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Abstract

Background: Recent studies have shown that the crosstalk between microRNA (miRNA) sponges plays an important
role in human cancers. However, the co-regulation roles of miRNA sponges in protein-protein interactions (PPIs) are still
unknown.

Results: In this study, we propose a multi-step method called miRSCoPPI to infer miRNA sponge co-regulation of PPIs.
We focus on investigating breast cancer (BRCA) related miRNA sponge co-regulation, by integrating heterogeneous
data, including miRNA, long non-coding RNA (lncRNA) and messenger RNA (mRNA) expression data, experimentally
validated miRNA-target interactions, PPIs and lncRNA-target interactions, and the list of breast cancer genes. We find
that the inferred BRCA-related miRSCoPPI network is highly connected and scale free. The top 10% hub genes in the
BRCA-related miRSCoPPI network have potential biological implications in breast cancer. By utilizing a graph clustering
method, we discover 17 BRCA-related miRSCoPPI modules. Through pathway enrichment analysis of the modules, we
find that several modules are significantly enriched in pathways associated with breast cancer. Moreover, 10 modules
have good performance in classifying breast tumor and normal samples, and can act as module signatures for
prognostication. By using putative computationally predicted miRNA-target interactions, we have consistent results
with those obtained using experimentally validated miRNA-target interactions, indicating that miRSCoPPI is robust in
inferring miRNA sponge co-regulation of PPIs in human breast cancer.

Conclusions: Taken together, the results demonstrate that miRSCoPPI is a promising tool for inferring BRCA-related
miRNA sponge co-regulation of PPIs and it can help with the understanding of the co-regulation roles of miRNA
sponges on the PPIs.
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Background
microRNAs (miRNAs) are a kind of single-stranded
small non-coding RNA molecules (~22 nt) found in
different organisms. They widely participate in many
biological functions [1, 2]. Computational analysis esti-
mates that >60% of human protein-coding genes are reg-
ulated by miRNAs through conserved base-pairing
between the 3′-untranslated region (UTR), 5′ UTR, and

open reading frames (ORF) of mRNAs and 5′ seed re-
gion of miRNAs [3]. In general, miRNAs cause inhib-
ition of translation and/or degradation of mRNAs.
Occasionally, miRNAs also positively regulate gene ex-
pression and/or increase translation of mRNAs [4, 5].
Recently, the hypothesis of competing endogenous

RNA (ceRNA) has been proposed [6]. Based on the
hypothesis, a pool of RNAs acting as ceRNAs (also
called miRNA sponges), such as lncRNAs, pseudogenes,
mRNAs and circular RNAs (circRNAs), compete with
each other by sponging miRNAs for interactions.
Previous studies have shown that miRNA sponges play
important roles in the physiology and development of
human cancers [7, 8].
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Existing computational methods of investigating miRNA
sponges can be divided into three categories: (1) miRNA
sponge recognition, (2) identification of miRNA sponge
interaction networks, and (3) miRNA sponge module ex-
ploration. In the first category [9, 10], similar to miRNA
target recognition, the principle of complementary base-
pairing is assumed when recognizing miRNA sponges. In
other words, it is assumed that there is an interaction be-
tween the 5′-end of an miRNA called the ‘seed region’ and
the sequence of the miRNA sponge. However, improperly
designed miRNA sponge sequences may cause high false-
positive miRNA sponge recognition. By integrating ex-
pression profiles and putative miRNA-target interactions,
several in silico or mathematical models in the second cat-
egory [11–16] have been proposed to identify miRNA
sponge interaction networks. The identification of miRNA
sponge interaction networks provides a global way to
study the biological functions and regulatory mechanisms
of miRNA sponges. Since modularity is an important
property in cancer progression and development, the
third category [17–19] focuses on exploring miRNA
sponge modules to study module-level properties of
miRNA sponges in cancer. The identified functional
miRNA sponge modules could be regarded as poten-
tial module biomarkers in specific cancer, e.g., breast
cancer and lung cancer.
The above work from different perspectives investi-

gates the crosstalk between miRNA sponges. However,
they don’t consider the co-regulation roles of miRNA
sponges in protein-protein interactions (PPIs), which,
actually, can help to understand how miRNA sponges
influence the downstream biological processes. Proteins
are the major functional units in living cells, and they
rarely work alone. PPIs make up the protein interactome
of organism, and are the basis of most biological pro-
cesses. Moreover, understanding PPI networks can pro-
vide insight into the behaviour of cancer cells [20].
Consequently, inferring miRNA sponge co-regulation of
PPIs could facilitate the understanding of biological
mechanisms within living cells.
In this study, we propose a multi-step method to infer

miRNA Sponge Co-regulation of PPIs (thus the pro-
posed method is called miRSCoPPI). The method is ap-
plied to the breast invasive carcinoma (BRCA) dataset
provided by The Cancer Genome Atlas (TCGA) to infer
BRCA-related miRSCoPPI network. We firstly integrate
matched miRNA, lncRNA and mRNA expression data,
experimentally validated miRNA-target interactions, and
the list of breast cancer genes to identify BRCA-related
miRNA sponge interaction network. Next, we search for
two types of pre-defined miRSCoPPI motifs in the
network consisting of BRCA-related miRNA sponge
interactions, PPIs and lncRNA-target interactions. By
merging the identified miRSCoPPI motifs, we obtain the

BRCA-related miRSCoPPI network. Further investiga-
tion into the topological properties of the BRCA-related
miRSCoPPI network, we discover that the network is
highly connected and scale free. Through cluster analysis
of the BRCA-related miRSCoPPI network, we find 17
BRCA-related miRSCoPPI modules. Pathway enrich-
ment analysis results show that several modules are
enriched in pathways related to breast cancer. In
addition, 58.82% (10 out of 17) of modules have good
performance in classifying breast tumor and normal
samples, and are regarded as module signatures for
prognostication. Finally, miRSCoPPI is robust in infer-
ring BRCA-related miRNA sponge co-regulation of PPIs.

Methods
Data sources
We obtain the matched miRNA, lncRNA and mRNA ex-
pression profiles of human breast cancer (BRCA) from Paci
et al. [21]. We use the biomaRt [22] Bioconductor package
for gene ID conversion. The lncRNAs and mRNAs without
gene symbols are removed, and the unique expression
values of replicate miRNAs and mRNAs are obtained by
taking the average expression value. As a result, we have ex-
pression profiles of 453 miRNAs, 470 lncRNAs and 11157
mRNAs. Samples of BRCA categorized as tumor (72
samples) and normal (72 samples) are used in this work.
The experimentally validated miRNA-target interactions

consist of two types: miRNA-mRNA interactions and
miRNA-lncRNA interactions. The miRNA-mRNA interac-
tions are obtained by integrating miRTarBase v6.1 [23],
TarBase v7.0 [24], and miRWalk v2.0 [25]. The miRNA-
lncRNA interactions are from NPInter v3.0 [26] and
LncBase v2.0 [27]. The experimentally validated PPIs are
obtained from an integrative interaction database called
ConsensusPathDB v32 [28], and the experimentally verified
lncRNA-target interactions are from NPInter v3.0 [26],
LncRNA2Target v1.2 [29] and LncRNADisease v2015 [30].
A list of breast cancer genes are collected by integrat-

ing five databases: COSMIC v77 [31], GAD [32], OMIM
[33], BCGD [34] and G2SBC [35]. The list of breast
cancer lncRNAs are from LncRNADisease v2015 [30]
and Lnc2Cancer v2016 [36]. The list of 40 unique Gene
Ontology (GO) terms associated with 10 cancer hall-
marks is obtained from Plaisier et al. [37].

Pipeline of miRSCoPPI
In this section, we propose miRSCoPPI for inferring
miRNA sponge co-regulation of PPIs in human breast
cancer. As shown in Fig. 1, the method contains the fol-
lowing three steps:

(1)Identifying BRCA-related miRNA sponge interaction
network. We collect matched expression data of BRCA
and putative miRNA-target interactions. By using the
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expression data of miRNAs, lncRNAs and mRNAs,
Pearson correlation of each pair of miRNA-lncRNA
and miRNA-mRNA is calculated. Then, we remove the
pairs not supported by putative miRNA-target interactions.
From these remaining miRNA-lncRNA and miRNA-
mRNA pairs, we identify miRNA sponge pairs, i.e., the
lncRNA-lncRNA, lncRNA-mRNA and mRNA-mRNA
pairs that satisfy the four conditions introduced in the next
section. Finally, we merge the identified miRNA
sponge pairs to form a BRCA-related miRNA
sponge interaction network.

(2)Searching for miRSCoPPI motifs and inferring BRCA-
related miRSCoPPI network. In this step, we firstly

integrate BRCA-related miRNA sponge interactions
(obtained from Step 1), PPIs and lncRNA-target
interactions into a network. Then we search for two
types of miRSCoPPI motifs from the integrated network.
Finally, we merge the extracted miRSCoPPI motifs to
obtain the BRCA-related miRSCoPPI network.

(3)Analyzing miRSCoPPI network. In this step, we
conduct network topological analysis and cluster
analysis to study the BRCA-related miRSCoPPI
network. For each BRCA-related miRSCoPPI
module, we also make module evaluation by using
functional enrichment analysis and classification
analysis.

Fig. 1 The pipeline of miRSCoPPI. In Step 1, we identify BRCA-related miRNA sponge interaction network by combining matched miRNA, lncRNA
and mRNA expression data, and experimentally validated miRNA-target interactions. In Step 2, BRCA-related miRNA sponge interactions, PPIs, and
lncRNA-target interactions are firstly combined into a network, and we search for miRSCoPPI motifs from the combined network. Then, the identified
miRSCoPPI motifs are merged to obtain the BRCA-related miRSCoPPI network. In Step 3, we analyze the BRCA-related miRSCoPPI network using
network topological analysis, cluster analysis and module evaluation
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In the following, we will describe these steps in detail.

Identifying BRCA-related miRNA sponge interaction network
Given expression data of miRNAs, lncRNAs and
mRNAs in BRCA samples, and experimentally validated
miRNA-target interactions, with our method, two candi-
date sponges, ceRNAi and ceRNAj are accepted as a
BRCA-related miRNA sponge pair if all the following
four conditions are met:

(1)ceRNAi and ceRNAj are BRCA genes.
Since the data source used in this work is BRCA
dataset, we focus on identifying BRCA-related
miRNA sponge pairs where ceRNAi and ceRNAj

must be in the list of breast cancer genes.
(2)ceRNAi and ceRNAj show a significant sharing of

miRNAs at sequence level.
Since the computational complexity of testing all
possible combination of RNA-RNA pairs is very
high, we only reserve those RNA-RNA pairs with a
significant sharing of miRNAs. In this work, we
require that ceRNAi and ceRNAj share at least three
miRNAs, and pass the test of significance of the
sharing, i.e., the p-value obtained from the following
hyper-geometric distribution test is less than 0.01.

p ¼ 1−F xjM;N ;Kð Þ ¼ 1−
X

i¼0

x−1
N
i

� �
M−N
K−i

� �

M
K

� � ð1Þ

In the formula, M is the number of all miRNAs in
the dataset, N and K represent the total numbers of
miRNAs regulating ceRNAi and ceRNAj respectively,
and x is the number of common miRNAs shared by
ceRNAi and ceRNAj.

(3)ceRNAi and ceRNAj have similar miRNA regulation
pattern.
In addition to a significant sharing of miRNAs,
ceRNAi and ceRNAj also should show similar
miRNA regulation pattern [38]. Here, we say that
ceRNAi and ceRNAj have similar regulation pattern
if the expression levels of them are similarly
regulated by their shared miRNAs. If ceRNAi and
ceRNAj have similar miRNA regulation pattern, the
two RNAs tend to compete with each other. Thus,
we evaluate the similarity of miRNA regulation
pattern between two ceRNAs by using two scores,
cosine score and collaboration score. Let M is the
number of common miRNAs shared by ceRNAi and
ceRNAj. We compute the Pearson correlation
coefficients between the expression levels of each
of the M common miRNAs and the two ceRNAs
(ceRNAi and ceRNAj), Cik and Cjk (k = 1,…,M),

respectively, then we use the correlation coefficients
in the calculation of the cosine score (Cos) in the
following formula.

Cos ceRNAi; ceRNAj
� � ¼

XM

k¼1

CikCjk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

k¼1

Cik
2

vuut •

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

k¼1

Cjk
2

vuut
ð2Þ

To cater for both up and down miRNA regulations
when calculating the collaboration score, we use the
absolute values of correlation coefficients (AC)
between the expression levels of the miRNAs and
the ceRNAs as the strength of miRNA-ceRNA
interactions. Higher values of AC indicate greater
strength of miRNA-ceRNA interactions. Then for
ceRNAi, ceRNAj, based on the strength of the
miRNA-ceRNA interactions, the collaboration score
(Col) of the ceRNAi-ceRNAj pair is calculated as
follows:

Col ceRNAi; ceRNAj
� � ¼

XM

k¼1

ACikACjk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

k¼1

ACik

vuut •

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

k¼1

ACjk

vuut
ð3Þ

Since the cosine score and collaboration score is a
conservative and excessive estimation of the
similarity of miRNA regulation pattern respectively,
we regard the average score of the cosine score and
collaboration score as the similarity score (Sim) of
each miRNA sponge pair. To reserve more candidate
BRCA-related miRNA sponge pairs, the threshold of
Sim is set to a moderate value of 0.5.

Sim ceRNAi; ceRNAj
� � ¼ Cos ceRNAi; ceRNAj

� �þ Col ceRNAi; ceRNAj
� �

2

ð4Þ

(4)ceRNAi and ceRNAj are positively correlated at
expression level.
It has been found that miRNA sponge modulators
can decrease the number of free miRNAs available
to repress other target genes [13], indicating that the
expression levels of miRNA sponge pairs are positively
correlated with each other. To identify the active
BRCA-related miRNA sponge pairs, we calculate the
Pearson correlation of each candidate BRCA-related
miRNA sponge pairs. All the candidate BRCA-related
miRNA sponge pairs with positive correlations and
p-value < 0.01 are inferred as BRCA-related miRNA
sponge interactions.
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To create the BRCA-related miRNA sponge interaction
network, we represent each of the BRCA-related
miRNA sponge pairs satisfying the above conditions
with two nodes linked together with an undirected
edge (denoting their competing interaction), then we
merge the linked pairs to get the network.

Searching for miRSCoPPI motifs and inferring BRCA-related
miRSCoPPI network
As shown in Fig. 1, we specify two types of miRSCoPPI
motifs by considering the co-regulation of PPIs by two
miRNA sponges. Here, the co-regulation between
miRNA sponges is determined by whether the two
miRNA sponges share a common PPI. This means that
the two miRNA sponges each interact with a different
party of the same PPI; or the two miRNA sponges may
share a common protein that is a party of a PPI.
To search for miRSCoPPI motifs, we firstly integrate

BRCA-related miRNA sponge interactions, PPIs, and
lncRNA-target interactions into a network. We use the
NetMatchStar plugin [39] in Cytoscape [40] to search
the integrated network for the two types of miRScoPPI
motifs. Finally, we merge the identified miRSCoPPI mo-
tifs to obtain the BRCA-related miRSCoPPI network.

Analyzing miRSCoPPI network
To understand the network topological properties of the
BRCA-related miRSCoPPI network, we use the igraph R
package [41] to analyze the topology of the network. In
this study, we treat the edges of the BRCA-related miRS-
CoPPI network as undirected. In the BRCA-related
miRSCoPPI network, the degree of a node is defined as
the number of edges connecting the node. The charac-
teristic path length of the BRCA-related miRSCoPPI net-
work is the average of the minimum path lengths (the
total number of edges of a path from one node to an-
other node) for all possible pairs of network nodes, and
it reflects the compactness of a network. The hub genes
with higher degrees in biological networks are more
likely to be essential, and it is reported that about 10%
of the nodes in a network are essential. To understand
the underlying biological implications of hub genes, we
use the clusterProfiler Bioconductor package [42] to con-
duct functional enrichment analysis. We are only inter-
ested in Gene Ontology (GO) [43] biological processes
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
[44] pathways at significant level (adjusted p-value <
0.01, adjusted by Benjamini-Hochberg method).
To systematically analyze the BRCA-related miRS-

CoPPI network, we focus on the three types of distribu-
tions: node degree, miRSCoPPI motifs and common
miRNAs. If a network whose node degree follows a
power law model, the network is regarded as scale-free,
which is one of most important metric of true biological

networks [45]. In addition, if the distributions of miRS-
CoPPI motifs obey a power law model, then this indi-
cates that most of miRSCoPPI motifs are formed by a
minority of BRCA-related miRNA sponge interactions.
Similarly, the distributions of common miRNAs follow-
ing a power law model imply that only a few BRCA-
related miRNA sponge interactions share a large number
of common miRNAs. Since the distributions of miRS-
CoPPI motifs and common miRNAs are all associated
with BRCA-related miRNA sponge interactions, we fur-
ther evaluate whether miRSCoPPI motifs and common
miRNAs are linearly correlated in the BRCA-related
miRSCoPPI network.
For cluster analysis, we use the Markov Clustering

Algorithm (MCL) [46] implemented in ProNet R pack-
age [47] to identify modules in the BRCA-related miRS-
CoPPI network. To evaluate whether these modules
involve in pathways related to breast cancer, we also use
the clusterProfiler Bioconductor package to conduct
KEGG pathway enrichment analysis on the modules.
To further determine if the modules can be module

signatures for prognostication or not, we use Support
Vector Machine (SVM) [48] with default parameters
implemented in the e1071 R package [49] to evaluate
classification performance of the feature genes in each
module. We utilize two classification performance
metrics: classification accuracy (ACC) and area under re-
ceiver operating characteristic curve (AUC), and make
10-fold cross-validation to evaluate the performance of
each module. ACC is the number of correct predictions
made divided by the total number of predictions made,
and can indicate the overall accuracy including true
positive rate and true negative rate. AUC is equal to the
probability that SVM will rank a randomly chosen posi-
tive sample higher than a randomly chosen negative one.
Here, the modules with high values of ACC and AUC
(i.e., more than 0.9) are regarded as module signatures.
To rank the overall performance of the modules, we de-
fine a new metric called overall prognostic index (OPI)
that is the average value of AUC and ACC. A higher value
of OPI means better overall classification performance.

Results
The topological properties of BRCA-related miRSCoPPI
network
We firstly follow Step 1 of miRSCoPPI to infer three types
of BRCA-related miRNA sponge interactions (lncRNA-
lncRNA, lncRNA-mRNA and mRNA-mRNA), and merge
them to form the BRCA-related miRNA sponge inter-
action network. The network contains 37076 miRNA
sponge interactions (details in Additional file 1). Next,
according to Step 2 of miRSCoPPI, we infer BRCA-
related miRSCoPPI network by merging the found
miRSCoPPI motifs. As a result, the BRCA-related
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miRSCoPPI network contains 11292 miRNA sponge
interactions, 10448 PPIs and 165 lncRNA-target inter-
actions (details in Additional file 2).
The characteristic path length in the network is 2.275,

which suggests that the BRCA-related miRSCoPPI net-
work is highly connected and miRNA sponges can
promptly co-regulate their downstream protein-protein
interactions. The node degree distribution of the BRCA-
related miRSCoPPI network fits power law distribution
well, with R2 = 0.7624 (see Fig. 2a). The result indicates
that the BRCA-related miRSCoPPI network is approxi-
mately scale free and the topological components such
as the hub nodes and modules may have potential
biological implications. The distribution of miRSCoPPI
motifs formed by BRCA-related miRNA sponge interac-
tions follows power law distribution very well, with R2 =
0.9643 (see Fig. 2b). This result implies that most miRS-
CoPPI motifs are generated by only a minority of
BRCA-related miRNA sponge interactions in the BRCA-
related miRSCoPPI network. Furthermore, the distribu-
tion of common miRNAs shared by each BRCA-related
miRNA sponge interactions also obeys power law

distribution well, with R2 = 0.8733 (see Fig. 2c). The re-
sult shows that common miRNAs with large size tend to
be shared by a small fraction of BRCA-related miRNA
sponge interactions in the BRCA-related miRSCoPPI
network. In Fig. 2d, there is no linear correlation
between miRSCoPPI motifs and common miRNAs, with
Corr = 0.0132. In other words, a BRCA-related miRNA
sponge interaction with a large number of miRSCoPPI
motifs does not necessarily share a large number of
common miRNAs, and vice versa.

Hub genes have potential biological implications in the
BRCA-related miRSCoPPI network
Due to the scale-free property, our BRCA-related miRS-
CoPPI network is thought to be made up of a few highly
connected genes. These genes with high node degrees are
regarded as hub genes, and may be more essential in the
network. In the BRCA-related miRSCoPPI network, we
select top 10% of all the genes as hubs (83 genes). To un-
cover their potential biological implications in breast can-
cer, we make a functional enrichment analysis of these
hub genes using the clusterProfiler Bioconductor package.

Fig. 2 The topological properties of the BRCA-related miRSCoPPI network. a Node degree distribution of the BRCA-related miRSCoPPI network.
b The distribution of miRSCoPPI motifs in the BRCA-related miRSCoPPI network. c The distribution of common miRNAs shared by miRNA sponge
interactions in the BRCA-related miRSCoPPI network. d The correlation between the number of common miRNAs and the number of miRSCoPPI
motifs, Corr denotes Pearson correlation
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After functional enrichment analysis, we have discovered
that the hub genes are significantly enriched in 337 GO
terms and 30 KEGG pathways (details in Additional file 3).
According to the list of GO terms mapping to the hall-
marks of cancer (details in Additional file 3), 6 out of the
337 GO terms (GO:0045787, GO:0030308, GO:0045786,
GO:0090398, GO:0001837, GO:0071456) are involved in 5
cancer hallmarks (Self Sufficiency in Growth Signals,
Insensitivity to Antigrowth Signals, Limitless Replica-
tive Potential, Tissue Invasion and Metastasis, Repro-
gramming Energy Metabolism). Furthermore, several
identified KEGG pathways are related to breast can-
cer, such as Cell cycle (hsa04110) [50], Breast cancer
(hsa05224), and Pathways in cancer (hsa05200).
Altogether, the hub genes in the BRCA-related miRS-

CoPPI network are biologically meaningful, which may
imply that our BRCA-related miRSCoPPI network can un-
cover potential biological implications in breast cancer.

Modules in the BRCA-related miRSCoPPI network are
involved in pathways related to breast cancer
Modules in biological networks may work as func-
tional units underlying complex diseases, including
cancer. Thus, we use the MCL clustering method [46]
to identify modules in the BRCA-related miRSCoPPI
network. Since the size of a miRSCoPPI motif is 4,
the minimum module size is set to 4. As a result, we
discover 17 BRCA-related miRSCoPPI modules (de-
tails in Additional file 4).
To further understand whether the discovered mod-

ules involve in pathways related to breast cancer, we
perform pathway enrichment analysis using the cluster-
Profiler Bioconductor package. As shown in Fig. 3, 9 out
of 17 modules are significantly enriched in 26 KEGG
pathways. Several enriched KEGG pathways are associ-
ated with breast cancer, such as Cell cycle [50], TGF-
beta signaling pathway [51], Pathways in cancer, Hippo
signaling pathway [52], Ras signalling pathway [53], ErbB
signaling pathway [54], Chemokine signalling pathway
[55], and Calcium signalling pathway [56]. Specifically,
three modules (M2, M3, and M4) are significantly in-
volved in the KEGG pathway: Breast cancer, suggesting
that the three BRCA-related miRSCoPPI modules are
closely associated with breast cancer.
In summary, the pathway enrichment analysis results

of BRCA-related miRSCoPPI modules demonstrate that
our network is compose of several functional modules
related to breast cancer.

Discriminative modules can act as module signatures in
the BRCA-related miRSCoPPI network
As illustrated above, the modules in the BRCA-related
miRSCoPPI network are related to breast cancer. Thus,
the discriminative modules may act as module signatures.

We use SVM classifier to select the discriminative mod-
ules that have good performance in classifying human
breast tumor and normal samples. As shown in Table 1,
10 out of the 17 discovered BRCA-related modules
(58.82%) are regarded as module signatures. The clas-
sification performance of each module is ranked in
descending order of OPI. This result indicates that
the 10 BRCA-related miRSCoPPI modules can act as mod-
ule signatures for prognostication of human breast cancer.
We further analyze Module 2, Module 3 and Module

4 in detail because these modules with good classifica-
tion performance are also involved in the KEGG
pathway: Breast cancer. Figure 4 shows the networks of
Module 3 and Module 4. Due to a large number of
nodes and edges, the network of Module 2 is not shown
and can be seen in Additional file 5. We have discovered
that several known miRNA sponges or proteins from the
same family or class prefer to cluster in the same mod-
ule, and interact with each other. In Module 2, there are
three families including KLF family (KLF4, KLF5, KLF6,
KLF10 and KLF11), SMAD family (SMAD3, SMAD4,
SMAD5 and SMAD7), and SOX family (SOX8, SOX9,
SOX10 and SOX13). In Module 3 (red nodes in Fig. 4a),
FGFR2, FGFR3, FGF18, GRB2 and IGF1R are all growth
factors, and EGFR (also called ERBB1), ERBB2, ERBB3
and ERBB4 in Module 4 (red nodes in Fig. 4b) are all
from human ERBB family.

A few BRCA-related miRNA sponge interactions are
experimentally validated
For the ground truth of validation, we combine the ex-
perimentally validated miRNA sponge interactions from
[8] with miRSponge [57]. In total, we have obtained 99
experimentally validated miRNA sponge interactions
(details in Additional file 6). Only 4 BRCA-related
miRNA sponge interactions (H19: IGF2, PTEN:TNKS2,
PTEN:RB1, KLF6:PTEN, and “:” stands for competing
with each other) are experimentally validated. It is noted
that 2 experimentally validated BRCA-related miRNA
sponge interactions (PTEN:TNKS2, KLF6:PTEN) can
form miRSCoPPI motifs with PPIs. As shown in Fig. 5,
the BRCA-related miRSCoPPI sub-network consists of
several miRSCoPPI motifs formed by the 2 experimen-
tally validated BRCA-related miRNA sponge interac-
tions. The top hub gene NCOA3 plays an essential role
in the network, and the dysregulation of it can disturb
the balance of the network and may further cause breast
cancer. This result is consistent with the previous find-
ing [58] that NCOA3 disorder is closely associated with
breast cancer risk.

Robustness of the miRSCoPPI method
To evaluate the robustness of the miRSCoPPI method,
we use putative computationally predictive miRNA-target
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interactions to validate the results obtained using experi-
mentally validated miRNA-target interactions. The pre-
dictive miRNA-mRNA interactions are obtained from
TargetScan v7.1 [59]. The predictive miRNA-lncRNA
interactions are from starBase v2.0 [60]. The distributions
of node degrees, miRSCoPPI motifs, common miRNAs
in the BRCA-related miRSCoPPI network approxi-
mately follow power law distribution, with R2 =
0.7152, 0.9621, 0.6459, respectively (as shown in
Figure S1, Additional file 7). In addition, there is also
no linear correlation between miRSCoPPI motifs and
common miRNAs, with Corr = −0.0681.

In the BRCA-related miRSCoPPI network, we also se-
lect top 10% of the genes as hubs (82 genes). The func-
tional enrichment analysis results show that the hub
genes are significantly associated with 338 GO terms
and 15 KEGG pathways (details in Additional file 3). It
is noted that 5 out of 338 GO terms (GO:0045787,
GO:0045786, GO:0090398, GO:0001837, GO:0071456)
are also related to 5 cancer hallmarks (Self Sufficiency in
Growth Signals, Insensitivity to Antigrowth Signals,
Limitless Replicative Potential, Tissue Invasion and
Metastasis, Reprogramming Energy Metabolism). In
addition, several KEGG pathways, such as Cell cycle
(hsa04110) [50], Breast cancer (hsa05224), and Pathways
in cancer (hsa05200) are related to breast cancer. The
results also indicate that the hub genes have potential
biological implications in breast cancer.
By using the MCL clustering method, we have discov-

ered 30 BRCA-related miRSCoPPI modules (details in
Additional file 4). Fourteen out of 30 modules are sig-
nificantly associated with 46 KEGG pathways and several
pathways are also related to breast cancer (see Figure S2,
Additional file 7). Moreover, 22 out of 30 modules
(73.33%) have good classification performance and can
act as module signatures for prognostication of human
breast cancer (see Table S1, Additional file 7).
For the experimental validation of BRCA-related miRNA

sponge interactions, only 2 BRCA-related miRNA sponge
interactions (PTEN:TNKS2, KLF6:PTEN) are experi-
mentally verified. The 2 BRCA-related miRNA sponge
interactions can also form BRCA-related miRSCoPPI

Table 1 Module signatures for prognostication

Rank Module ID Module size AUC ACC OPI

1 2 291 0.9993 0.9861 0.9927

2 5 335 0.9989 0.9823 0.9906

3 4 7 0.9988 0.9768 0.9878

4 3 35 0.9931 0.9670 0.9800

5 7 12 0.9951 0.9598 0.9775

6 8 4 0.9869 0.9514 0.9691

7 16 8 0.9850 0.9512 0.9681

8 14 7 0.9880 0.9366 0.9623

9 1 5 0.9722 0.9306 0.9514

10 10 7 0.9756 0.9140 0.9448

AUC, ACC and OPI denote classification accuracy, area under receiver operating
characteristic curve and overall prognostic index, respectively

Fig. 3 KEGG enrichment results of the BRCA-related miRSCoPPI modules. The number of BRCA-related miRSCoPPI modules having enriched KEGG
pathways is 9. The number of horizontal axis is the number of enriched genes. The bubble size indicates the ratio of genes in each term, and different
colours correspond to different adjusted p-values. The p-values are adjusted by Benjamini-Hochberg method
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Fig. 4 Network presentation of Module 3 (a) and Module 4 (b). Rectangle and circular nodes indicate miRNA sponges and proteins, respectively.
Red rectangle nodes denote known miRNA sponges or proteins from the same family or class. Dashed lines denote miRNA sponge interactions,
and solid lines are PPIs

Fig. 5 Network visualization of miRSCoPPI sub-network formed by experimentally validated miRNA sponge interactions. Rectangle and circular nodes denote
miRNA sponges and proteins, respectively. Red circular node denotes the top hub gene in the network. Red dashed lines represent experimentally validated
miRNA sponge interactions
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sub-network, and the dysregulation of the top hub gene
NCOA3 may cause breast cancer [58] (see Figure S3,
Additional file 7).
Altogether, the above results are consistent with those

obtained using experimentally validated miRNA-target
interactions, indicating that miRSCoPPI is robust in in-
ferring miRNA sponge co-regulation of PPIs in human
breast cancer.

Discussion
In this study, we have proposed a multi-step computa-
tional method (miRSCoPPI) to infer miRNA sponge co-
regulation of PPIs in breast cancer data. Importantly, the
BRCA-related miRSCoPPI network follows a power-law
distribution, suggesting that most PPIs are co-regulated by
a few miRNA sponges. Functional enrichment analysis re-
veals that hub genes in the BRCA-related miRSCoPPI net-
work have potential biological implications in breast
cancer. Several enriched modules are significantly involved
in several pathways related to breast cancer. In addition,
58.82% (10 out of 17) of modules may act as module sig-
natures for prognostication due to their good performance
in classifying human breast tumor and normal samples.
Finally, the proposed method shows robustness in infer-
ring BRCA-related miRNA sponge co-regulation of PPIs.
Crosstalk between miRNA sponges is a novel layer of gene

regulation, and it plays vital roles in the physiology and devel-
opment of human cancers. Therefore, how to infer miRNA
sponge interactions is a fundamental question. The basic ex-
perimental evidence of miRNA sponge interactions is that
miRNA sponge pairs are positively correlated at expression
level. In this study, in addition to considering the basic experi-
mental evidence, we also incorporate the similarity of miRNA
regulation pattern at expression level into our method to
identify miRNA sponge interactions. Although our method
focuses on inferring BRCA-related miRNA sponge interac-
tions, the method can also be used to identify generalized
miRNA sponge interactions (include tumor and normal-
related miRNA sponge interactions) when ignoring the first
condition of BRCA-related miRNA sponge pairs.
PPIs are an important part of the entire interactomics

system within living cells, and are regarded as functional
units of most biological processes including the develop-
ment and metastasis of human cancers. Thus, investigat-
ing the impact of miRNA sponges on PPIs could facilitate
the understanding of biological mechanisms of human
cancers. The results suggest that miRSCoPPI can be a
promising method for inferring miRNA sponge co-
regulation of PPIs in human breast cancer.
There are also some limitations in our work. Firstly,

miRSCoPPI is a parametric method, i.e., the number of
identified miRNA sponge interactions is dependent on
the cutoff values of the statistical tests. In this paper, we
use the cutoff values that are commonly used in

literature, e.g., p-value < 0.01. However, changing the
cutoff values will result in a change in the set of identi-
fied miRNA sponge interactions. Furthermore, due to
the lack of available data and the incompleteness of
annotations, we do not consider pseudogenes and cir-
cRNAs as miRNA sponges in this work. However, the
proposed method can be extended in the future when
more data is available. Thirdly, due to inadequate know-
ledge about the co-regulation roles of miRNA sponges
on the PPIs, the crosstalks between miRNA sponges and
PPIs have not been experimentally validated directly.

Conclusion
In summary, our study provides a simple pipeline to
infer miRNA co-regulation of PPIs that can be applied
in different biological areas, such as the study of human
cancers and the study of biological processes. We hope
that the proposed method is applicable to the study of
miRNA sponge co-regulation of PPIs related to other
human cancers. Although some limitations exist with
the current methods and datasets, the presented results
would shed light on the miRNA sponge co-regulation
roles in complex human diseases.
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Additional file 1: BRCA-related miRNA sponge interaction network. The
network includes 37076 miRNA sponge interactions. (XLSX 484 kb)

Additional file 2: BRCA-related miRSCoPPI network. The network contains
three types of interactions including 11292 miRNA sponge interactions, 10448
PPIs and 165 lncRNA-target interactions. (XLSX 361 kb)

Additional file 3: Functional enrichment results of hub genes in the
BRCA-related miRSCoPPI network. For the experimentally validated miRNA-
target interactions, the numbers of enriched GO biological processes and
KEGG pathways are 337 and 30, respectively. For the putative computationally
predictive miRNA-target interactions, the numbers of enriched GO biological
processes and KEGG pathways are 338 and 15, respectively. The p-values are
adjusted by Benjamini-Hochberg method. (XLSX 86 kb)

Additional file 4: BRCA-related miRSCoPPI modules. For the experimentally
validated miRNA-target interactions, 17 BRCA-related miRSCoPPI modules are
discovered. Thirty BRCA-related miRSCoPPI modules are discovered for the
putative computationally predictive miRNA-target interactions. (XLSX 24 kb)

Additional file 5: BRCA-related miRSCoPPI sub-network in Module 5.
The BRCA-related miRSCoPPI sub-network consists of 5075 miRNA sponge
interactions, 718 PPIs and 46 lncRNA-target interactions. (XLSX 96 kb)

Additional file 6: Experimentally validated miRNA sponge interactions.
The number of experimentally validated miRNA sponge interactions is 99.
(XLSX 11 kb)

Additional file 7: Robust evaluation results of the miRSCoPPI method.
(PDF 727 kb)
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