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Abstract

Background: Many biological pathways have been created to represent different types of knowledge, such as
genetic interactions, metabolic reactions, and gene-regulating and physical-binding relationships. Biologists are
using a wide range of omics data to elaborately construct various context-specific differential molecular networks.
However, they cannot easily gain insight into unfamiliar gene networks with the tools that are currently available
for pathways resource and network analysis. They would benefit from the development of a standardized tool to
compare functions of multiple biological networks quantitatively and promptly.

Results: To address this challenge, we developed NFPscanner, a web server for deciphering gene networks with
pathway associations. Adapted from a recently reported knowledge-based framework called network fingerprint,
NFPscanner integrates the annotated pathways of 7 databases, 4 algorithms, and 2 graphical visualization modules
into a webtool. It implements 3 types of network analysis:

� Fingerprint: Deciphering gene networks and highlighting inherent pathway modules
� Alignment: Discovering functional associations by finding optimized node mapping between 2 gene networks
� Enrichment: Calculating and visualizing gene ontology (GO) and pathway enrichment for genes in networks

Users can upload gene networks to NFPscanner through the web interface and then interactively explore the
networks’ functions.

Conclusions: NFPscanner is open-source software for non-commercial use, freely accessible at http://biotech.bmi.ac.cn/nfs.
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Background
Researchers have widely used high-throughput technolo-
gies such as microarrays, next-generation sequencing and
proteomics to generate differential expression profiles. In
the context of gene networks, biological network analysis
tools and web servers can identify, infer, reconstruct, and
visualize these changes, which helps biomedical scientists
generate context-specific molecular networks [1–7]. Such
networks have both gene nodes and gene interaction edges.
Further annotating the molecular networks with existing
knowledge helps better explain the experimental findings.
Many tools focus on enrichment analysis of networks’ node

lists in terms of gene ontology (GO) annotations, pathway
genes or disease signature gene membership; however they
cannot take network edges and interaction events of classic
signaling pathways into account [6, 8–13]. No currently
available tools can explore the functions of molecular net-
works without losing this edge information, even though
edges and nodes can be successfully managed via global
network alignment algorithms to facilitate knowledge
transfer across species [14–17].
Because pathways curated by domain experts essentially

describe context-specific gene interactions in certain bio-
logical processes, we have redefined these “pathways” as
gene network modules. Thus, a network is viewed as an
organization of multiple “pathway” network modules.
Resources of well-annotated pathways serve as the gold-
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standard reference for basic network modules; any other
networks can be annotated in the coordinates of these ref-
erence networks.
In the “network fingerprint” framework, a biomedical

network (or “query network”) is characterized as a
spectrum of numerical representations by making
systematic comparisons with reference networks [18].
The essence of network fingerprint extraction is generat-
ing similarity scores between a query network and each
reference network by a 3-step procedure: “network
merging,” “node clustering,” and “similarity scoring.”
The result of the first 2 steps is node-node mapping
between 2 networks, which is quite similar to the output
of network alignment algorithms [19]. Network align-
ment can easily be adapted into network fingerprinting,
and the original 3-step procedure condensed to 2 steps:
“node-node mapping” and “similarity scoring”. Although
existing network visualization and alignment tools pro-
vide alignment details for 2 networks using various node
mapping criteria (common GO terms, coding gene se-
quence similarities, and protein sequence similarities),
none of them quantifies similarities in large-scale
analysis [14, 16, 20–26].
Thus, we introduced a webtool for network fingerprint

analysis, NFPscanner (Network FingerPrint scanner). This
tool implements 4 node-node mapping algorithms
(IsoRankN [16], SPINAL [17], GHOST [14], and
APCluster-based method [27]), 2 similarity scoring
metrics, reference network sets from 7 pathway databases
(KEGG [28], Reactome [29], NCI [30] etc.), and 2

visualization modules. NFPscanner is advantageous in sev-
eral specific ways:

� It implements more network alignment algorithms
than the original network fingerprint framework.

� It extends the sources of reference networks.
� It provides a user-friendly interface and a one-stop

network deciphering solution.

NFPscanner is compatible with gene lists from common
differential expression analysis, as many popular web
servers can expand a gene list into an “NFPscanner-
acceptable” gene network format [1, 5, 7].

Implementation
NFPscanner is designed to decipher the potential functions
of query networks on the basis of reference networks repre-
senting different biological processes. Users can upload up
to 5 query networks as input data, specify a reference net-
work set, start the analysis to extract network fingerprints,
monitor the computation progress of background tasks,
and visualize the fingerprint outputs when analysis is
complete (Fig. 1). For demonstration purposes, interactive
step-by-step tutorials on an example analysis are provided
on the “Network Fingerprint Scan” (http://biotech.
bmi.ac.cn/nfs/networksimilarityAnalysis?type=1) and “Pair-
wise Alignment” (http://biotech.bmi.ac.cn/nfs/networksimi-
larityAnalysis?type=2) webpages. The NFPscanner website
supports popular browsers such as Internet Explorer v.11,
Chrome v.54, Firefox v.43, Safari v.5 and Opera v.40.

Fig. 1 Typical NFPscanner workflow. Network fingerprint analysis of an input network consists of a series of pairwise alignments with basic
networks. The network fingerprint is represented in a vector of similarity measures between the input network and different basic networks
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User’s guide on input data preparation and parameter
settings
NFPscanner supports analysis of human gene networks,
whose ID can be Entrez Gene [31], UniProt [32], Gene
Symbol, Ensemble gene ID [33], RefSeq ID [34] and
KEGG ID. Acceptable input network formats include
edge list, which is a list of network edges, and GraphML,
which is an XML-based file format for networks [35].
Users can convert other network formats to edge list
using the igraph tool [36]. Gene lists from differential
expression analysis should be expanded as gene net-
works in the context of landscape interactomes, as de-
scribed on the “Help” page (http://biotech.bmi.ac.cn/nfs/
networksimilarityHelp). The recommended network size
is 50–100 nodes and 100–1,000 edges.
Once input data have been uploaded successfully,

NFPscanner shows a preview of query networks as con-
firmation. Users then set program parameters, including
similarity measures (default: GO), permutation cycles
(default: 10 randomized networks generated for comput-
ing normalized Z-scores), node-mapping algorithms
(default: APCluster), and reference networks from a re-
source list of predefined basic networks. They can adjust
algorithm-specific parameters in the “Advance Parameters”
panel if they desire. Finally, they click the “Submit” button
to start analysis. They can bookmark the “Results” page or
opt to receive notification emails to monitor running
status. To provide an example of job execution time, if
example Network #2 “upregulated gene networks in neo-
natal sepsis” (provided in the “Network Fingerprint Scan”
module) is analyzed with the default “APCluster” algorithm
and parameters, analysis is completed in 0.12 h in fast
mode and 1.33 h in normal mode.

User’s guide on interpretation of analysis results
Once analysis is complete, NFPscanner redirects users
to an interactive webpage providing the results of the
network fingerprint. There are 3 types of interactive
analysis modules:

1. Fingerprint scan deciphers gene networks and
highlights inherent pathway modules. The results
page shows 2 panels side-by-side: “Fingerprint
Graph” and “Fingerprint Data.” Fingerprints
corresponding to multiple input networks are
visualized in a multicolor graph whose vertical axis
indicates similarity scores and whose horizontal
axis indicates categories of reference networks.
Mouseover on a data point shows the corresponding
similarity scores between the input network and
some reference networks. If multiple fingerprint
curves differ greatly in certain reference networks,
the input networks have different functional
associations with those biological pathways.

2. Pairwise alignment discovers functional
associations by finding optimized node mapping
between 2 gene networks. After fingerprint curve
analysis, users may identify some data points of high
similarity scores. They can click the corresponding
data point to open the pairwise alignment module
below the fingerprint panel.
The new “Alignment View” displays nodes in color,
based on clusters of information output from node
mapping algorithms. Gene nodes are hyperlinked to
ID entries in external databases, including NCBI Gene
[31], GeneCards [37], UniProt, HGNC genenames
[38], Ensembl, NCBI RefSeq. In the right-hand
multi-tab panel “Alignment & Enrichment Data,” the
“Network Alignment” tab lists similarity scores of gene
clusters. Select a gene cluster, and the corresponding
genes will be highlighted in the left-hand “Alignment
View” panel.
Pairwise alignment analysis is a useful tool for
discovering representative gene clusters in 2
networks. It is also available as an independent
module on the “Pairwise Alignment” webpage
(http://biotech.bmi.ac.cn/nfs/networksimilarity
Analysis?type=2). Users can upload 2 input networks
to the webpage and run the analysis to generate an
alignment view without a network fingerprint.

3. Enrichment analysis calculates and visualizes GO
and pathway enrichment for gene sets in networks.
Besides the previously mentioned “Network
Alignment” tab, the “Alignment & Enrichment Data”
panel has 2 more tabs: “Pathways,” which lists the
enriched KEGG pathways with genes from 2
networks, and “Gene Ontology,” which lists the
enriched GO terms with genes from those same 2
networks. The “Alignment & Enrichment Data”
panel is a custom visualization tool coupled with
“Pairwise Alignment” analysis. It categorizes gene
sets by enriched GO terms or enriched pathways
and visualizes enrichment results in “Alignment
View” with genes colored by different GO terms.
When the user selects the “pathway” of interest
from the enrichment results table, NFPscanner
highlights that pathway’s genes.

These 3 types of analysis can be seamlessly used in a
workflow to help investigate gene networks. Users can
follow fingerprint analysis with a series of pairwise align-
ment analyses, and each alignment analysis can help
visualize enrichment analysis of genes. Users can also
sort and search on all of the above types of interactive
analysis modules by keywords to find desired pathways
and GO terms (Fig. 3).
Finally, although the output of the network fingerprint

is described as an interactive webpage, it can be
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exported as images and PDFs via the downloading icons
in each panel. Additional information about user inter-
face, parameter settings and other features of NFPscan-
ner are listed in Additional file 1.

Methods
Network fingerprint framework
The generalized network fingerprint framework has 2
steps, “node-node mapping” and “similarity scoring.” The
framework compares a query network with a series of ref-
erence networks, then quantifies the similarity scores be-
tween the query and each reference network. It outputs
an array of similarity scores that represent the query net-
work as unique spectrum called “network fingerprint.”
The network fingerprint of a query network indicates its
relative similarities with the reference networks.
More importantly, the similarity between 2 networks

is represented as a normalized Z-score inferred from
gene interactions and GO terms or sequences of the net-
works’ genes. If 1 query network is being compared with
a set of reference networks, those reference networks
with high similarity scores are believed to have close bio-
logically relevant connections with the query network.
The network fingerprint lets the user annotate the query
network. If multiple query networks are being input,
each of them can produce a unique spectrum that pro-
vides standardized pathway-level evidence for differences
between those query networks. Furthermore, if the fin-
gerprints of multiple query networks are each computed
with the same set of reference networks, the fingerprint
patterns can help classify those query networks and ex-
plain their mechanisms. For example, if the user extracts
fingerprints of several types of abnormal gene networks
associated with several types of cancer in reference to
KEGG signaling pathways, they can compare patterns of
abnormal signaling events in all pathways. Therefore,
network fingerprinting is an intuitive solution to discov-
ering network characteristics at the pathway level.

Node mapping using affinity propagation clustering and
network alignment approach
In addition to affinity propagation clustering described [18]
as the prototype approach, we also implemented a new ap-
proach based on network alignment algorithms to find op-
timized node-node mapping between two networks. The
node mapping information eventually affects the computa-
tion of corresponding similarity scores between 2 networks.
NFPscanner uses the APCluster-based method as the de-
fault algorithm, and also allows users to choose 1 alterna-
tive alignment algorithm: IsoRankN, SPINAL, or GHOST.

Similarity scoring system
Another feature of network fingerprint analysis is the
similarity scoring system, which plays roles in both the

“node mapping” and “similarity scoring” steps. The
similarity scoring system determines whether the user
assigns the edge weight of 2 networks based on seman-
tic similarity between GO terms or gene sequence
similarity between interaction genes. In the node map-
ping step, the interaction genes with larger similarity
scores tend to be mapped into a cluster. In the similar-
ity scoring step, network similarity is the mean of all
clusters’ local similarity scores, which are obtained
using similarity scores of cluster genes as previously
described [18]. Each analysis lets the user specify 1
preferred similarity score system in the “Parameter
Setting” panel.

Reference set of networks
We retrieved reference networks from 7 pathway data-
bases: KEGG, Reactome, NCI, Biocarta [39], Spike [40],
HumanCyc [41] and PANTHER [42] (Table 1). KEGG
signaling networks were directly retrieved from a KEGG
database using the R/Bioconductor package KEGGgraph
[43]. The R/Bioconductor package graphite [44] provided
networks from 6 other pathway databases: Reactome, NCI,
Biocarta, Spike, HumanCyc and PANTHER. Pathways with
fewer than 10 edges were excluded. Domain experts manu-
ally categorized the remaining 766 reference networks into
49 sets of NFPscanner reference networks (see details in
Additional file 2). This predefined set of reference networks
helps users conduct network fingerprint analysis on special
research topics, such as regulatory circuits, signaling path-
ways, hormone regulation, diseases, and development. The
reference sets listed on the “Resources” webpage are
automatically ranked by historical usage count (http://
biotech.bmi.ac.cn/nfs/networksimilaritystatistical).

Design of web server
NFPscanner is implemented in Java and R scripts. The
front-end of the web server is implemented in a Java
Spring framework. Network visualization and interactive
exploration modules are based on several open-source
projects: Cytoscape web [45], Bootstrap, jsTree, D3.js,
ECharts, and jsPDF. The back-end scripts are written in
R language (v.3.2.2). GO enrichment was done with R
package clusterProfiler [46]. For developer convenience
and future upgradability, NFPscanner has a flexible
built-in interface that permits users to plug in new algo-
rithms and to add reference databases and other similar-
ity scoring systems. We conducted a regular code review
and a software test to validate the analysis system. The
source codes for the web server are available at https://
github.com/xuwenjian85/NFPscanner-webserver.

Performance and validation of web server
Execution time of network fingerprint analysis varies
with choice of algorithm and parameter settings. To
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compare the performances of different combinations of
algorithms and parameters, we selected the upregulated
subnetwork of neonatal sepsis [47] as standard input
data, used “108 KEGG signaling pathways” as a standard
reference set, and set up a series of experimental ana-
lyses. Additional file 3: Table S1 summarizes the
execution times of these experiments, suggesting that
the “APCluster” algorithm is most efficient, that 2 simi-
larity measures (GO terms and gene sequences) have
comparable performances, and that execution times are
proportional to permutation cycles.
We selected KOBAS (v2.0) [8], the most common soft-

ware for KEGG pathway enrichment analysis, to validate
NFPscanner’s accuracy. To compare NFPscanner and
KOBAS results, we used KEGG disease datasets as
standard input datasets and KEGG signaling pathways as

reference networks, ran network fingerprint analysis
with NFPscanner, and ran KEGG pathway enrichment
analysis with KOBAS. For each input disease network,
we formulated the accuracy evaluation problem as bin-
ary classification, setting the labels of reference networks
(signaling pathways) according to the KOBAS en-
richment result (positive if corrected p-value < 0.05 and
negative otherwise) and considering the network
fingerprint scores as the prediction scores of these
pathways. We then generated receiver operating char-
acteristic (ROC) curve and area-under-the-curve (AUC)
values for each input disease data using R package
ROCR [48] (see details in Additional file 3: Table S2
and Figure S1), and found that the AUC of network
fingerprint systems relative to pathway enrichment
were 0.879 on average.

Table 1 Organization of the current reference set of pathways in NFPscanner. We compiled 766 entries from 7 pathway databases —
KEGG, Reactome, NCI, Biocarta, Spike, HumanCyc and PANTHER — into 49 biomedically relevant categories of basic networks, which are
listed in the NFPscanner reference sets

Source database

Category KEGG Reactome NCI/PID SPIKE HumanCyc PANTHER BioCarta Total

Genetic Information Processing 7 22 40 5 19 93

Environmental Information Processing 27 6 16 29 78

Cellular Processes 13 23 9 25 46 116

Organismal Systems 61 14 26 28 129

Metabolism 12 12

Signal Transduction 23 1 83 107

Transport Processes 8 8

Biosynthesis 20 20

Degradation 10 10

Modification 15 15

Brain 11 11

Cell Adhesion 31 31

Cytokine and Chemokine 25 25

Development 7 7

Growth Factor 22 22

Hormone 16 16

Immmune Response 11 11

Kinase and Phosphatase 12 12

Ras Superfamily 11 11

Second Messengers 8 8

Transcription Factor 27 27

Cell Cycle 9 9

DNA Damage Response 8 8

Hearing Related Pathways 5 5

Programmed Cell Death 6 6

Total 108 108 199 28 46 72 205 766
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Results
We applied NFPscanner as a downstream tool of the
microarray analysis pipeline. In Smith et al.’s study [47],
blood RNA profiling of 1 virus-infected patient, 27 sepsis
patients, and 35 match controls was performed using
the Illumina HT-12 platform. After several steps that in-
volved statistical testing and filtering, they revealed 52
differential expression genes with stringent cutoffs
(adj.p ≤ 10−5, fold change ≥ 4). With networks of differ-
ential genes derived from InnateDB [49], as well as by
using the Cytoscape plugin jActiveModules [3], they
identified a top-scoring upregulated subnetwork of neo-
natal sepsis (Fig. 2a). The network of 70 genes and 125
interactions was implicated by a systemic, unbalanced
homeostatic immune response that underlay clinical
signs. Next, we uploaded this network as input data and
analyzed it in the “Network Fingerprint Scan” module
under the parameter setting “similarity measure (Gene
Ontology), permutation cycles (100), alignment algo-
rithm (APCluster), and reference set (NCI regulatory
networks).” Fig. 2b represents the output fingerprint as
an interactive chart. The neonatal sepsis network was
highly associated with immune pathways such as TLR
signaling, TNF signaling, leukocyte transendothelial
migration, FoxO signaling, and phagosome and platelet
activation; this is in accord with the literature. Moreover,
the fingerprint revealed other associated pathways, such
as HIF-1, estrogen and prolactin signaling.
If a user wants to know how the HIF-1-alpha tran-

scription factor network participates in neonatal sepsis,

they can click on the data point labeled “HIF-signaling”
in the fingerprint view of the neonatal sepsis upregulated
subnetwork. This expands the pairwise alignment view
at the bottom of the webpage in default color settings.
Switching to the “Pathways” tab on the right opens a list
of enriched pathways. Since the user is interested in the
“HIF-1 signaling pathway,” they would click on this
entry to highlight the genes involved in HIF-1 signaling
in both networks (Fig. 3).
We also applied our tool on manually curated meta-

bolic network of obesity from Jagannadham’s study [50].
The network of 346 genes and 465 edges was uploaded
as input data and analyzed by “network fingerprint scan”
module under the parameter setting “similarity measure
(Gene Ontology), permutation cycles (100), alignment
algorithm (APCluster) and reference set (108 KEGG
signaling networks)”. The network fingerprint result
suggests that this obesity-related gene network is highly as-
sociated with cGMP-PKG signaling, Regulation of lipolysis
in adipocytes, AMPK signaling, cAMP signaling, Adipocy-
tokine signaling, Insulin signaling, PPAR signaling pathway,
etc. Next, we analyzed the neonatal sepsis network with this
parameter setting and we found it is highly associated with
TLR signaling, Osteoclast differentiation, B cell receptor
signaling, NF-kappa B signaling, HIF-1 signaling, and RIG-
I-like receptor signaling. Lastly, we compared two network
fingerprints side-by-side (see Additional file 3: Table S3),
we concluded that obesity network and neonatal sepsis
network have significantly different association with the
above pathways except HIF-1 signaling.

Fig. 2 Example of NFPscanner fingerprint output, with a (a) neonatal sepsis upregulated subnetwork as input. We performed network fingerprint
analysis of this disease-specific condition with 3 different reference sets of basic networks, b NCI regulatory pathways, c Reactome pathways,
d KEGG signaling pathways, deciphering the input network from different biological perspectives. Each plot represents a spectrum-like vector of
similarity measures between the input network and a set of basic networks
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Discussion
NFPscanner serves as a bridge between various molecu-
lar networks and annotated functional pathways or mod-
ules. We believe it could attract wide interest from
biomedical researchers, and plan to extend the reference
sets to cover tissue-specific and species-specific topics in
the future.
However, there are still a few limitations. Due to server

capacity, a set of query networks must be uploaded
separately rather than a whole dataset in “Network
Fingerprint Scan” job. Furthermore, the analysis pipeline
cannot accept user-defined reference sets. It would be
beneficial to allow users to upload reference networks
together with query networks and perform customized
network fingerprint analysis. For now, users can con-
tribute their customized networks as new entries in the
public reference database by contacting the author team.

Conclusions
NFPscanner provides a ready-to-use pathway-based net-
work analysis resource with an intuitive user interface. It
makes use of pathway knowledge and existing algo-
rithms to compare multiple networks in the pathway
coordinates in a novel and straightforward way.

Availability and requirements
Project name: NFPscanner
Project home page: http://biotech.bmi.ac.cn/nfs
Operating system(s): Platform independent
Programming language: R and Java

Other requirements: Adobe Flash Player browser plugin
License: Creative Commons Attribution-NonCommercial
4.0 International License
Any restrictions to use by non-academics: NFPscanner is
freely accessible for non-commercial users.

Additional files

Additional file 1: Additional information about user interface, parameter
settings and other features of NFPscanner. (DOCX 1228 kb)

Additional file 2: Additional information about 49 sets of reference
pathways in the NFPscanner resource list, including pathway names,
edge counts, and node counts. (ZIP 44 kb)

Additional file 3: Table S1. Performance of algorithm and parameter
combinations on the same input data set. Table S2. AUC value of
networks fingerprint results for 73 KEGG diseases datasets. Figure S1.
Average ROC curves derived from Table S2. Table S3. Fingerprints data
file in Case Studies. (ZIP 95 kb)
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PANTHER: Protein analysis through evolutionary relationships; PKG: Protein
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