling or exceeding 700 and limit our-
selves to only interactions occurring with human proteins.
The chemical-target interaction profile abbreviated here-
after as CTP is created analogously to the CIP; for a given

Table 4 Five-fold cross-validated prediction accuracies for the CIP and CFP descriptors on entire dataset (2232 compounds)

Fivefold cross validation results across entire dataset
ATC Level 1 2 3 4

Descriptor CIP CFP CIP CFP CIP CFP CIP CFP

MLP 65.82% 32.38% 58.59% 31.06% 53.02% 27.79% 39.58% 24.07%

Naive Bayes 46.48% 22.51% 32.23% 17.41% 30.13% 14.81% 24.30% 8.91%

Random Forest 60.08% 37.51% 53.45% 28.77% 47.01% 25.28% 36.11% 22.68%

SVM 64.69% 39.04% 56.53% 31.92% 52.27% 28.69% 39.28% 25.60%

At each level, the highest prediction accuracy is highlighted in bold

Table 3 Accuracy of classifiers at levels one through four of the ATC code in the STP setting

STP prediction accuracy at each level of the ATC code
ATC Level 1 2 3 4

Descriptor CIP CFP CIP CFP CIP CFP CIP CFP

MLP 73.66% 53.05% 67.56% 43.37% 59.14% 41.22% 33.87% 34.05%

Naive Bayes 47.67% 31.18% 36.38% 17.03% 30.47% 17.20% 22.76% 12.19%

Random Forest 66.49% 49.28% 58.96% 40.32% 50.18% 37.46% 28.49% 32.26%

SVM 72.22% 43.19% 64.52% 42.29% 58.60% 43.19% 41.22% 38.35%

The classifiers were trained on 1674 compounds in the training set and tested on the 558 compounds using the CIP and CFP descriptors. The highest prediction
accuracy at each ATC code level is highlighted in bold
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compound, each element of its CTP vector represents
similarity with another compound in the database. The
similarity score is defined as the number of shared (com-
mon) targets between the two respective compounds
based on the data extracted from STITCH.

Results and discussion
Training and test data
The data used for training and testing the proposed learn-
ing architecture consisted of 2232 molecules selected from
ChEMBL [23]. The ChEMBL database is a manually
curated repository of compounds and currently contains
over 1 million compounds. However, only a small set of
these compounds have associated ATC codes. We selected
compounds that were either approved drugs or had
reached phase-III trials and had high quality information
associated with them including information on their ATC
code, targets, and method of action (MOA). Of the 2232
compounds, 1674 constituted the training set and 558
made up the test set. Each compound was represented
using the CFP, CIP, and CTP descriptors.

Assessment of descriptors in terms of prediction accuracy
The aim of this experiment was to assess the three de-
scriptors used by us, namely, CFP, CIP, and CTP in
terms of their importance for prediction accuracy. To-
wards this, each descriptor was used in turn to train the

prediction methods on the 1674 compounds in the
training set. Next, each descriptor-predictor pair was
used to predict the first through fourth levels of the
ATC hierarchy for the 558 compounds in the test set
without TL. Henceforth, we shall call this setup as the
standard training and prediction setting and abbrevi-
ate it as the STP setting. The classification accuracy
defined as the percentage of the test set for which
the ATC codes were correctly predicted for each of
the descriptors at the first level is graphed in Fig. 4.
In terms of the individual descriptors, the CIP had
the highest overall accuracy of 72.40% and was also
the most accurate descriptor across all classifiers. CFP
was the second most accurate descriptor, followed by
CTP. The performance of the classifiers at predicting
each level of the ATC code for CIP and CFP is
presented in Table 3.
To further assess the CIP and CFP descriptors, five-

fold cross-validated predictions were separately per-
formed using the combined training and test datasets.
The results are summarized in Table 4. Here too the CIP
descriptor was found to outperform the CFP descriptor.
We note that the classifiers trained on the entire data in
this experiment were solely constructed to evaluate the
CIP and CTP descriptors and were not included in other
experiments. Based on these results, the CIP was used as
the primary descriptor for experiments going forward, as
it encompasses both chemical association information
and compound structure.

Baseline performance of the prediction algorithms
Table 3 quantifies the baseline performance of the
four prediction algorithms on our data set. These re-
sults show that the MLP and SVM methods had the
highest prediction accuracies depending on the level
of the ATC code being predicted and the descriptor
used. MLP outperformed all other classifiers at the
first through third level when using CIPs with an ac-
curacy of 73.66, 67.56, and 59.14%, but then yielded
to the SVM at the fourth level, which had an accuracy

Table 6 Accuracy of TL for predicting the second level ATC code

2nd level ATC Code Prediction using different initializations and comparison to STP
Initialization method Supervised learning SuperPred ChEMBL (Perfect 1st level) STP

Prediction method A(2) CA(2)
(N(2))

A(2) CA(2)
(N(2))

A(2) CA(2)
(N(2))

A(2) CA(2)
(N(2))

MLP 69.18% 71.42%
(64.34%)

70.79% 74.37%
(68.47%)

79.03% 89.52%
(79.03%)

69.89% 71.77%
(67.56%)

Naive Bayes 48.21% 47.94%
(36.74%)

60.22% 69.09%
(57.35%)

65.41% 82.71%
(65.05%)

46.95% 47.31%
(36.38%)

Random Forest 63.98% 65.23%
(57.71%)

68.28% 73.12%
(66.49%)

77.60% 88.80%
(77.60%)

62.19% 64.34%
(58.96%)

SVM 67.92% 69.89%
(63.26)

72.40% 75.18%
(70.79%)

81.90% 90.95%
(81.90%)

68.46% 70.16%
(64.52%)

The best STP results are included for comparison. The highest prediction accuracies obtained with each initialization strategy are highlighted in bold

Table 5 Accuracy of TL initialization at predicting the first level
ATC code

1nd level ATC Code Prediction initialization accuracy
Initialization
method

Supervised
learning

SuperPred ChEMBL (Perfect 1st
level)

Prediction
method

A(1), N(1) A(1), N(1) A(1), N(1)

MLP 73.66% 77.95% 100%

Naive Bayes 47.67% 77.95% 100%

Random Forest 66.49% 77.95% 100%

SVM 72.22% 77.95% 100%
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of 41.22%. For CFP, the highest prediction accuracy was
obtained with MLP for the first and second levels of the
ATC code. However, at the latter two levels, SVM per-
formed better than the rest of the classifiers. From these
results, in terms of prediction accuracy in the STP setting,
MLP emerged as the overall best ATC predictor, with
SVM as the second best.

Experimental analysis of tiered learning
To experimentally compare the proposed TL approach
with STP, we trained and tested each of the four predic-
tion methods by incorporating them in the TL architec-
ture and compared the prediction accuracies with those
obtained with the same prediction methods in STP set-
tings. We note that application of TL requires solving
the initial value determination problem. We assessed
two strategies for initializing TL, namely single-level pre-
diction using supervised learning, and seeding using ex-
ternal knowledge. For the latter strategy, we seeded the
TL process both by using SuperPred and by using infor-
mation from ChEMBL. The following three measures
were used to evaluate the prediction performance of TL:

� Prediction accuracy at level k: Reflects the accuracy in
predicting the ATC code at a level k and is computed
independent of the prediction accuracy at other levels.
Hereafter, this measure is denoted as A(k). In principle,
the index k varies from level 1 to level 5. However,
depending on how the initial value computation was
done, this measure may be trivial for level 1.

� Cumulative prediction accuracy till level k: Reflects
the average accuracy of prediction starting from
level 1 till level k inclusive. It should be noted that
the cumulative prediction accuracy may be inflated
for cases where the first level code was determined
with perfect accuracy using external knowledge.
Consequently, it should be considered in
conjunction with the values of the measure A(k)
defined above. Doing so also ensures that we can
track the variation in prediction accuracy as we
traverse the ATC hierarchy. In the following this
measure is denoted as CA(k). In the limit, CA(5)
represents the overall prediction accuracy across all
the levels of the ATC hierarchy.

� Number of compounds correctly predicted to kth ATC
level: Reflects the percentage of compounds for

Table 8 Accuracy of TL for predicting the fourth level ATC code

4th level ATC Code Prediction using different initializations and comparison to STP
Initialization method Supervised learning SuperPred ChEMBL (Perfect 1st level) STP

Prediction method A(4) CA(4)
(N(4))

A(4) CA(4)
(N(4))

A(4) CA(4)
(N(4))

A(4) CA(4)
(N(4))

MLP 48.57% 63.75%
(37.81%)

48.57% 65.14%
(37.09%)

50.90% 75.58%
(41.93%)

51.61% 67.97%
(40.32)

Naive Bayes 36.92% 47.45%
(19.35%)

45.70% 62.59%
(29.03%)

46.77% 70.30%
(32.80%)

38.35% 55.20%
(22.76%)

Random Forest 40.68% 57.12%
(29.93%)

47.49% 63.66%
(33.87%)

50.36% 74.24%
(38.53%)

39.43% 61.20%
(28.49%)

SVM 50.18% 63.53%
(40.68%)

56.09% 68.50%
(45.34%)

56.81% 78.90%
(49.64%)

41.22% 65.37%
(41.22%)

The best STP results are included for comparison. The highest prediction accuracies obtained with each initialization strategy are highlighted in bold

Table 7 Accuracy of TL for predicting the third level ATC code

3rd level ATC Code Prediction using different initializations and comparison to STP
Initialization method Supervised learning SuperPred ChEMBL (Perfect 1st level) STP

Prediction method A(3) CA(3)
(N(3))

A(3) CA(3)
(N(3))

A(3) CA(3)
(N(3))

A(3) CA(3)
(N(3))

MLP 63.62% 68.82%
(57.16%)

63.26% 70.67%
(58.24%)

72.40% 83.81%
(66.67%)

72.40% 73.42%
(59.14%)

Naive Bayes 56.99% 50.96%
(31.00%)

66.49% 68.22%
(46.59%)

69.00% 78.14%
(52.51%)

57.53% 60.81%
(30.47%)

Random Forest 57.35% 62.60%
(48.03%)

60.93% 69.06%
(54.84%)

69.00% 82.20%
(62.37%)

65.23% 68.46%
(50.18%)

SVM 64.16% 67.98%
(56.99%)

67.56% 72.64%
(63.44%)

76.88% 86.26%
(71.68%)

64.52% 70.31%
(58.60%)

The best STP results are included for comparison. The highest prediction accuracies obtained with each initialization strategy are highlighted in bold
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which the entire ATC code was correctly predicted
till level k. A compound is considered to have its
ATC code correctly predicted to the kth level, if each
level of that compound’s ATC code till level k
inclusive has been correctly predicted. Hereafter,
this measure is denoted as N(k).

Learning was performed using the training dataset and
the efficacy of TL was assessed in terms of prediction ac-
curacy for the second through fourth levels of the ATC
code on the test set. As mentioned earlier, the prediction
methods were initialized using supervised learning, pre-
dictions from SuperPred, and through first level ATC
codes retrieved from ChEMBL. The last strategy led (by
design) to the most accurate seeding of the learning
process. For initialization using supervised learning,
the first level ATC code predicted by the correspond-
ing classifiers in the STP setting were used to seed
the TL approach. The accuracy of initialization in
terms of A(1) and N(1) values is provided in Table 5.
In Tables 6, 7, and 8 we present the results for pre-
dicting the ATC codes using TL at the second, third,
and fourth levels respectively.
In analyzing these results, it is clear that for TL correctly

predicting the first level of the ATC code is important.
Furthermore, excluding MLP, all prediction methods when
incorporated in TL with either SuperPred-based
initialization or initialization using ChEMBL, performed
better than under STP. These improvements translated
into an increase in the number of compounds correctly
predicted, as detailed in Table 9. The greatest improve-
ment occurred for the Naïve Bayes method while SVM
consistently outperformed other predictors. While TL im-
proved the prediction accuracy of the MLP at the second
ATC level, it resulted in drop in accuracy at the third level
and fourth level when initialized with SuperPred. The de-
cline in the performance of MLP in the TL framework
may indicate the need for larger training sets at each level
to optimally tune the relevant MLP parameters. The

reader may note however, that the performance of the
most accurate predictor (SVM) in the TL framework out-
performed, by far, the highest prediction accuracy
achieved with MLP under STP.
Finally, if the prediction accuracy of the TL process is

analyzed by only considering the cases where the super-
vised learning-based initialization led to the correct first
level ATC code, then the advantage of TL over STP be-
comes stark. These results are summarized in Table 10
and show that TL matched or outperformed STP on all
classifiers at all levels except for MLP at level four,
where the TL prediction accuracy marginally lagged be-
hind that of STP.

Comparison of TL with extant ATC code prediction
methods
To compare the accuracy of TL with Chen et al. [5], we
note that the highest accuracy at the first level obtained
by us was 73.66% using the MLP classifier on the test
set (Table 3). In comparison, Chen et al, reported an
accuracy of 75.9% on their training set and an accur-
acy of 66.36% on their test set. Further, when using
structural similarity as the only feature, the accuracy

Table 10 Comparison of STP and TL prediction accuracy when
TL was initialized with correct ATC codes

Comparison of N(k) of STP and TL when compared on Supervised learning
initialization dataset

STP
N(2)

TL N(2)
(+/−)

STP
N(3)

TL N(3)
(+/−)

STP
N(4)

TL N(4)
(+/−)

MLP 85.40% 87.35%
(1.95%)

77.62% 77.62%
(0.00%)

52.07% 51.34%
(−.73%)

Naive Bayes 57.69% 78.85%
(21.15%)

48.85% 66.54%
(17.69%)

31.92% 41.54%
(9.62%)

Random
Forest

81.03% 87.26%
(6.23%)

70.46% 72.63%
(2.17%)

39.84% 45.26%
(5.42%)

SVM 83.29% 88.03%
(4.74%)

76.06% 79.30%
(3.24%)

53.87% 56.61%
(2.74%)

This table compares N(k) values for STP and TL initialized with supervised
learning at the second through fourth levels of the ATC code

Table 9 Comparison of the predictive performance of TL and STP

Comparison of CA(k) using STP and TL at the second, third, and fourth ATC levels
STP N(2) N(2)

SuperPred
(+/−)

N(2)
ChEMBL
(+/−)

STP CA(3) N(3)
SuperPred
(+/−)

N(3)
ChEMBL
(+/−)

STP CA(4) N(4)
SuperPred
(+/−)

N(4)
ChEMBL
(+/−)

MLP 377 382
(+5)

383
(+6)

330 325
(−5)

372
(+42)

225 207
(−18)

234
(+9)

Naive Bayes 203 320
(+117)

363
(+160)

170 260
(+90)

293
(+123)

127 162
(+35)

183
(+56)

Random Forest 329 371
(+42)

431
(+102)

280 306
(+26)

348
(+68)

159 189
(+30)

215
(+56)

SVM 360 395
(+35)

457
(+97)

327 354
(+27)

400
(+73)

230 253
(+23)

277
(+47)

This table compares the number of compounds underlying N(k) for each classifier in predicting the second through fourth level of the ATC code using TL and
STP. Only the TL initializations using SuperPred and ChEMBL and shown. The change (+/−) is noted below the numbers underlying N(k) for each level. The best
results are highlighted for each initialization strategy
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of the proposed method was 53.05% at the first ATC
level, which is also substantially higher than the 40%
accuracy reported in [5]. Finally, Chen et al. do not
report predictions of ATC codes beyond the first
level. Consequently a direct comparison with TL is
infeasible.
A comparison of the proposed approach with NetPre-

dATC [11], which reported prediction accuracy values
ranging between 74 and 76.5% was complicated due to
the fact that at the time of writing this paper, only a pre-
liminary implementation of NetPredATC was available.
This implementation was suitable for limited testing
which prevented direct comparisons. It should also be
noted here that the accuracy measure in [11] was de-
fined as the ratio of the sum of true positive and true
negative predictions to the sum of true positive, true
negative, false positive, and false negative predictions. As

such, this definition of accuracy is distinct from the
measures A(k), CA(k) and N(k) used by us.
In order to directly compare our method to

SuperPred, we identified 204 compounds in our test set
that were not present in the database of the SuperPred
webserver. In the following, we term this as the reduced
test set. The prediction performance for both methods
on this dataset is presented in Tables 11, 12, 13 and 14.
TL with ChEBML initialization was found to outperform
SuperPred at all levels. For the supervised learning-
based initialization, TL had higher N(k) values for the
for the first second, and third levels than SuperPred.
However, at the fourth level, the N(k) accuracy of
SuperPred exceeded that for TL.

Conclusion
The ability to predict in silico, the ATC code of an arbi-
trary compound with high accuracy can help in library

Table 14 Comparison of the prediction accuracy of TL and
SuperPred for the fourth level ATC codes

4th level ATC Code Prediction using different initializations and comparison
to STP
Initialization
method

Supervised learning ChEMBL (Perfect 1st
level)

SuperPred
Prediction Results

Prediction
method

A(4) CA(4)
(N(4))

A(4) CA(4)
(N(4))

A(4) CA(4)
(N(4))

MLP 39.71% 47.55%
(22.55%)

47.55% 69.36%
(33.82%)

56.86% 48.04%
(38.24%)

Naive Bayes 35.78% 42.89%
(15.20%)

45.59% 65.93%
(27.94%)

Random
Forest

35.29% 44.61%
(21.57%)

49.51% 68.87%
(33.82%)

SVM 38.24% 47.79%
(27.94%)

49.02% 70.59%
(38.73%)

Results are from the reduced test set. The highest accuracy obtained with TL is
highlighted in bold

Table 13 Comparison of the prediction accuracy of TL and
SuperPred for the third level ATC codes

3rd level ATC Code Prediction using different initializations and comparison
to STP
Initialization
method

Supervised learning ChEMBL (Perfect 1st
level)

SuperPred
Prediction Results

Prediction
method

A(3) CA(3)
(N(3))

A(3) CA(3)
(N(3))

A(3) CA(3)
(N(3))

MLP 46.08% 50.16%
(46.07%)

64.71% 62.95%
(52.45%)

48.53% 45.10%
(38.73%)

Naive Bayes 60.29% 45.26%
(21.57%)

66.67% 72.71%
(40.69%)

Random
Forest

41.18% 47.71%
(32.35%)

61.27% 75.33%
(49.51%)

SVM 42.65% 50.98%
(37.75%)

66.18% 77.78%
(54.41%)

Results are from the reduced test set. The highest accuracy obtained with TL is
highlighted in bold

Table 12 Comparison of the prediction accuracy of TL and
SuperPred for the second level ATC codes

2nd level ATC Code Prediction using different initializations and comparison
to STP
Initialization
method

Supervised learning ChEMBL (Perfect 1st
level)

SuperPred
Prediction Results

Prediction
method

A(2) CA(2)
(N(2))

A(2) CA(2)
(N(2))

A(2) CA(2)
(N(2))

MLP 50.00% 52.21%
(43.63%)

65.20% 82.60%
(53.39%)

44.61% 43.38%
(39.22%)

Naive Bayes 41.67% 37.35%
(25.00%)

51.47% 75.74%
(51.47%)

Random
Forest

49.51% 50.98%
(42.16%)

64.71% 82.35%
(65.20%)

SVM 52.45% 53.92%
(45.10%)

67.16% 83.58%
(67.65%)

Results are for the reduced test set. The highest accuracy obtained with TL is
highlighted in bold

Table 11 Comparison of the prediction accuracy of TL and
SuperPred for the first level ATC codes

Accuracy of 1nd level ATC Code Prediction
Initialization method Supervised

learning
ChEMBL (Perfect 1st
level)

Prediction method A(1)
(N(1))

A(1)

MLP 54.41%
(54.41%)

100%

Naive Bayes 33.82%
(33.82%)

100%

Random Forest 52.45%
(52.45%)

100%

SVM 55.39%
(55.39%)

100%

SuperPred Prediction
Results

42.16%
(42.16%)

—

Results are for the reduced test set. The highest numerical accuracies are
highlighted in bold
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construction for lead identification, and assist in drug re-
positioning. Taken together, these advantages can reduce
late-stage drug failure and significantly impact the cost
of drug discovery.
In this paper, we have presented tiered learning–a

methodology for predicting the ATC code of a com-
pound. Experimental studies conducted by us indicate
the promise of the proposed approach: most of the
learning algorithms that employed the proposed archi-
tecture experienced significant improvement in predic-
tion performance. When employed with high-quality
initializations, TL was found to either improve upon or
be comparable to other methods at the state-of-the-art
with whom direct comparisons were possible. Separately,
in an experiment that involved randomly labeling the
558 compounds in the test set, the prediction accuracy
dropped below 13% for the first level ATC code using
STP, underlining the validity of the learning formulation.
The high prediction accuracy possible with the pro-

posed approach makes TL a potentially viable technol-
ogy for low-cost in-silico prediction of ATC codes of
compounds prior to employing expensive and time-
consuming biochemical assays. While computational
prediction of drug properties such as bioavailability and
ADME-PK is often employed in the drug-discovery pipe-
line, the high prediction accuracy obtained through the
use of the proposed learning architecture indicates that
computationally predicted information-rich drug de-
scriptors, such as ATC codes, can also be employed, es-
pecially in library construction for lead identification.
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