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Abstract

Background: Scientific names in biology act as universal links. They allow us to cross-reference information about
organisms globally. However variations in spelling of scientific names greatly diminish their ability to interconnect
data. Such variations may include abbreviations, annotations, misspellings, etc. Authorship is a part of a scientific
name and may also differ significantly. To match all possible variations of a name we need to divide them into their
elements and classify each element according to its role. We refer to this as ‘parsing’ the name. Parsing categorizes
name’s elements into those that are stable and those that are prone to change. Names are matched first by
combining them according to their stable elements. Matches are then refined by examining their varying elements.
This two stage process dramatically improves the number and quality of matches. It is especially useful for the
automatic data exchange within the context of “Big Data” in biology.

Results: We introduce Global Names Parser (gnparser). It is a Java tool written in Scala language (a language for Java
Virtual Machine) to parse scientific names. It is based on a Parsing Expression Grammar. The parser can be applied to
scientific names of any complexity. It assigns a semantic meaning (such as genus name, species epithet, rank, year of
publication, authorship, annotations, etc.) to all elements of a name. It is able to work with nested structures as in the
names of hybrids. gnparser performs with &~ 99% accuracy and processes 30 million name-strings/hour per CPU thread.
The gnparser library is compatible with Scala, Java, R, Jython, and JRuby. The parser can be used as a command line
application, as a socket server, a web-app or as a RESTful HTTP-service. It is released under an Open source MIT license.

Conclusions: Global Names Parser (gnparser) is a fast, high precision tool for biodiversity informaticians and
biologists working with large numbers of scientific names. It can replace expensive and error-prone manual parsing
and standardization of scientific names in many situations, and can quickly enhance the interoperability of distributed

biological information.
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cyberinfrastructure, Scala, Parsing Expression Grammar

Background

Conventions

Throughout the paper we use the terms “name’, “scien-
tific name’, and “name-string” in particular ways. “Name”
refers to one or several words that act as a label for a taxon.
A “scientific name” is a name formed in compliance with
a nomenclatural code (Code) or, if beyond the scope of
the Codes, is consistent with the expectations of a Code.
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The term “name-string” is the sequence of characters (let-
ters, numbers, punctuation, spaces, symbols) that forms
the name. A name can be expressed in the form of many
name-strings (for example, see Fig. 1). There are about two
and a half million currently accepted names for extinct
and extant species. There are approximately ten million of
legitimately formed scientific names and hundreds of mil-
lions of possible name-strings for them. We use the term
“elements” for the components of a name-string. Tradi-
tionally, in biological literature, scientific names for genera
and taxa below genus are presented in italics. In this paper,
where we wish to emphasize examples of name-strings, we
use bold font.
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Carex scirpoidea convoluta Kkenth.

Carex scirpoidea var. convoluta Kuk.
Carex scirpoidea var. convoluta Kk.

Carex scirpoidea var. convoluta Kkenth.
Carex scirpoidea var. convoluta Kkenthal
Carex scirpoidea Michx. var. convoluta Kk.

Carex scirpoidea subsp. convoluta

Carex

Carex scirpoidea Michx. var. convoluta Kkenth.
Carex scirpoidea Michaux var. convoluta Kkenthal

Carex scirpoidea ssp. convoluta (Kk.) Dunlop

Carex scirpoidea subsp. convoluta (Kk.) Dunlop

Carex scirpoidea ssp. convoluta (Kukenth.) Dunlop

Carex scirpoidea subsp. convoluta (Kk.) D.A.Dunlop

Carex scirpoidea subsp. convoluta (Kk.) D.A. Dunlop

Carex scirpoidea Michx. ssp. convoluta (Kk.) Dunlop

Carex scirpoidea subsp. convoluta (Kuk.) D. A. Dunlop
Carex scirpoidea Michx. subsp. convoluta (Kk.) Dunlop
scirpoidea Michx. ssp. convoluta (Kkenth.) Dunlop
Carex scirpoidea subsp. convoluta (Kkenthal) D.A. Dunlop
Carex scirpoidea Michx. subsp. convoluta (Kk.) D.A.Dunlop
Carex scirpoidea Michx. subsp. convoluta (Kk.) D.A. Dunlop
Carex scirpoidea subsp. convoluta (Kkenthal 1909) D.A. Dunlop 1998

Fig. 1 Some legitimate versions of the scientific name for the ‘Northern Bulrush’ or ‘Singlespike Sedge’. The genus (Carex), species (scirpoidea), and
subspecies (convoluta) may be annotated (var., subsp., and ssp.) or include or omit the name of the original authority for the infraspecies (Kiikenthal),
or for the species (Michaux), or for the current infraspecific combination (Dunlop). The name of the authority is sometimes abbreviated, sometimes
differently spelled, and may be with or without initials and dates. This list is not complete. Image courtesy of [42]

Introduction

Biology is entering a “Big Data” age, where global and
fast access to all knowledge is envisaged. Progress towards
this vision is still limited in scope. One impediment,
especially for the long tail of smaller sources (of which
some are not yet digital), is the absence of devices to
inter-connect distributed data. The names of organisms
are invaluable in “Big Data” biology because they can be
treated as metadata and as such can be used to discover,
index, organize, and interconnect distributed informa-
tion about species and other taxa [1]. The use of names
for informatics purposes is not straightforward because,
for example, there may be many legitimate spellings for
a name (Fig. 1). A cyberinfrastructure that uses names
to manage information about organisms must deter-
mine which name-strings are variant forms of the same
scientific name.

Figure 1 presents some of the different legitimate vari-
ants of a scientific name in order to make the point
that there is not a single correct way to spell scientific
names. Because of these variations, fewer than 15% of
the names in comparisons of large biological databases
could be matched based on exact spellings of name-strings
[2]. In order to improve this simple metric for interop-
erability, we need to identify variants of the same name.
We refer to the process of addressing variant spellings
(there being other causes of different names for the same

taxon) as “lexical reconciliation” Lexical reconciliation
involves linking the alternative spelling variants for the
same taxon into a “lexical group” Most biologists do this
intuitively — they recognize that the name-strings in Fig. 1
refer to the same taxon. They do so by “parsing” the
name-strings into elements (genus name, species name,
authors, ranks etc.) and mentally discarding less signifi-
cant elements such as annotations and authorship. It then
becomes clear all of name-strings are formed around the
Latin elements Carex scirpoidea convoluta. We refer to
the form of the scientific name without authority or anno-
tations as the “canonical form” Further analysis of the
name-strings reveals two different lexical groups (sepa-
rated in Fig. 1 by a line break) for, probably, one taxonomic
concept:

e Carex scirpoidea var. convoluta description by

Kiikenthal

e Carex scirpoidea subsp. convoluta rank determina-

tion by Dunlop.

In the past, the need to parse scientific names to form
normalized names has mostly been achieved manually.
A person familiar with rules of botanical nomenclature
would be able to analyse the 24 name-strings in this
example with relative ease, but not thousands or mil-
lions of name-strings - especially if they include sci-
entific names to which more than one nomenclatural
code may be applied. The manual splitting of names into



Mozzherin et al. BMC Bioinformatics (2017) 18:279

even only two parts — the latinized elements of taxon
names that make up the canonical form and the author-
ship — is slow and therefore expensive. To scale this
exercise up requires an algorithmic solution, a scientific
name parser!

The strategy of the algorithmic approach is to iden-
tify which combinations of the most atomic parts of a
name-string (i.e. the UTF-8 encoded characters) repre-
sent words (such as genus name, species name, authors,
annotations) or dates. An early algorithmic approach
to parsing scientific names was with “regular language”
implemented as regular expression [3]. A regular expres-
sion is a sequence of characters that describes a search
pattern [4]. For example, a regular expression “[A-Z]
[a-z]{2}” recognizes a word that starts from a capital let-
ter followed by two small letters (e.g. “Z00”). Scientific
names almost universally follow patterns that are influ-
enced by the Codes of Nomenclature: such as the use of
spaces to separate words, capitalization of generic names
and authors, or the inclusion of four digit dates between
the middle of the 18th century and the present. This
makes most names amenable to parsing by regular expres-
sions. Current examples of scientific name parsers based
on regular expressions are GBIF’s name-parser [5], and
YASMEEN [6).

While regular expression is a powerful approach to
string parsing, it has limitations. It cannot elegantly deal
with name-strings where an authorship element is present
in the middle of the name (for example Carex scirpoidea
Michx. subsp. convoluta (Kiik.) D.A.Dunlop). Indeed,
regular expressions are not well suited to any targets with
recursive (nested) elements [7], such as hybrid formulae
(e.g. Brassica oleracea L. subsp. capitata (L.) DC. con-
var. fruticosa (Metzg.) Alef. x B. oleracea L. subsp. cap-
itata (L.) var. costata DC.). Name parsing built on regular
expressions is impractical for complex name-strings.

Another limitation with most regular expression soft-
ware tools is that they are “black boxes” that allow
developers very limited interaction with the parsing
process. They do not reveal much information about
the parsing context and developers cannot call a pro-
cedure during a parsing event. As a result, com-
plex regular expression-based parsers are difficult to
implement and maintain, and functions such as error
recovery, detailed warnings, descriptions of errors are
missing.

We wanted to deal with scientific names across a very
broad range of complexity and to give more flexibility than
can be achieved with a regular expression approach. We
believe that a scientific name parser should satisfy the
following requirements.

1. High Quality. A parser should be able to break names

into their semantic elements to the same standards
that can be achieved by a trained nomenclaturalist
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or better. This will give users confidence in the auto-
mated process and allow them to set aside tedious and
expensive manual parsing.

2. Global Scope. A parser should be able to parse
all types of scientific names, inclusive of the most
complex name-strings such as hybrid formulae,
multi-infraspecific names, names with multilevel
authorships and so on. No name-strings should be left
unparsed, otherwise biological information attached
to them may remain undiscoverable.

3. Parsing Completeness. All information included in a
name-string is important, not just the canonical form
of the scientific name. Authorship, year, rank infor-
mation allow us to distinguish homonyms, similar
names, synonyms, spelling mistakes, or chresonyms.
Access to such information improves the perfor-
mance of subsequent reconciliation (the mapping of
all alternative name-strings for the same taxon against
each other).

4. Speed. Users, especially large-scale aggregators of
biodiversity data, are more satisfied with speedy pro-
cessing of data as it allows them to move forward to
more purposeful value-adding tasks. Speed reduces
the purchasing/operating costs of the hardware used
for production parsing.

5. Accessibility. To be available to the widest possible
audience, a parser should be released as a stand-alone
program, have good documentation, be able to work
as a library, to function as a command line tool, as a
tool within a graphical interface, to run as a socket or
as RESTful services.

These requirements became our design goals. Based on

our experience with prototype systems, we chose to use
Parsing Expression Grammar and Scala language.

Adoption of Parsing Expression Grammar

Parsing Expression Grammar (PEG) [8] have been intro-
duced for parsing strings. PEG allows developers to
define the rules (“grammar”) that describe the general
structure of target strings. Such rules can be used to
deconstruct scientific names. The rules are built from
the ground up, starting from the simplest — such as a
combination of “characters” separated by “spaces”. That
‘rule’ identifies most “words” Digits and other charac-
ters make dates identifiable. Further rules can be applied,
such as a “genus” rule can describe a part of a poly-
nomial name-string in which the first word begins with
combination of a “capital_character” followed by sev-
eral “lower_case_characters” that fall within a relatively
small spectrum of allowed characters; “authorship” would
consist of one or more capitalized words and followed
perhaps by a “year” Within some instances of author-
ship, authors may be grouped to form “author-teams”.
PEG rules are designed to be recursive. They can be
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expanded to deal with increasingly complex name-strings,
or address errors such as absent or extra spaces, or OCR
errors. Each rule can have programmatic logic attached,
making the PEG approach very flexible. We believe that
PEG suits our goals better than regular expressions for the
following reasons:

e PEG is better suited than regular expressions for
strings with a recursive structure;

e the syntax of scientific names is formal enough to
be closer to an algebraic structure rather than to a
natural language. Inconsistencies and ambiguities in
scientific name-strings are relatively rare because they
usually comply with the requirements and conven-
tions of nomenclatural codes;

e scientific name-strings are short enough to avoid
problems with computational complexity and mem-
ory consumption;

¢ programming a parser with PEG can describe parsing
rules in a domain-specific language;

e domain-specific languages offer great flexibility for
logic within the rules, for example to report errors in
name-strings.

The Global Names project created a specialized parsing
library biodiversity in 2008 [9]. It was written in Ruby and
based on PEG. It uses the TreeTop Ruby library [10] as the
underlying PEG implementation.

The PEG approach allowed us to deal with complex
scientific names gracefully. It gave us flexibility to incor-
porate edge cases and to detect common mistakes during
the parsing process. The biodiversity library has enjoyed
considerable popularity. At the time of writing, it had been
downloaded more than 150,000 times [11], it is used by
many taxon name resolution projects (e.g. Encyclopedia
of Life [12], Canadian Register of Marine Species
(CARMS) [13], the iPlant TNRS [14], and World Registry
of Marine Species (WoRMS) [15]. According to statistics
compiled by BioRuby, biodiversity, at the time of writ-
ing, has been the most popular bio-library in the Ruby
language [16].

We were pleased with PEG approach for parsing scien-
tific names, but regard the biodiversity parser library as
a working prototype. It has allowed us to make further
improvements and deliver a better, faster production-
grade parser.

Other approaches

There is a growing number of algorithms and tools in
machine learning and natural language processing that
aim to recognize parts of texts. They include statistical
parsing [17], context-free grammars [18], fuzzy context-
free grammars [19], and named entity recognition [20].
Unsupervised deep learning [21, 22] increases the quality
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of entity recognition without extensive curation and
programming efforts by people. We chose not to use these
approaches for the following reasons.

e The limited scope of a parser. A parser of scientific
names very rarely needs to work with name-strings of
more than 15 words.

e There is no need for recognition. A scientific name-
string parser is usually applied to preexisting lists of
scientific names. There is no requirement to recog-
nize scientific names in larger bodies of text. Other
scientific name recognition and discovery tools are
available.

e Formal grammar. Scientific names are formed in com-
pliance with well-defined and formal codes of nomen-
clature. They have predictable structures making the
requirements for a scientific name-string parser to be
more similar to parsers of programming languages
than to tools designed to work with natural languages.

e Scale and throughput. We created the parser to serve
the needs of biodiversity aggregators. A core design
requirement was to develop a lightweight library
for inputs of millions of scientific name-strings per
second, and to be processed locally.

e Stand-alone approach. We did not wish the parser to
rely on local or remote previously known information
of genera, species, author names, or other scientific
names. gnparser relies instead on morphological fea-
tures of scientific name-strings.

e Determinism. Biologists know that there is only a
single correct parsed version of a scientific name. A
scientific names parser must produce a single “cor-
rect” result for each input string. A parser should
provide meta information on every part of the string.

Adoption of Scala
The pre-existing biodiversity package is not speedy and
cannot scale because it uses Ruby as its programming
language. Ruby is one of the best languages for rapid pro-
totyping, but it is an interpreted dynamic language with,
originally, a single-threaded runtime during execution.
This makes it slow and inappropriate for “Big Data” tasks.
We concluded that we needed a replacement language
environment with the following properties:
® a mature technology;
e multithreaded, with high performance and scalability;
® an active support community with an Open source
friendly culture;
e a wide range of libraries: utilities, web frameworks,
etc,;
¢ apowerful development environment with IDEs, test-
ing frameworks, debuggers, profilers and the like;
e mature libraries for search and cluster computations;
e interoperable with languages popular in scientific
community (R, Python, Matlab);
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e natural support of domain specific languages embed-

ded in the hosted language.

While many of the properties are true for Ruby, other
properties, such as high performance, scalability and
interoperability, are not. To meet all requirements, and
exploiting what we had learned from biodiversity, we
rewrote the code using Scala (a Java virtual machine pro-
gramming language [23]), and the Open source parboiled2
library [24] which we improved [25]. The parboiled2
library implements PEG in Scala. An alternative to par-
boiled? is the Scala combinators library [26]. We did not
use it because it is slow and has memory consumption
problems.

The functional programming features of Scala allowed
us to build a domain specific language that describes the
grammar’s rules to parse scientific names. This produces
a Parsing Expression Grammar with considerably more
flexibility than external lexers such as Bison or Yacc. As
this domain specific language is within parboiled?, it can
take advantage of the Macro capacity of Scala [27] to
optimize the compilation of the code and the subsequent
running of the program. As a result, the software per-
forms with high efficiency. The resulting gnparser library
is faster, more scalable and more flexible than its prede-
Cessor.

We limited this version to work with scientific names
that comply with the botanical, zoological, and prokary-
otic codes of nomenclature, but not with names of viruses
because they are formed in different ways [2, 28] and need
a different PEG. We intend to add this later.

Implementation

The gnparser project is entirely written in Scala. It sup-
ports two major Scala versions: 2.10.6+ and 2.11.x. The
code is organized into four modules:

1. “parser” is the core module used by all other mod-
ules. It parses scientific names from the most atomic
components of a name-string to semantically-defined
terms. It includes the parsing grammar, an abstract
syntax tree (AST) composed of the elements of sci-
entific names, warning and error facilities. When
the parsing is complete and semantic elements of
name-strings have been assigned to AST nodes, the
elements can be recombined and formatted to meet
further needs. For example:

® normalizer converts input name-strings into a
consistent style;

® canonizer creates canonical forms of the latinized
elements of names;

® JSON renderer, the parsing result is converted
to JSON [29] to allow developers to work with
the output using other languages. The output
(Fig. 2, also see Results and discussion) has
the following information: ’details’ contains the
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JSON-representation of a parsed scientific name;
’quality_warnings’ describes potential problems
if names are not well-formed; ’quality’ depicts a
quality level of the parsed name; and ’positions’
maps the positions of every element in a parsed
name to the semantic meaning of the element.
Full and formal explanation of all parser fields is
given as a JSON schema and can be found online
[30] [also see Additional file 1].

2. The “spark-python” module contains facilities to use
“gnparser” with Apache Spark scripts written in
Python. Apache Spark is a highly distributive and scal-
able development environment for processing mas-
sive sets of data. Spark is written in Scala, but can
also be used with Python, R and Java languages. Spark
programs written in Java and Scala are able to run
“parser” in a distributed fashion natively.

3. The “examples” module contains examples to assist
developers in adding “parser” functionality into other
popular programming languages such as Java, Scala,
Jython, JRuby, and R.

4. The “runner” module contains the code that allows
users to run “parser” from a command line as a
standalone tool or to run it as a TCP/IP socket or
HTTP web server. It depends on the “parser” mod-
ule. The core part is the launch script “gnparse”
(for Linux/Mac and Windows) that creates a JVM
instance and runs “parser” on multiple threads against
the input provided via a socket or file. This module
also contains a web application and a RESTful inter-
face to offer simpler ways to access “parser”. “web”
achieves interactions with “parser” via HT'TP proto-
col. It works both with simple web (HTML) and REST
API interfaces. Figure 2 illustrates a parsing example
using the web-interface. Socket and REST services use
Akka framework which makes them highly concur-
rent and scalable.

“parser” and “examples” can run in JVM 1.6+. “run-

ner” requires JVM 1.8+. Documentation is available in a
README file [see Additional file 2].

Parsing rules

gnparser v0.3.1 contains 76 PEG rules. In turn, these rules
make use of more elementary rules provided by the par-
boiled2 library. The rules are domain-specific based on
hours of conversations with leading taxonomists, study of
nomenclatural codes, and feedback of the users.

As an example, the yearNumber rule is given below.
It detects the year in which a name was published.
Rule[Year] is a type of the returning value of the rule.
Using domain-specific language and elementary rules of
parboiled2 we capture the start and the end positions of a
year substring (lines #1 and #2). This matches a substring
that represents a year in scientific name-strings. A
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PARSER API

Global Names Parser

Scientific Names in Detail

DOC ON GITHUB

PROJECTS

Brassica oleracea L. subsp. capitata (L.) DC. convar. fruticosa (Metzg.) Alef. x B. oleracea L. subsp. capitata (L.) var. costata DC.

Parse

Results:

"quality": 3,
"parsed": true,
"quality_warnings": [[3, "Abbreviated uninomial word"], [2, "Hybrid formula"ll,

"verbatim":
"surrogate": false,

"parser_version": "0.3.1",

"normalized": "Brassica oleracea L. ssp. capitata (L.) DC. convar. fruticosa (Metzg.) Alef. x B.

"virus": false,
"position

"canonical_name": {

"value": "Brassica oleracea capitata fruticosa x B. oleracea capitata costata",
"extended": "Brassica oleracea ssp. capitata convar.

},
"hybrid": true,
"details": [{

“"genus": {

"value": "Brassica"

},

“"specific_epithet": {
"value": "oleracea",
“authorship": {

"value": "L.",

Fig. 2 Web Graphical User Interface [43]. In this example a user entered a name-string of a hybrid name consisted of 21 elements. The “Results ”

section contains detailed parsed output using compact JSON format

“Brassica oleracea L. subsp. capitata (L.) DC. convar. fruticosa (Metzg.) Alef. x B.

: [[“genus", @, 8], ["specific_epithet", 9, 17], [“author_word", 18, 20], [“rank", 21
"name_string_id": "2e0f4d35-ccd2-5d4a-ab42-956932ea8fbo",

fruticosa x B. oleracea ssp. capitata var

publication year is usually a number between 1753 [31]
and the present. A year substring might have one or two
digits substituted with question marks if the exact year of
a publication is unknown. The capture is then passed as
a parameter to a parser action (line #3). Parser action, a
Scala function, might produce warnings or a class instance
of defined type (Rule[ Year]).

def yearNumber: Rule[Year] = rule { capturePos( // #I
CharPredicate("12") ~ CharPredicate("0789")
Digit ~ (Digit|’?’) ~ '2'.2 // #2

) ~> { (yPos: CapturePosition) => // #3
FactoryAST .year (yPos) // #4
}
}

We then assemble more complex inter-dependent rules
(lines #5 to #10), and finally combine all of them into the

rule year on line #11 that consists of prioritized alterna-
tives of all previously defined rules.

def yearWithChar = rule { yearNumber ~ capturePos(Alpha)} // #5
def yearWithParens = rule { ’(’ ~ (yearWithChar |

yearNumber) ~ ’)’} // #6
def yearWithPage = rule { (yearWithChar | yearNumber) ~

’:’ ~ oneOrMore(Digit)} // #7

def yearApprox = rule { ’'[’ ~ yearNumber ~ ']’} // #8
def yearWithDot = rule { yearNumber ~ ’.’} // #9
def yearRange = rule { yearNumber ~ '—’' ~

capturePos(Digit.+) ~ (Alpha ++ "?").x} // #10
def year = rule { yearRange | yearApprox |
yearWithParens | yearWithPage | yearWithDot |
yearWithChar | yearNumber // #11
}

This enables the incorporation of the year rule into all
cases where it might be needed. For example on line #12
we indicate that year must be present in the matcher for
the authorsYear rule.
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def authorsYear: RuleNodeMeta[AuthorsGroup] = rule {

authorsGroup ~ softSpace ~ (’,’ ~ softSpace).? ~ year ~> { // #12
(aM: NodeMeta[AuthorsGroup], yM: NodeMeta[Year]) =>

val al = for { a <— aM; y <— yM} yield a.copy(year = y.some)
al.changeWarningsRef ((aM.node, al.node))

}

}

Installation
“gnparser” is available for launch in three bundles.

® A parser artifact is provided via the Maven cen-
tral repository of Java code [32]. Physically it is a
relatively small jar file without embedded external
dependencies. The artifact can be accessed in custom
projects by a build system such as Maven, Gradle, or
SBT. The build system identifies and provides access
to all dependent jars.

e A Zip-archived “fat jar” is located at the project’s
GitHub repository. The jar contains the compiled files
of gnparser along with all necessary dependencies to
launch it within JVM. The archive is also bundled with
a launch script (for Windows, OS X and Linux) that
can run a command line interface to gnparser.

e The project’s Docker container image is located at
Docker Hub [33]. Docker provides an additional layer
of abstraction and automation of operating-system-
level virtualization on Linux. It can be thought of as
a lightweight virtualization technology within a Linux
OS host. When it is setup properly, everything —
starting from JVM and ending with Scala and SBT
— can be run with simple commands that will, for
example, pull the gnparser’s Docker image from the
DockerHub, and run the socket or web server on an
appropriate port.

Testing methods

Data for our tests were sets of 1000 and 100,000
name-strings randomly chosen from 24 million unique
name-strings of the Global Names Index (GNI) [34]. The
name-strings in GNI are collected from a large variety of
biodiversity data sources and are pre-identified as scien-
tific names. While GNI contains some incorrectly classi-
fied strings, it is the largest compilation of name-strings
representing scientific names. It is not biased towards any
particular taxon or particular variant of name, and so
the extracted datasets are believed to represent naturally
occurring data quite well. The datasets are randomly cho-
sen and are therefore mixtures of well-formed names, lex-
ical variants of names, names with formatting and spelling
mistakes, and name-strings that were misrepresented as
names. Name-strings in the sets are independent of each
other. An evaluation dataset with 1000 names is included
as Additional file 3.

We compared the performance of gnparser with two
other projects: biodiversity parser [9, 35] (also developed
by Global Names team), and the GBIF name-parser [5].
The following versions were used: gnparser v. 0.2.0, GBIF
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name-parser v. 0.1.0, biodiversity v. 3.4.1. To make com-
parisons, we calculated Precision, Recall and Accuracy
(as described below) using a dataset consisting of 1000
name-strings. We also tested the YASMEEN parser from
iMarine [6]. With our dataset, YASMEEN generated many
more mistakes than other parsers (Precision 0.534, Recall
1.0, F1 0.6962), and was unable to finish a full dataset
without crashing. We excluded it from further tests.

To estimate the quality of the parsers, we relied on their
performance in representing canonical forms and termi-
nal authorships. A canonical form represents the latinized
elements of taxon names, while the terminal authorship
refers to the author of the lowest subtaxon found in the
scientific name. For example, with Oriastrum lycopodi-
oides Wedd. var. glabriusculum Reiche, the canonical
form is Oriastrum lycopodioides glabriusculum and the
terminal authorship is Reiche, not Wedd.

When both the canonical form and the terminal author-
ship were determined correctly we marked the result as
true positive (Ny,). If one or both of them were deter-
mined incorrectly, the result was marked as a false posi-
tive (Np,). Name-strings correctly discarded from parsing
were marked as true negatives (Ny,). False negatives (Np;,)
were name-strings which should have been parsed, but
were not. The results of the tests are summarized in
Table 1:

Accuracy — the proportion of all results that were
correct. It is calculated as:
Np, + Ny
Accuracy = d -

Nip + Nen + Ny + Nji

Precision — the proportion of name-strings parsed cor-
rectly compared to all detected name-strings. It is calcu-
lated as:

Ny

Precision = ————
Ny + pr

Recall — the proportion of correctly detected name-
strings relative to all parseable name-strings and is calcu-
lated as:

Table 1 Precision/Recall for parsers applied to 1000 name-strings

gnparser gbif-parser Biodiversity

True positive 978 955 971

True negative 13 12 13

False positive 9 32 16

False positive 0 1 0

Precision 0.989 0.968 0.984
Recall 1.0 0.999 1.0

F1 0.994 0.983 0.992
Accuracy 0.989 0.967 0.984
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Ny
Recall = —————
th + ]\an

The F1 — measure is a balanced harmonic mean (where
Precision and Recall have the same weight). When Preci-
sion and Recall differ, F1 — measure allows results to be
compared. It is calculated as

2 x Precision x Recall
F1 =

Precision + Recall

Some names in the dataset were not well-formed. If a
human could extract the canonical form and the terminal
authorship from them, we included them in our assess-
ment. Examples of such name-strings are “Hieracium
nobile subsp. perclusum (Arv. -Touv. ) O. Bolos &
Vigo” (the problem for the parser here is an introduced
space within an author’s name), “Campylium gollanii C.
M?ller ex Vohra 1970 [1972]” (with a miscoded UTF-
8 symbol and an additional year in square brackets),
“Myosorex muricauda (Miller, 1900)” (with a period
after the authorship).

Parsers analyze the structure of name-strings, but they
cannot determine if a string is a “real” name. For exam-
ple, in the case of a name-string that has the same
form as a subspecies such as “Example name Word var.
something Capitalized Words, 1900”. In such a case,
the identification of a canonical form as “Example name
something” and terminal authorship as “Capitalized
Words, 1900” would be considered a true positive.
Clearly, it will be important for name-management ser-
vices to distinguish between name-strings of scientific
names, names of viruses, surrogate names, and non-
names. To find out how well parsers distinguished strings
which are not scientific names, we calculated Accuracy for
discarded/non-parsed strings. If the parser worked well,
non-parsed strings would include only names of viruses
and terms that do not comply with the codes of zoological,
prokaryotic, and botanical nomenclature.

We processed 100,000 name-strings with each parser.
Each parser discarded close to 1,000 name-strings as non-
parseable. Accuracy, in this case, provided the percentage
of correctly discarded names out of all discarded by the
parser names. We do not know Recall, as it was not rea-
sonable to manually determine this for 100,000 names.
To get a sense of names which should be discarded but
were parsed instead, we analysed intersections and differ-
ences of the results between the three parsers as shown in
Table 2.

To establish the throughput of parsing we used a com-
puter with an Intel i7-4930K CPU (6 cores, 12 threads,
at 3.4 GHz), 64GB of memory, and 250GB Samsung 840
EVO SSD, running Ubuntu version 14.04. Throughput
was determined by processing 1,000,000 random name-
strings from Global Names database.
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Table 2 Accuracy of non-parseable names detection out of
100,000 name-strings

gnparser gbif-parser Biodiversity
True discarded 1131 1082 1161
Correctly discarded 1129 940 1152
Incorrectly discarded 2 142 9
Accuracy 0.998 0.869 0.992

To study the effects of parallel execution on throughput
we used the ParallelParser class from biodiversity parser.
We used ‘gnparse file —simple’ (a command line-based
script set to return simplified output) for gnparser. For
GBIF name-parser, we created a thin wrapper with mul-
tithreaded capabilities [36]. The following versions had
been used for throughput benchmarks: gnparser v. 0.3.1,
GBIF name-parser v. 0.1.0, biodiversity v. 3.4.1.

Results and discussion

We discuss and compare gnparser, GBIF name-parser and
biodiversity parser in the context of our requirements for
quality, global scope, parsing completeness, speed, and
accessibility.

High quality parsing

Quality is the most important of the 5 requirements.
GBIF name-parser uses regular expressions approach,
while gnparser and biodiversity parsers use the PEG
approach. Results for quality measurements are shown in
Tables 1 and 2. We include the 1,000 tested names as
Additional file 3.

If test data contain a large proportion of true negatives
(Ngy) Accuracy will not be a good measure as it favors algo-
rithms that distinguish negative results rather than finding
positive ones. We manually checked our test datasets and
established that ~ 1% were not scientific names. Given
that true negatives are rare, they will have very limited
influence on Accuracy. Recall for all parsers was high,
hence false negatives are not important.

Accuracy is probably the best measure for our tests.
All 3 parsers performed very well, with Accuracy values
higher than 95%. Both gnparser and biodiversity parser
approached the 99% mark which we regard as the metric
for production quality. Most of the false positives came
from name-strings with mistakes. For example, out of 11
false positives (below) that gnparser found in the 1000
name-string test data set, only 2 (the first 2) were well-
formed names.

Eucalyptus subser. Regulares Brooker

Jacquemontia spiciflora (Choisy) Hall. fil.

Acanthocephala declivis variety guianensis Osborn,
1904

Atysa (?) frontalis
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Bumetopia (bumetopia) quadripunctata Breuning,
1950

Cyclotella ka !/;tzingiana Thwaites

Elaphidion (romaleum) teeniatum Leconte, 1873

Hieracium nobile subsp. perclusum (Arv. -Touv. ) O.
Bolos & Vigo

Leptomitus vitreus (Roth) Agardh?

Myosorex muricauda (Miller, 1900).

Papillaria amblyacis (M<81>11.Hal.) A.Jaeger

We do expect a parser to deal with names that are
not well-formed. That means overcoming problems such
as aberrant characters which might arise from Unicode
character miscodings, inappropriate annotations, or other
mistakes. To alert users, gnparser generates a warning
when it identifies a problem in a name-string. The other
parsers do not have this feature.

When parsers reach &~ 80% Accuracy, they hit a “long
tail” of problems where each particular type of a prob-
lem is rare. Every new manual check of additional test
sets of 1,000-10,000 name-strings reveals new issues.
Examples of these challenges are given elsewhere [2].
For all three parsers, developers have to perform the
meticulous task of adding new rules to address each
rare case. That is, parsers need to be subject to contin-
uous improvement. The problems found during prepa-
ration of this paper are being addressed in the next
version of gmparser. As the parsing rules improve, we
believe that gnparser can reach > 99.5% Accuracy without
diminishing Recall.

As we incorporate new rules to increase Recall, we have
to consider the risks of reducing Precision by introducing
new false positives. For example, the GBIF name-parser
allows the genus element of a name-string to start with
a lowercase character. As a result the name-strings below
were parsed as if they were scientific names, while the
other parsers ignored them:

acid mine drainage metagenome

agricultural soil bacterium CRS5639T18-1
agricultural soil bacterium SC-I1-8

algal symbiont of Cladonia variegata MNO75
alpha proteobacterium AP-24

anaerobic bacterium ANA No.5

anoxygenic photosynthetic bacterium G16
archaeon enrichment culture clone AOM-SR-A23
bacterium endosymbiont of Plateumaris fulvipes
bacterium enrichment culture DGGEband 61_3 FG_L
barley rhizosphere bacterium JJ-220

bovine rumen bacterium niuO17

Strategies like these may increase Recall with cer-
tain low-quality datasets, but they decrease Precision.
Many “dirty” datasets contain recurring problems. As an
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example, DRYAD contains many name-strings in which
elements of scientific names are concatenated with an
interpolated character such as *_’ (e.g. “Homo_sapiens”
and “Pinoyscincus_jagori_grandis”) [2]. For them, our
solution was to include a “preparser” script which “nor-
malizes” known problems that are inherent within partic-
ular datasets and then apply a high quality parser to the

result.
Our testing also revealed differences between regular

expressions and PEG approaches. Both can achieve high
quality results with canonical forms of scientific names,
but the regular expressions are less suitable for more
complex name-strings. The recursive or nested nature of
some scientific names can cause problems which become
insurmountable for regular expressions.

Global scope

If we want to connect biological data using scientific
names, no name-strings should be missed or rejected,
no matter how complex they are. During our testing
we found that Accuracy of GBIF's name-parser was
depressed because, in part,the parser did not recog-
nize hybrid formulae and infrasubspecific names with
more then one infraspecific epithet. This case under-
scores the limitations of the regular expression approach.
As examples, the following were not parsed by the
GBIF name-parser:

Erigeron peregrinus ssp.callianthemus var. eucal-
lianthemus (a name-string with two infraspecificx
epithets)

Polyporus varius var. nummularius f. undulatus
(Pilat) Domanski, Orlos & Skirg. (two infraspecific
epithets)

Salvelinus fontinalis x Salmo gairdneri (hybrid
formula)

Echinocereus fasciculatus var. bonkerae x E.
fasciculatus var. fasciculatus (hybrid formula)

The PEG approach supports nested parsing rules to cre-
ate progressively more complex rules that manage such
cases. The capacity to address recursion allows gnparser
to handle the full spectrum of scientific names that we
have presented to it.

Parsing Completeness

The extraction of canonical forms from name-strings
representing scientific names is the most beneficial and
widely used parsing goal. Sometimes, however, this may
not be sufficient because the canonical form does not
always distinguish a name completely.

In the example in Fig. 1 Carex scirpoidea convo-
luta is a canonical form for Carex scirpoidea var. con-
voluta Kiikenthal and Carex scirpoidea ssp. convo-
luta (Kiik.) Dunlop. The first non-parsed name-string
refers to the variety convoluta of Carex scirpoidea
that had been described by Kiikenthal. The second



Mozzherin et al. BMC Bioinformatics (2017) 18:279

captures Dunlop’s reclassification of convoluta as a
subspecies. We are not able to distinguish between these
two different names without knowing the rank and/or
the corresponding authorship. Furthermore, it is use-
ful to see in the second example that (Kiik.) was the
original author and Dunlop was the author of the
new combination. Also, canonical forms do not distin-
guish between homonyms. The heather, Pieris japonica
(Thunb.) D. Don ex G. Don and the butterfly, Pieris
japonica Shirozu, 1952 have the same canonical form
Pieris japonica.

After matching by canonical form, rank, authors, and
“types” of authorship allow us to distinguish name-strings
with similar or identical canonical elements. The name-
string Carex scirpoidea Michx. var. convoluta Kiikenth.
adds the information that the species Carex scirpoidea
was described by Michx but is not evident in the examples
in the paragraph above.

Another area in which parsers with limited abilities can
give misleading results is with negated names [2]. In these
cases, the name-string includes some annotation or marks
to indicate that the information associated with the name
does NOT refer to the taxon with the scientific name
that is included. Examples include Gambierodiscus aff
toxicus or Russula xerampelina-like sp.

All components of a name may be important and need
to be parsed and categorized. With gnparser, we describe
the meaning of every element in the parsed name-string
and present the results in JSON format. Parsing of Carex
scirpoidea Michx. subsp. convoluta (Kiik.) D.A. Dun-
lop gives the following JSON output
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The output includes the semantic meaning of all
parsed elements in a name-string, indicates if the name-
string was parsed successfully, if it is a virus name,
a hybrid, or a surrogate. Surrogates are name-strings
that are alternatives to names (such as acronyms) and
they may or may not include part of a scientific or
colloquial name (e.g. Coleoptera sp. BOLD:AAV(0432).
The output also includes a statement of the posi-
tion of each element in the name-string. Last, but
not least, the JSON output contains UUID version 5
calculated from the verbatim name-string. This UUID
is guaranteed to be the same for the same name-
string, promoting its use to globally connect information
and annotations.

The output usually covers every semantic element in
the name-string. The fields in the output illustrated above
have the following meanings.

name_string_id: UUID v5 identifier;

parsed: whether a name-string was successfully parsed
(true/false);

quality: how well-formed a name-string is (range from 1
to 3, 1 is the best);

parser_version: version of a parser used;

verbatim: name-string as was submitted to gnparser;

normalized: name-string modified by the parser to give
a normalized style;

canonical_name: a special form of normalization that
includes only the scientific elements of the name, this
form is contained within most name-strings relating
to scientific names;

1

2 "name string id" "203213£3-99d1-5f5e-810a-4453c4d220cb",

3  "parsed" true, "quality" 1, "parser version" 1Q,3,1",

4 "verbatim" "Carex scirpoidea Michx. subsp. convoluta (Kiuk.) D.A. Dunlop",

5 '"normalized" "Carex scirpoidea Michx. ssp. convoluta (Kik.) D. A. Dunlop",

6 "canonical name"

7  "value" "Carex scirpoidea convoluta", "extended" "Carex scirpoidea ssp. convoluta"
8 o

9 "hybrid" false, "surrogate" false, "virus" false,

10 "details" : [

11 r"genus" { "value" "Carex" 1},

12 "specific epithet" : {

13 "value" "scirpoidea",

14 r"authorship" : {

15 "value" "Michx.",

16 "basionym authorship" { mauthors" : [ "Michx." ] }

17

18 4,

19 "infraspecific_epithets" : [

20 "value" "convoluta", "rank" "ssp.",

21  "authorship™"

22 "value" "(Kik.) D. A. Dunlop",

23 "basionym authorship" { mauthors" : [ "Kuk." ] },

24 ¥combination_authorship” { mauthors" [ "D. A. Dunlop" 1 }

25

26 | ]

27 } 1,

28 "positions" : [ [ "genus", 0, 5 ], [ "specific epithet", 6, 16 ], [ "author word", 17, 23 ],
29 [ "rank", 24, 30 ], [ "infraspecific epithet", 31, 40 ], [ "author word", 42, 46 ],
30 [ "author word", 48, 50 ], [ "author word", 50, 52 ], [ "author word", 53, 59 ] ]

31
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hybrid: whether the name-string refers to a hybrid
(true/false);

surrogate: whether a name-string is a surrogate name
(true/false);

details: describes the semantic elements within the
name-string inclusive of the following;

genus: reports the genus part of the name (in this case
Carex);

specific epithet: reports the species epithet (scirpoidea);

authorship: reports the authorship of the combination
(Michx.);

basionym authorship: reports the authorship of the
basionym (Michx.)

infraspecific epithets: reports the infraspecies name if
present (convoluta) with rank (ssp.)

authorship: reports the authors of the infraspecies name
((Kiik.) D. A. Dunlop)

basionym authorship: reports the author of the
basionym of infraspecies name element ([“Kuik”]);

combination authorship: reports the author of the
infraspecies name combination (D. A. Dunlop); and

positions: identifies each name element and where it
starts and ends.

The complete list of fields for the gnparser’s output
exists as a JSON Schema file [30] [see Additional file 1].

Parsing speed

In the areas of performance discussed above, there is lit-
tle difference between biodiversity parser and gnparser.
There is, however, a dramatic difference in their parsing
speed and ability to scale. Parsing tasks that took 20 hours
with earlier biodiversity parsers can now be completed in a
few minutes on a multithreaded computer. Parsing is a key
to other services such as name-reconciliation and subse-
quent resolution. Improvements to the speed of the parser
will increase user satisfaction elsewhere.

Results on the speed performance are given in Fig. 3.
The performance depends on the number of CPU threads
used. On 1 thread gnparser was 7 times faster than biodi-
versity, 10 times faster on 4 threads, and 14 times faster on
12 threads.

gnparser displays functionality not presented in the
GBIF name-parser as described in previous sections. In
spite of this additional functionality gmparser outper-
formed other tested parsers.

Accessibility
By ‘accessibility’ we refer to the ability of the software
code to be used by a wide audience. For Open source
projects, accessibility is very important. If more people
use a software, the more cost-effective is its development.
Parsing scientific names is essential for organizing bio-
diversity data. Many biodiversity database environments
and projects include a parsing algorithm. Examples are
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Threads | gnparser gbif-parser  biodiversity Ratio
gn gbif  bio
1 8178 6389 1111 1 0.78 0.14
2 14125 12638 1722 | 1 0.89 0.12
4 25125 21994 2556 | 1 0.88 0.10
8 33541 30972 27771 1 0.92 0.08
12 36369 31833 2527 | 1 0.88 0.07
37000
30000 A
20000 A

Parser

Names/Second

B gnparser
A ghif-parser
10000

@ biodiversity

S T
CPU Threads
Fig. 3 Names parsed per second by GN, GBIF and Biodiversity parsers
(running on 1-12 parallel threads)

uBio [37], the Botanical Society of Britain and Ireland [38],
FAT [39], NetiNeti [40], and Taxonome [41]. A modular
approach offers an option of re-use and avoids replication
of effort. biodiversity was the first biodiversity parser to
be released as a stand-alone package that could be used
as a module — as it was with the iPlant project [35].
The same approach has now been adopted with the GBIF
name-parser [5], YASMEEN (6], and gnparser.

We designed gnparser with accessibility in mind from
the outset. Scala language allows the use of gnparser as a
library in Scala, Java, Jython, JRuby and a variety of other
languages based on Java Virtual Machine it can also be
used natively in R and Python via JVM-binding libraries.
Apache Spark, a “Big Data” framework, is also supported.
The following example illustrates how a client written in
Jython can access the gnparser functionality.

from org.globalnames.parser import
ScientificNameParser

snp = ScientificNameParser.instance()
result = snp.fromString("Homo sapiens
L.") .renderCompactdson ()

print result

If programmers want to use gnparser in some JVM-
incompatible language they can connect to the parser via a
socket server interface. There is also a command line tool,
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a web interface, and a RESTful API In 2016, Encyclopedia
of Life started to parse name-strings using gnparser socket
server.

We pay close attention to documentation, trying to keep
it detailed, clear, and up to date. We have an extensive
test suite [see Additional file 4] that describes the parser’s
behavior and contains examples of gnparser functionality
and output format.

This commitment to accessibility creates a larger poten-
tial audience for the parser, and will help many researchers
and programmers deal with the problems that arise from
variant forms of scientific names.

Conclusions
The performance of the scientific names parsers is sum-
marised in Table 3. The two PEG-based parsers — bio-
diversity and gnparser are similar. They are based on
the same algorithmic approach and follow similar design
goals. While we had the option of modifying the rules for
biodiversity to improve Accuracy, we preferred to create a
new tool from scratch to overcome limitations in speed,
scalability and accessibility. We needed to address speed at
Global Names because existing software took too long to
parse or reparse 24 million name-strings. gnparser can be
used natively by larger variety of programming languages
than biodiversity, because JVM-based languages and tools
are so widely used. Our first goal for gnparser was com-
plete coverage of the biodiversity’s test suite. We continue
to improve gnparser while biodiversity entered mainte-
nance mode. That explains a slight difference in Accuracy
by these two parsers.

gbif-parser is a high quality product. However, its reg-
ular expressions-based algorithm limits its usability. The
recursive nature of some scientific names creates signif-
icant obstacles for intrinsically non-recursive algorithms
such as regular expressions. Coverage of multi-
infraspecific names and hybrids, both with recursive
patterns, is prohibitively expensive for such an approach.

Table 3 Summary comparison of Scientific Name Parsers

gnparser gbif-parser  Biodiversity
Accuracy 98.9% 96.7% 98.4%
Hybrid formulas support Yes No Yes
Infrasubspecies support Yes No Yes
Throughput (names/s/thread) 8178 6389 1111
Parsing details Complete  Partial Complete
Library for the same languages ~ Yes Yes Yes
Library for other languages Yes Yes No
Command line tool Yes No Yes
Socket server Yes No Yes
Web interface Yes Yes Yes
RESTful service Yes Yes Yes
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In conclusion, this paper describes gnparser, a powerful
tool for working with biodiversity information. It trans-
forms names of taxa into their semantic elements. This
allows standardization of names by, for example, repre-
senting them as canonical forms. This step dramatically
improves name matching within and among data sources,
and this increases the amount of data on a single taxon
that can be integrated. Parsing can be used to improve
the discovery of names in sources, and creating a com-
mon taxonomic index to multiple sources. Parsing allows
users to extract, compare and analyse metadata within the
name-strings, and allowing comparisons of the efforts of
individuals or to map trends over time. The gnparser tool
is released under MIT Open source license, contains com-
mand line executable, socket, web, and REST services, and
is optimized for use as a library in languages like Scala,
Java, R, Jython, JRuby.

Availability and requirements

Project Name: gnparser

Project home page: https://github.com/GlobalNames

Architecture/gnparser

Operating System: Any platform able to run JVM 1.8

Programming Language: Scala

License: The MIT License

Other requirements: docker (optional)

Any restrictions to use by non-academic: no restriction
The data supporting the conclusions of this arti-

cle are available in the repository https://github.com/

GlobalNamesArchitecture/gnparser-paper under the

data directory.

Additional files

Additional file 1: Includes a full and formal explanation of all parser fields
as a JSON schema. (JSON 9 kb)

Additional file 2: README.rst file that is converted to HTML format. It is
also available at project home page [44]. (ZIP 7 kb)

Additional file 3: 1,000 name-strings randomly selected from GNI and
used to determine Accuracy, Precision and Recall data (Table 1). (TXT 32 kb)

Additional file 4: Extensive test suite that describes the parser’s behavior.
It is also a source of examples of parser functionality and output format.
Test suite consists of a pipe delimited input (scientific name) and parsed
output in JSON format. (TXT 253 kb)
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