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Abstract

Background: With the development of Next Generation Sequencing technologies, the number of predicted
proteins from entire (meta-) genomes has risen exponentially. While for some of these sequences protein functions
can be inferred from homology, an experimental characterization is still a requirement for the determination of
protein function. However, functional characterization of proteins cannot keep pace with our capabilities to
generate more and more sequence data.

Results: Here, we present an approach to reduce the number of proteins from entire (meta-) genomes to a
reasonably small number for further experimental characterization without loss of important information. About 6.1
million predicted proteins from the Global Ocean Sampling Expedition Metagenome project were distributed into
classes based either on homology to existing hidden markov models (HMMs) of known families, or de novo by
assessment of pairwise similarity. 5.1 million of these proteins could be classified in this way, yielding 18,437
families. For 4,129 protein families, which did not match existing HMMs from databases, we could create novel
HMMs. For each family, we then selected a representative protein, which showed the closest homology to all other
proteins in this family. We then selected representatives of four families based on their homology to known and
well-characterized lipases. From these four synthesized genes, we could obtain the novel esterase/lipase GOS54,
validating our approach.

Conclusions: Using an in silico approach, we were able improve the success rate of functional screening and make
entire (meta-) genomes amenable for biochemical characterization.
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Background
Modern sequencing technology allows for fast and
relatively inexpensive sequencing of large amounts of
DNA. Whole genome sequencing of genomes of single
microorganisms or even whole microbial communities
are now state-of-the-art and commercially available.
Especially the sequencing of microbial communities, in
which the isolation of a single organism is no longer
necessary, significantly expanded the number of known
proteins in public databases.
The global ocean sampling project (GOS), still one of

the largest metagenomic projects to date, was initiated

by the J. Craig Venter Institute in 2007 [1]. When the
~6.1 million protein sequences from the GOS dataset
were published, it more than doubled the number of
known proteins in public databases at that time [2].
Nonetheless, already before the first metagenomic data-
sets were published, the functional analysis of proteins
could not keep up with the speed, with which new gene
sequences were discovered. Thus, the functions of most
proteins have been, and still are, predicted based on
their homology to a much smaller number of well-
characterized proteins. Therefore, the function of a
major part of all proteins in large data repositories, such
as NCBI or EMBL is still unknown (e.g. more than 75%
of sequences in Trembl [3]). In some cases, depending
on the taxonomic origin, up to 80% of the gene func-
tions of a given organism cannot be inferred from
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homology [4, 5]. The publication of large metagenomic
datasets only exacerbated this challenge.
Within the vast amount of proteins of unknown or

predicted function lies great biotechnological potential.
Biocatalysts that could be found among those proteins
might help us to move away from a petrol-based econ-
omy to a more bio-based economy. However, given the
sheer size of our databases, it is challenging to make this
in silico knowledge of genetic sequences amenable for
functional testing in the lab.
Here we present our approach to tackling this

challenge using the GOS metagenomic dataset as an ex-
ample. We leveraged the available information from
public databases to classify all proteins of the GOS
dataset with known domains into existing families. We
classified the remaining set of proteins de novo and
devised an algorithm that selects a representative protein
sequence from these families based on a minimal phylo-
genetic distance (i.e. the closest possible relationship) to
all other members. Representatives from 4 families con-
taining predicted lipolytic enzymes were functionally
characterized in the lab. One protein, termed GOS54,
contains the alpha/beta hydrolase domain PF07859 and
showed high lipase/esterase activity when expressed in
Escherichia coli. We demonstrate that our approach can
be used to substantially reduce the number of genes
from metagenomic datasets that need to be screened for
functions. It thus might accelerate biocatalyst discovery.

Results
The majority of GOS proteins can be classified based on
HMM domains from public protein family databases
The GOS metagenomic project is, to date, still one of
the largest publicly available metagenomic datasets. The
goal of our study was to make the vast protein sequence
diversity contained in this dataset amenable to protein-
biochemical functional studies. In a first step, we, there-
fore, annotated all predicted protein sequences con-
tained in the GOS dataset based on existing HMMs
from public protein family databases. We chose two
HMM databases: PFAM, a comprehensive protein family
database [6] and the complementary, more bacteria-
focused TIGRFAMs [7]. HMM searches are fast and can
find more distantly related protein family members
when compared to standard homology searches such as
BLAST [8]. Using an E-value cutoff of ≤ 10−5, we could
classify, based on the combined PFAM and TIGRFAMs
HMMs, 4,436,387 of GOS’s 6,123,395 protein sequences.
The use of a less strict cutoff of ≤ 10−3 resulted in the
additional annotation of less than 4% of proteins in the
dataset and an increase in the theoretical number of
false positive matches by 2 orders of magnitude. We,
therefore, decided to use the more stringent significance
threshold for our analysis.

For the purpose of experimental testability, we ultim-
ately wanted to associate each protein to one, and only
one class. However, many proteins matched to multiple
HMMs with an E-value that passed our significance
threshold. Such an overlap may well be significant, if it
was either due to a similarity in the HMMs, or due to a
frequent co-occurrence of two distinct domains in
proteins of the GOS dataset. If either of those two cases
were true, we predicted that a majority of proteins that
scored above the threshold for a particular HMM should
also score above the threshold for one or more of the
other HMMs. We, therefore, considered all proteins that
were matching a certain HMM above the threshold as a
distinct set. As a measure of the co-occurrence of
certain HMMs, we then calculated the Jaccard index for
each of these HMM-based sets with all other sets. If the
Jaccard index of two sets was above 0.75 (i.e. more than
75% of its combined members were present in both
sets), we created a new classifier, which combined both
HMMs. In this way, we created classifiers, which were
either based on one HMM (13,417 classifiers) or on
multiple HMMs (890 classifiers, for the distribution of
the number of HMMs in these classifiers, see Additional
file 1). We then took each individual protein and consid-
ered only the most significant HMM match (i.e. the
match with the lowest E-value) and assigned it to the
classifier that contained this particular HMM. In this
way, we could assign 72% of the proteins in the GOS set
to 14,307 HMM-based classifiers, which we then consid-
ered protein families (Fig. 1a, Additional files 2 and 3).

Almost 40% of GOS proteins that do not contain domains
recognized by known protein family HMMs were
classified de novo
However, 28% of GOS proteins did not match HMMs
from PFAM and TIGRFAMs with a significant e-value ≤
10−5 (Fig. 1a). Thus, we clustered these remaining pro-
teins using the Markov Cluster algorithm (MCL) [9]. To
obtain MCL-based classes comparable to the classes we
annotated using known HMM domains, we adjusted the
so-called inflation parameter of this software, which ba-
sically adjusts the diversity of the clusters created. Based
on a test clustering of ~15% of our HMM annotated
proteins we found that an inflation parameter of 1.1 re-
sulted in the largest overlap of MCL-based classes with
the existing HMM-based classes and thus this value was
used in our subsequent analysis (Fig. 1b).
We then used the MCL algorithm on all proteins from

the GOS dataset that could not be annotated using
HMMs of known domains. Thus, we distributed these
proteins into 148,013 classes containing between 1 and
17,282 sequences (Additional file 4). Theoretically, non-
coding DNA can randomly result in open reading frames
of significant size. To rule out that we included protein-
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sequences derived from these “random” open reading
frames in our de novo classes, we only considered clas-
ses with more than 30 members and no less than 10%
complete protein sequences (i.e. sequences derived from
DNA sequences with an unambiguous start and stop
codon) for further analysis. We argued that the presence
of 30 homologous open reading frames excludes that
these sequences are random, non-coding DNA. Within
this set, we then tested the phylogenetic significance based
on multiple sequence alignments. These alignments were
generated with MAFFT using default parameters [10] and
optimized with MaxAlign [11]. Classes with more than

80% gaps were then excluded, since such large numbers of
gaps typically only occur in alignments of proteins with
very low to no similarity [11, 12]. For the remaining clas-
ses, which we considered bona fide families (Additional
file 5), we generated Hidden Markov Models. For this pur-
pose, seed alignments were created using MAFFT’s G-INI
strategy with gap regions removed by Gblocks [13]. Low-
quality alignments that could not be improved by Gblocks
running with relaxed parameters (similar to the parame-
ters described in [14]) were rejected. Amino acids were
considered “conserved” if they were present in at least
50% of the sequences at any given position and gaps were

277

865

767

477

317

183 150

72 %

11 %

17 %

A

C

HMM classes

MCL 
classes

small 
clusters

1094

P
hy

lo
ge

ne
tic

si
m

ila
rit

y

I=1,1 I=1,4 I=2,0 I=6,0

Jaccard-index with corresponding
mcl-based cluster

0,51,0 0,0

Inflation parameterB

Fig. 1 Classification of GOS proteins into families based on existing HMMs from PFAM and TIGRFAMs and de novo MCL clustering. a 72% (4,436,387)
of the protein sequences in the GOS dataset could be distributed into families based on existing HMMs obtained from PFAM and TIGRFAMs. The
remaining 28% (1,687,008) of protein sequences were distributed into MCL-based classes. Of these classes, 680,484 (11% of the total GOS protein
sequences) were considered bona fide families based on class size, diversity and amount of complete sequences contained therein. b To generate
MCL-based de novo clusters similar to the clusters based on existing HMMs, the sequences from 2,356 randomly chosen HMM-based families were
subjected to Markov Clustering at the indicated inflation parameter values. The HMM-based families were then compared to the resulting MCL-based
clusters and the Jaccard similarity coefficient (Jaccard index) was calculated. The MCL-cluster with the highest Jaccard similarity coefficient was
considered the cluster corresponding to the HMM-based family. A heatmap was created, with values of the Jaccard indices color-coded according to
the legend. The heatmap is sorted by phylogenetic diversity of the HMM-based families. At an inflation parameter of 1.1 the MCL-based clusters
showed the highest similarity to the HMM-based families. c Taxonomic distribution of MCL-based families. HMMs generated from these families were
compared to the RefSeq database and the taxonomic origin of the matching proteins was classified as either of viral, prokaryotic, or eukaryotic origin.
More than 1,000 families are specific for the GOS dataset
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only considered if present in more than 50% of the se-
quences. Multiple sequence alignments fulfilling these
criteria were modified by Gblocks as described and were
then used as input for HMMER 3.0 to create HMMs [8]
(Additional file 6). We then tested the specificity and
sensitivity of these HMMs with a test set containing the
sequences used to build the HMM (as true positives), and
with 80,506 mammalian and plant proteins, matched in
size distribution to the (exclusively microbial) GOS pro-
tein set (Additional file 7). We then obtained the number
of false negatives (i.e. all unmatched proteins from the set
of proteins used to build the HMM) and estimated the
upper limit of false positives (i.e. all matched mammalian
and plant proteins) to calculate the F1 score, a measure-
ment of HMM performance [15].
This resulted in a library of 4,130 HMMs with an F1

score ≥ 0.5, which contain the information of 680,484
proteins in total (Additional file 8). To test if the high F1
scores are the result of overfitting of the data, we tested
our approach with a training set derived from the largest
of our de novo classes. To this end, we randomly se-
lected two thirds of the sequences contained in FUME-
FAM002132, which contains 1177 sequences in total
and built an HMM from this subset. We then tested the
selectivity and specificity of this HMM against the
complete set of proteins in FUMEFAM002132. Repeat-
ing this approach 10 times, we consistently achieved an
F1 score of 1.
We then used this set of HMMs and searched for

potential matches in the NCBI RefSeq database, a set of
curated prokaryotic, viral, and eukaryotic sequence data-
sets [16, 17]. By this approach, we found that 477 and
865 of our HMMs were specific for viral or prokaryotic
organisms, respectively. 1,094 HMMs did not produce
any match in any of these datasets, suggesting that they
are specific for the ocean metagenome (Fig. 1c,
Additional file 8).

For each family, we determined one representative
sequence
With 14,307 families based on HMMs from public data-
bases and 4,130 novel families, we had the GOS proteins
subdivided into 18,437 families in total. To be able to
test these families for their biochemical function, we de-
cided to define one protein from each family, which best
represents this family. We selected this representative
based on its similarity to all other proteins within its
family. For this purpose, we first generated a guide tree
using MAFFT [10]. We then calculated the sum of the
distances in this tree of each individual member to all
other members of the class. We reasoned that the mem-
ber with the minimal sum of distances is the most
closely related member to all other members and, there-
fore, best represents its class (see Fig. 2a-c for a

schematic overview of this procedure). Because the
representative should be testable in the lab, we consid-
ered only complete sequences (i.e. sequences derived
from DNA sequences with an unambiguous start and
stop codon). To remove bias introduced in the tree
building, we randomly created subsets containing 90% of
all members and recalculated the guide tree and the
associated distances for these subsets 100 times. The
member selected most often was then defined as the
representative for this family. In this way, we could
define one representative for all families containing at
least one complete protein, giving us a total of 9,771
representatives (Fig. 2d, Additional file 9).

Representatives of lipolytic GOS-proteins were tested for
activity in the lab
To test the validity of those representatives, we decided
to test the representatives of families matching HMMs
of well-characterized lipolytic protein families. Lipolytic
enzymes such as lipases and esterases constitute an
important group of biocatalysts for biotechnological
applications [18]. We therefore identified carboxylic
ester hydrolases family (EC 3.1.1.-) proteins from the
Uniprot database with the highest possible annotation
score of 5. After excluding enzymes from potentially
pathogenic organisms, we singled out 7 individual pro-
teins, which we then could match, based on homology
to four of our families (Table 1).
We synthesized codon-optimized genes for the repre-

sentatives of these 4 families and cloned them into an
IPTG-inducible Escherichia coli expression vector. We
then transformed these plasmids into E. coli and
screened for lipolytic activity using plate-based activity
assays. As a positive control, we decided to use LipA, a
well-characterized lipase from Bacillus subtilis. One of
these proteins, GOS54 showed activity on a tributyrin
plate, producing a clear halo around the clone, similar to
the LipA positive control, indicating the ability of this
enzyme to degrade triglycerides containing short-
chained fatty acids (Fig. 3a). A triolein-based plate assay
showed also activity, albeit to a lesser extent (Fig. 3b).
We could verify this activity and GOS54’s preference for
short-chained fatty acid esters in an activity assay using
p-NP esters of butyrate and palmitate as substrates
(Fig. 3c - f ). This indicated to us that GOS54 is indeed a
lipolytic enzyme and that we can use our representative
approach to determine the function of protein classes in
the GOS dataset.

Discussion
The functional annotation of proteins from metage-
nomic datasets is challenging. One approach is the
distribution of proteins into families based on homology
to already known protein families. Using this approach,
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truly new protein families cannot be discovered. The
discovery of novel families unique to the tested dataset
can be achieved by a de novo definition of protein fam-
ilies. A de novo definition is typically based on homology
of proteins in the data set and computationally substan-
tially slower than an approach based on known HMMs.
We therefore decided to use a hybrid approach, assign-
ing families in the GOS metagenomic dataset based on
HMMs of known protein families, where possible (see
Fig. 4 for a schematic overview). From the remaining
proteins that did not contain any known HMMs, we

defined protein families using a markov clustering
approach [9]. Categorization of the GOS dataset based
on HMMs and using the Cd-hit algorithm [19] has been
successfully performed before [1], but the resulting data
is currently unavailable. The use of the more precise
MCL algorithm allowed us to create HMMs based on a
substantial number of our de novo-defined families.
Based on the assumption that high homology correlates

with an identical function, it should be possible to test just
one protein of a family to deduce the function of all mem-
bers of this family. To define a protein that represents a
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Fig. 2 Definition of a representative. a-c) Schematic overview. The representative of a family is calculated based on the distance in a phylogenetic
tree. a The phylogenetic distance between sequences A1 and A2 is 3 units. b A1 and A3 are separated by 4 units. c Since the distance between A2 and
A3 amounts to 5 units, the sum of the distances for the three proteins to all other proteins are A1: 3 + 4 = 7 units, A2: 3 + 5 = 8 units, and A3: 4 + 5 = 9
units. Because A1 has the shortest distance to all other proteins in the family, it is considered the representative protein. d To account for differences in
the automatically generated phylogenetic tree, randomly selected subsets containing 90% of the sequences of a family were resampled 100 times.
The protein that was selected in these subsets most often as the representative was defined as the representative of the family. The majority of
representatives were selected more than 80 times. Black bars represent HMM-based families, grey bars MCL-based families

Table 1 Representatives of families matching HMMs of well-characterized lipolytic proteins

Family/Representative Members with complete
sequence

Associated HMM from PFAM Well-characterized enzymes from UniProt
with accession number

FUMEFAM011958/GOS54 383 Alpha/beta hydrolase fold PF07859 Acetyl esterase EcE Escherichia coli P23872

FUMEFAM010194/GOS55 376 GDSL-like Lipase/Acylhydrolase family PF13472 Arylesterase Streptomyces coelicolor Q9S2A5,
Lipase Streptomyces rimosus Q93MW7

FUMEFAM018084/GOS88 22 Alpha/beta hydrolase fold PF00561 Pimeloyl-[acyl-carrier protein] methyl ester
esterase P13001

FUMEFAM012527/GOS89 7 PB011927 Thermostable organic solvent tolerant lipase
Bacillus sp. Q5U780 (EC 3.1.1.3)

Reviewed amino acid sequences with the maximal annotation score of 5 and bacterial origin were downloaded from UniProt [27]. Based on matching HMMs from
Pfam (Release 27.0) we determined the 4 protein families with the highest homology to the well-characterized proteins from UniProt
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family in the best way possible, we devised an algorithm
that determines the protein with the closest phylogenetic
relationship to all other proteins in the family. This deter-
mination is based on a phylogenetic tree in which we
determine the phylogenetic distance between all members
and select the member with the shortest sum of distances
to all other members. A similar approach has been used in

the COMBREX Project [20]. In this way, we could reduce
4,969,723 proteins that were assigned to families to 9,771
representatives. 1,153,672 proteins are not represented by
a representative, either because they were not assigned to
a family or because their family contained only incomplete
protein sequences. The families, their members and repre-
sentatives are summarized in Additional file 10.
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(GOS55), FUMEFAM018084 (GOS88), and FUMEFAM012527 (GOS89) were cultivated on LB agar plates containing 1% tributyrin. Clear halos around the
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under UV light in the presence of lipolytic activity. All plates were incubated for 2 days at 37 °C. c-d Lipolytic activity of crude extracts from these strains.
4 biological replicates were tested. Crude extract of E. coli expressing lipase A from Bacillus subtilis was set to 100% activity. c Crude extract of strains
expressing GOS54 was three times more active against pNP-butyrate than lipase A. d In contrast, GOS54 was less active against pNP-palmitate as
substrate. e Substrate conversion over time was measured continuously over 20 min at 405 nm. E. coli with empty pCC vector served as a negative
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GOS54 hydrolyzes both pNP-butyrate and pNP-palmitate, but prefers the shorter chain-length substrate
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As a proof of concept of the representative approach
we then tested representatives of four families for lipase
activity. We selected these representatives based on their
homology to well-characterized lipases, because these
lipid-degrading enzymes are one of the most commonly
used biocatalysts [21]. One representative showed ester-
ase/lipase activity, attesting the usefulness of the repre-
sentatives approach.

Conclusion
Here we present a workflow to categorize large metage-
nomic datasets into protein families. Proteins homologous
to known protein families are categorized based on
publicly available HMMs. The residual proteins, which do
not show homology to known protein families could be
categorized de novo. We devised a new algorithm to select
one representative from each protein family, which can
then be functionally tested in the wet lab. Using represen-
tatives from lipolytic families we could verify our
approach, discovering the novel esterase GOS54.

Methods
GOS dataset
All 6,123,395 hypothetical protein sequences from the
GOS dataset were obtained from the NCBI BioProject
13694. Corresponding scaffolds were downloaded from
GeneBank (ftp.ncbi.nih.gov/genbank/wgs/gbcon[33–
108].seq). This information and the associated annota-
tions were stored in a PostgreSQL database (version
9.0.5) on a Mac mini server (8 × 2 GHz Intel Core i7,
8 GB 1333 MHz DDR3, running Mac OS X Server Lion
10.7.5, Apple, Cupertino, CA). Based on the information
contained in the scaffolds, proteins derived from DNA
sequences with an unambiguous start and stop codon
were defined as “complete”. All other sequences and
sequences for which no scaffold information was obtain-
able were considered “incomplete”.

HMM profile-based annotation
The GOS data set was annotated using predefined
HMMs from PFAM and TIGRFAMs by HMMER 3.0
[8]. The reporting threshold was set to 10−5, the output
retrieved in table form, all other parameters remained at
the default settings.
The 34,833 HMMs from Pfam A and B (Release

27.0) and the 4,424 HMMs from TIGRFAMs (Release
14.0) were obtained from ftp://ftp.ebi.ac.uk/pub/data-
bases/Pfam/, and ftp://ftp.jcvi.org/pub/data/TIGR-
FAMs/, respectively.

Family assignment based on HMM annotation
It is possible that individual sequences from the GOS
dataset could match multiple HMMs above the report-
ing threshold. However, we wanted each sequence to be
assigned to one and only one protein family. We thus
compared the sets of sequences that matched any given
HMM with all the other sets of sequences matching the
other HMMs by calculating their Jaccard similarity coef-
ficient (Jaccard index). If two sets of sequences matching
different HMMs reached an Jaccard similarity coeffi-
cient ≥ 0.75, they were combined into one classifier.
Multiple HMM-profiles were combined transitively.
After all classifiers were defined in this way, each indi-
vidual sequence was assigned to the classifier, which
contained the HMM that it matched with the lowest (i.e.
best) threshold. The set of proteins matching a given
classifier was defined as protein family and assigned a
FUMEFAM number. The alignment of all members of
HMM-based families with > 30 members was then opti-
mized using MaxAlign [11] with the command perl -w
maxalign.pl -d -f = [$PATH]$I $I.

All-vs-all BLASTP
To reduce computing time for the blastp program, se-
quence redundancies were first removed using Cd-hit [19]
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Fig. 4 Flow diagram of the classification of proteins of the GOS dataset
into families and representatives. First, all protein sequences were
annotated using HMM-profiles obtained from PFAM and TIGRFAMs.
Proteins that did not match HMMs with scores below the selected
threshold were clustered de novo using MCL. Resulting MCL-based
classes of small size were excluded. For each HMM-based and MCL-
based family that contained sufficient complete sequences, a
representative was defined. In this way 9,771 representatives standing in
for 4,969,723 proteins were assigned. This set of representatives can then
be used to create a custom expression library, which can be screened
for a desired target activity

Kusnezowa and Leichert BMC Bioinformatics  (2017) 18:267 Page 7 of 11

ftp://ftp.ebi.ac.uk/pub/databases/Pfam/
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/
ftp://ftp.jcvi.org/pub/data/TIGRFAMs/
ftp://ftp.jcvi.org/pub/data/TIGRFAMs/


with the following parameters: cd-hit -i lacking_hmm_-
seq_14.fasta -o lacking_gos90_14 -c 0.9 -n 5 -M 0 -T 0.
NCBI BLAST 2.2.28+ version was used for a calcu-

lation of E-values needed for MCL clustering. To ac-
celerate pairwise comparison, sequences were
organized as a BLAST database with a hash index.
Protein sequences were split into files with ~10,000
sequences. The BLASTP-based comparison was per-
formed in multi-threads mode on a 32 Core AMD
Opteron 6274, 2.2 GHz machine, containing 128 Gb
DIMM DDR3 RAM, and 800 Gb hard disk space,
running Ubuntu (GNU/Linux 3.13.0–95-generic ×
86_64). The e-value was set to 10−5, output was set
to “table” and the -parse_deflines and -show_GIs
parameters were set to “true”.

Markov clustering
Markov clustering of proteins was performed using
the MCL program (version 12–068) according to the
protocol by Van Dongen and coworkers [9]. To find
an optimized value for the Inflation parameter,
648,901 GOS sequences from 2,356 (~15%) randomly
selected HMM-based families were clustered by MCL
at values between 1.1, and 6.0. The HMM-based fam-
ilies were then compared to the resulting MCL-based
clusters by calculating the Jaccard index. The MCL-
based cluster that matched with the highest given Jac-
card index was considered the corresponding cluster
to that HMM-based family. The highest number of
classes which had a Jaccard index > 0.5 with their cor-
responding cluster was obtained using the inflation
parameter 1.1 (see Fig. 1d). We thus used the infla-
tion parameter i = 1.1, other parameters set were:
-stream-mirror; -stream-neg-log10; -stream-tf ‘ceil
(200)’. After the Markov clustering, sequences previ-
ously removed using the Cd-hit algorithm were added
back to the corresponding cluster, in order to account
for all sequences found in the GOS dataset.

Creation of HMMs and protein families based on MCL
clustering
MCL generated 145,314 clusters. To define families,
small clusters containing less than 30 protein se-
quences were removed. To assess the quality of the
clusters, alignments were created from the remaining
clusters using MAFFT with the default parameters
[10]. These alignments were improved by removing
sequences that create significant gaps using MaxAlign
[11] with the command perl -w maxalign.pl -d -f
= [$PATH]$I $I. Clusters, which still contained more
than 80% of gaps after that procedure were removed.
The number of gaps was calculated using alistat from
the biosquid package biosquid_1.9 g + cvs20050121-
2_i386 [8]. Clusters that contained less than 10% of

complete sequences were also removed. To create a
seed alignment for HMM creation, the alignment of
the cluster members was further optimized with
MAFFT [10] using mafft –reorder –bl 62 –op 2.73
–maxiterate 1000 –globalpair. Poorly aligned regions
were removed by Gblocks 0.91b, using Gblocks -t = p
-b1 = [half of the numbers of sequences in the align-
ment] -b2 = [half of the numbers of sequences in the
alignment] -b3 = 256 -b4 = 2 -b5 = a -e = .sto. If
Gblocks did not identify conserved blocks, the clus-
ters were dismissed. Based on these improved seed
alignments, Hidden Markov Models were created
using the hmmbuild utility from HMMER 3.0:
hmmbuild –fragthresh 1.0 -n [NAME] –o [NAME].-
out -O [NAME].alig [NAME].hmm [NAME].stoc-
kholm. The new HMMs were validated on a test set.
In this test set all members from the cluster were
added to 80,506 mammalian and plant proteins from
RefSeq (see Additional file 7). The HMMs were vali-
dated against this test set with
hmmsearch –incE 0.001 -E 0.00001 –tblout [].out

[NAME].hmm [NAME]_test_set.fasta.
We then calculated the F1-score for each HMM using

the formula

F1 ¼ 2⋅TP
2⋅TP þ FP þ FNð Þ

where
TP (true positive) = number of family members that

matched the HMM;
FP (false positive) = number of RefSeq-based mam-

malian and plant proteins that matched the HMM.
Given that proteins in the GOS dataset are of
prokaryotic origin, we argued that matched mamma-
lian and plant proteins would give us an upper limit
of false positives;
FN (false negative) = number of family members which

did not match the HMM.
Clusters with an F1-score > 0.5 were considered bona

fide protein families and were assigned a FUMEFAM
number.

Definition of representative family members
In a given family, we defined the relationship distance
between each protein pair (i, j) as the sum of the
length of all branches directly connecting the pair in
a phylogenetic tree. To this end we used the Newick-
formated guide tree generated from MAFFT output
(mafft –retree 2 –reorder –6merpair –averagelinkage
–treeout) based on the members of the final opti-
mized (where applicable) alignment of the family.
This guide tree is build using a modified UPGMA
algorithm. We then calculated for each protein in the
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family the sum of all relationship distances to all
other proteins using the formula:

Sum of distances jð Þ ¼
Xn

i¼0

d i; jð Þ

where
d (i,j): distance between sequence i and sequence j in

the phylogenetic tree
n: number of sequences in family
The complete protein with the smallest sum of

relationship distances was determined as a possible
representative for any given family. This process was
repeated 100 times using each time 90% of randomly
selected sequences from the family. The protein that was
selected as possible representative most often was
designated as the representative for the family.

Selection of lipolytic representatives
We selected from the UniProt database bacterial en-
zymes from the carboxylic ester hydrolases family EC
3.1.1.- with the highest annotation score 5. Enzymes
from pathogenic organisms or with oligosaccharides as
substrates were excluded manually. The selected pro-
teins were then compared to the PFAM HMMs. The
representatives of the families from our database that
were classified by the best matching HMMs were
retranslated into DNA sequences optimized for E.
coli codon usage using JCat [22]. These DNA se-
quences (Table 1) were then synthesized by GeneArt
(Thermo Fisher Scientific GENEART GmbH, Regens-
burg, Germany).

Protein expression in Escherichia coli
Genes were cloned into an IPTG inducible expression
vector based on pTAC-MAT-Tag-2 (Sigma– Aldrich, St.
Louis, MO, USA) termed pCC and transformed into
Escherichia coli XL1-Blue using a heat-shock transform-
ation protocol [23]. Strains were grown routinely in LB-
medium [24] containing 200 μg/ml ampicillin. For
strains used in this study see Table 2.

Plate-based esterase and lipase assays
For all activity assays, at least three biological replicates
were tested. To test for lipase activity, LB plates contain-
ing 1% (w/v) triolein, 0.001% (w/v) Rhodamin B (Sigma-
Aldrich, St. Louis, USA), 200 μg/ml ampicillin, and
100 μM IPTG were prepared [25]. A formation of or-
ange fluorescent halos around colonies on these plates is
an indicator of lipase activity. For an esterase activity
screening, LB agar plates containing 1% (w/v) tributyrin,
200 μg/ml ampicillin, and 100 μM IPTG were prepared.
Esterase activity can be identified by clear halos around
colonies on these plates. Overnight cultures of strains
were adjusted to an OD600 of 2. 2 μl of these cultures,
corresponding to ~ 8 × 105 cells were spotted onto the
lipase and esterase screening plates.

Lipolytic activity assays in crude cell extracts
Cell cultures were grown at 37 °C in LB medium con-
taining 200 μg/ml ampicillin. At an OD600 between 0.5
and 0.6 the expression of the plasmid-encoded proteins
was induced by addition of 500 μM IPTG to the
medium. After 3 h, cells were harvested for 1 min at
13,000 × g. Pellets were resuspended in 800 μl 50 mM
Tris/HCl buffer, pH 7.3. Bacterial cells were disrupted by
sonication using a Vial Tweeter Instrument (Hielscher,
Teltow, Germany) at 80% amplitude and cycle of 0.5 for
5 × 30 s with 30 s breaks on ice. Crude extracts were
stored at −20 °C. p-Nitrophenyl (p-NP) ester-based ac-
tivity assays were prepared as described previously [26].
Briefly, activity of crude extracts towards p-NP butyrate
and p-NP palmitate (Sigma-Aldrich) was tested in
50 mM Tris/HCl buffer pH 7.3 at 25 °C. The hydrolysis
reaction was started by the addition of p-NP ester to a
final concentration of 50 μM. The reaction was observed
for 20 min, continuously measuring the absorption at
405 nm in a V-650 UV/Vis spectrophotometer (Jasco,
Tokyo, Japan). The change of absorption over time (dA/
dt) was calculated using the “Enzymatic Reaction Rate”
module of the spectrophotometer’s software (Jasco). The
activity of crude extract from E. coli AK50 (expressing
Lipase A from Bacillus subtilis) was set to 100%.

Table 2 Strains used in this study

Escherichia coli strain Genotype Source

XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ proAB laclq ZΔM15 Tn10 (Tetr)] Stratagene, La Jolla, CA

AK02 XL1-1Blue pCC This work

AK50 XL1-Blue pCC_lipA (pCC containing lipA from B. subtillis between NdeI and EcoRI restriction sites) This work

AK70 XL1-Blue pCC_gos54 This work

AK71 XL1-Blue pCC_gos55 This work

AK72 XL1-Blue pCC_gos88 This work

AK73 XL1-Blue pCC_gos89 This work
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