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Abstract

Background: Different phenomena like the spread of a disease, social interactions or the biological relation
between genes can be thought of as dynamic networks. These can be represented as a sequence of static graphs (so
called graph snapshots). Based on this graph sequences, classical vertex centrality measures like closeness and
betweenness centrality have been extended to quantify the importance of single vertices within a dynamic network.
An implicit assumption for the calculation of temporal centrality measures is that the graph sequence contains all
information about the network dynamics over time. This assumption is unlikely to be justified in many real world
applications due to limited access to fully observed network data. Incompletely observed graph sequences lack
important information about duration or existence of edges and may result in biased temporal centrality values.

Results: To account for this incompleteness, we introduce the idea of extending original temporal centrality metrics
by cloning graphs of an incomplete graph sequence. Focusing on temporal betweenness centrality as an example,
we show for different simulated scenarios of incomplete graph sequences that our approach improves the accuracy
of detecting important vertices in dynamic networks compared to the original methods. An age-related gene
expression data set from the human brain illustrates the new measures. Additional results for the temporal closeness
centrality based on cloned snapshots support our findings. We further introduce a new algorithm called REN to
calculate temporal centrality measures. Its computational effort is linear in the number of snapshots and benefits from

sparse or very dense dynamic networks.

Conclusions: We suggest to use clone temporal centrality measures in incomplete graph sequences settings.
Compared to approaches that do not compensate for incompleteness our approach will improve the detection rate
of important vertices. The proposed REN algorithm allows to calculate (clone) temporal centrality measures even for

long snapshot sequences.
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Background

Many phenomena can be represented and interpreted
as dynamic networks. These consist of vertices and
edges that occur and vanish at different time points
[1]. Global characteristics of a dynamic network’s topol-
ogy, e.g. its diameter, may vary over time, but also
characteristics of individual vertices, such as their cen-
tralities. It is essential to take these dynamics into
account when one is interested in crucial vertices
and subnetworks characterizing the information flow in
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dynamic networks and their connectivity. The detection
of such vertices or subnetworks is important for dif-
ferent research areas like life, social and computer sci-
ence to understand empirical phenomena like the spread
of a disease in a population, the connectivity within
and between peer groups or cyber attacks on computer
networks [2—4].

Statistical methods for static networks have been an
active and fruitful field for statistical research in the
last decades. In recent years the development of prob-
abilistic models for dynamic networks as well as the
development of methods for describing key properties
of these networks have gained more and more attention
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[5]. For this purpose, a dynamic network is often rep-
resented as a dynamic graph consisting of a vertex set
V and a temporal edge set E. While some authors [5,
6] define a temporal edge as event between two ver-
tices a and b starting at a particular time point with
specific edge duration, others [7-9] define a dynamic
network as a sequence of static graphs, so called snap-
shots, consisting of temporal edge sets E;. The tempo-
ral order of the edge set describes the direction of the
dynamics. The sequence of snapshots can either consist of
static graphs of specific time points, or aggregated static
graphs constructed by combining all edges present within
a predefined time interval. In many scientific fields, e.g.
genetic epidemiology, only static graphs of specific time
points are available rather than fully observed dynamic
network structures, for example because it is techno-
logically infeasible to determine the exact starting time
or duration of an edge between two vertices. Based on
the representation of a snapshot sequence it is possible
to extend vertex measures like closeness and between-
ness centrality from static to dynamic network settings.
However, it is inappropriate to apply vertex centrality
measures for static settings, to quantify the importance
of vertices in a dynamic network because the dynamic
topology of the network will be neglected [5, 10]. This
is for example the case when a dynamic network is
aggregated into a static graph sequence and then ‘classi-
cal’ vertex centralities are calculated without taking into
account the structural changes within the network over
time. Calculating static centrality measures for every ver-
tex of each snapshot and then averaging these values also
neglects the the time order of the snapshots. Faisal &
Milenkovic correlated static centrality measures with the
time of the respective snapshot to calculate centrality val-
ues in dynamic networks [11]. However, their approach
is not a temporal centrality measure because it does not
reflect temporal paths. To address this shortcoming we
use the concept of temporal paths necessary to appropri-
ately describe the centrality of a vertex in its chronological
sequence [12-14].

Tang et al. extended static centrality measures for the
use in dynamic networks by accounting for shortest tem-
poral paths [8]. Their approach assumes that all network
information within a previously chosen window size is
aggregated into one snapshot. Kim and Anderson [15]
modified the representation of a sequence of graph snap-
shots into a single directed time graph linking each ver-
tex with its successors in time. Based on this directed
time graph the authors slightly reformulated the central-
ity measures of [8]. Another definition of vertex centrality
was given for temporal walks [16] that allow to visit edges
multiple times per time point instead of once as with
shortest temporal paths. This temporal centrality measure
can be interpreted as a temporal version of the static Katz
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centrality [17].

While the computation of dynamic network charac-
teristics mainly assumes a fully observed dynamic net-
work, there is a lack of approaches for incomplete graph
sequences which pose two major challenges:

(a) An edge in an observed snapshot could have arisen at
an earlier and unknown time point in the past and
could last until an unknown time point in the future.
Hence, starting time and duration of this edge are
uncertain.

(b) Some edges are unobserved because they occur and
vanish in the time interval between two consecutive
observed snapshots. Such edges are not observed and
hence also their influence on the network’s dynamic
is difficult to assess.

Both cases will affect temporal centrality measures and
are likely to occur in real world applications, e.g. when
data of gene expression networks are available only at
some — maybe unequally spaced — time points [11, 18] or
when rapid changes occur within the network [19]. While
some authors propose metrics to quantify the overall sta-
bility of the topology of a dynamic network [20-24], the
impact on centrality measures due to incomplete infor-
mation was only investigated for static network settings
[25, 26]. The development of temporal centrality measures
accounting for incompletely observed dynamic networks
is still lacking.

Our work fills this gap by introducing the problem of
incomplete graph sequences and proposing an extensions
of the temporal betweenness and closeness centralities of
Kim & Anderson [15] by using additional snapshots in
situations of incomplete graph sequences. These added
snapshots are copies of observed snapshots and will be
referred to as clones in the following. Hence we propose
the clone temporal betweenness and closeness centrality
(CTBC, CTCC). The main purpose of adding clones is
to allow more moves along a graph sequence and hence
to increase the number of identified temporal paths that
could not have been found with the originally observed
snapshot sequence. We demonstrate in simulation stud-
ies and in an application to a real dynamic gene net-
work that our new approach provides simple improved
vertex centrality estimates in situations with incomplete
graph sequences. We further considered the computa-
tional aspect of our new measures. The time complexity
for calculating centrality measures in dynamic graphs
depends on the number of vertices and edges as well
as on the number of snapshots. Especially, the calcula-
tion of temporal centrality measures based on (shortest)
temporal paths can be challenging because, unlike static
graphs, for dynamic graphs it does not hold that every
subpath of a shortest temporal path is again a shortest
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path. Hence, the search for the shortest temporal path has
to visit all relevant subsequences of graphs, i.e. starting
from every snapshot up to the last snapshot. Otherwise
the full dynamics of the network will not be considered
appropriately in the calculated centrality values [15, 27].
To address this time demanding requirement, we pro-
pose a novel and easy to implement algorithm called REN
(Reversed Evolution Network). Its time complexity is lin-
ear in the number of graph snapshots for a fixed number
of vertices and edges. This property allows to search for
shortest temporal paths in long graph sequences or in a
graph sequence that has been augmented by clones. In
addition, our simulations suggest that the overall run-
ning time of REN benefits from dense and sparse dynamic
networks.

Methods
Let us assume a finite time interval in which a dynamic
network has been observed, starting at tg,+ and ending
at t.,4, where without loss of generality ty,+ = 0 and
tend = T. A dynamic network is represented as a dynamic
graph Gg r = (V, Eo1), where we assume a finite set V' of
| V| vertices and an edge set Ey r that can change in the
time interval [0, 7']. While we will focus on edge sets Eo,1
consisting of temporal undirected edges {a,b};; € Eor
with a,b € V that are present in the time interval [, ]
with 0 < i < j < T, it is straightforward to extend our
approach to temporal directed edges.

In the following we will present the basic notations
to introduce incomplete graph sequences. We will then
derive a modified version of the temporal betweenness
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centrality as an example for our approach using cloned
snapshots.

Graph sequences and shortest temporal paths

To characterize structural properties of a dynamic net-
work a dynamic graph Gg ¢ is commonly discretized
into a time ordered sequence of static graphs G =
G1,Gy ..., Gs with corresponding edge sets Ex for k €
{1,2,...,S}, such that Gy = (V,Ey). Each edge set
E; of a snapshot k consists of all edges that are
present in a time window wy of size w < (feq —
tstart) = T. Thus, the number of snapshots is given
byS=T/w.

Sequences of graph snapshots can be represented as
directed time graphs (DTG) [15, 21]. Figure 1 shows a
graph sequence and its adequate DTG. Each snapshot G
in Fig. 1a has a corresponding column dy, of directed edges
(Fig. 1b). Hence, every vertex a € V of G occurs S + 1
times in a DTG, indicated by ag, a1, ..., as. The columns
dy of a DTG contain the (undirected) edges of the origi-
nal snapshot representation plus edges from each vertex
to itself at the next time point (horizontal edges). The lat-
ter edges represent halts in a snapshot; all other edges are
called &ops.

It is possible to formulate an edge sequence connecting
vertices along the DTG, as indicated by the red dashed
edges in Fig. 1b. We call such sequences temporal paths.
They consist of a unique combination of hops and halts.
The occurrence of an edge is considered by only allow-
ing either one hop or halt per snapshot k (or likewise per
column dj). Thus, using the representation as a DTG, a
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Fig. 1 Directed time graph (DTG). A graph sequence G of snapshots in (@) and its representation as a DTG in (b). Horizontal edges in (b) indicate halts
on a vertex, diagonal edges represent hops. Two shortest temporal paths from vertex A to vertex B are marked by red dashed edges
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temporal path starting at snapshot k and ending at snap-
shot n with k,n € {1,2,...,S},k < n of a graph sequence
G = Gy, ..., Gs is defined as an ordered sequence of ver-
tices prn(a,c) = (ak—1,...,cq) such that a,c € V. Note
that py ,,(a, ¢) starts with index k — 1 in a DTG.

Let Py, (a,¢) = Ui Prm(ac), that is the set of all
possible temporal paths starting from vertex a at snap-
shot k and ending in vertex ¢, at the latest, in snap-
shot n. Note, a temporal path from a to ¢ can end at
m < n. If a path path pg,,(a,c) exists, the path length
is defined as |pg;u(a,c)] = m — k + 1, which is the
number of halts and hops needed to travel from vertex
a to vertex c in the graph sequence Gy, ..., Gy,. A short-
est temporal path yi ,,,(a,¢) is then defined as the path
Pim(a, c) € Py y(a,c) with minimum number m, where ¢
is reached in snapshot m < n. It’s length is |y ;.4 (a, )| =
m — k + 1. The set Ty n(a,¢) = U Yimn(a c) con-
tains all shortest temporal paths from a to ¢ within the
considered sequence Gy, .. ., G,. Consequently, all short-
est temporal paths of Iy, ,(a,c) have the same path
length m — k + 1.

Expanding the above notation, yi,;,,(a,b,c) €
Ckmu(a,c) denotes a shortest temporal path that
crosses vertex b at snapshot [. Therefore, the set
Cromn(a:b,¢) = Ukeicm Vimn(a, b, c) contains  all
shortest paths from 4 to c that cross b at some snapshot /.

If a shortest temporal path yx,,(a,b;,c) contains
the holds and hops of p;,(b,c) we call p;,(b,c) the
upper temporal subpath of y,,(a, by, c). Analogously,
if Ykun(a, by,c) contains all edges of py(a,b) we call
Pki(a, b) a lower temporal subpath of yy ,, ,(a, by, c). Addi-
tionally, we simply call every sequence of hops and halts
of pi ,(a, ) starting at a snapshot /, / > k, and ending at a
snapshot m, m < n, a temporal subpath of py , (4, ¢).

In the following we will show that every upper temporal
subpath of a shortest temporal path will always be a short-
est temporal path itself even if the lower temporal path is
not a shortest temporal path.

Lemma 1 Given a graph sequence G =
G- »Gl ooy Gy oo, Gy, let Vi pn(a, by, ¢) be a shortest
temporal path from a to c that passes vertex b at snapshot
| and ends at snapshot n. Then, even if the lower temporal
path py(a,b) is not a shortest temporal path, the upper
temporal path p;,(b,c) is a shortest temporal path, i.e.
Pln (b,c) = Yinn (b, c).

Proof Assume that there exists a temporal path p; ,,,(b, c)
from b to ¢ with |py,,, (b, ¢)| < |Vinn (b, c)|. Then it follows
that

Vi (@ by, ©)| = |pri(a b)| + [Vinu(b, )| > |pri(a, b)]
+|pl,m(bv ol = |I9k,m(ﬂ, o)l
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which is contradiction to the assumption that
Yinn(@, by, ¢) is the shortest temporal path from a to ¢
over b at snapshot /. O

Note that although all subpaths of shortest paths are
again shortest path in a static directed graph [28], this
does not hold for a DTG. As a simple example con-
sider a path px,(a,¢) = Vinu(a,¢) = Viun(a bjc) =
Vinn (@ b, ©), | < m, from a to ¢ that passes vertex b
at snapshots [ and m. Then, |p(a,b)| < |pkm(a,b)| and
hence py,,(a,b) is not a shortest path although it is a
subpath of yy ,(a, c).

While the query for (shortest) temporal paths is only
meaningful in graph sequences with at least two snap-
shots, the length of a (shortest) temporal path can be one,
if a and c are connected at the first snapshot of the graph
sequence, that is |py ,(a, ¢)| > |Vkin(a )| = 1.

Incomplete graph sequences
If there is only limited access to S snapshots of time points
t € [0, T'], the observed graph sequence G is incomplete. In
this situation it might be impossible to determine exactly
when an edge occurs and how long it has existed in the
network. Additionally, incomplete sequences might miss
edges in total and thus can lead to unobserved edges.
Figure 2 gives an example of the impact of incomplete
graph sequences. Although in Fig. 2b the first snapshot
Gy at t = 0.3 correctly captures the occurrence of edge
{A, C}, it cannot determine its duration until ¢ = 2. The
true edge sequence of {A, D} followed by {B, D} cannot be
reconstructed because at the next snapshot Gy (¢ = 3.6)
both edges are aggregated into one graph. This masks
their chronological order. Further, the second occurrence
of {B, D} in the time interval [ 5, 6] is not detected, because
the last observation of the dynamic network is Gz at
t = 4.8, and therefore the edge {B, D} is missing in the
observed graph sequence. The consequence is that there
is no temporal path from A to B in the observed DTG
(Fig. 2¢).

Both, masked edge chronologies and unobserved edges
affect the number of observable (shortest) temporal paths
in a dynamic network.

Clone temporal betweenness centrality

In a static network, the betweenness centrality of a ver-
tex b measures how easily b can be avoided when seeking
for shortest paths to get from vertexatoc,a # b # ¢ €
V. More precisely, it is the ratio between the number of
shortest paths from a to ¢ passing b and the total number
of shortest paths from « to ¢. This idea has been extended
[8, 15] to graph sequences G = Gj, ..., Gs consisting of
S snapshots. Let oy, 5(a, b,c) denote the cardinality of
the set of the shortest paths I' ,,,5(a, b, ¢) and oy ., 5(a, c)
denote the cardinality of I't ,,, s(a, c¢) for a graph sequence
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Fig. 2 Incomplete graph sequence. An incomplete observed graph sequence in (b) and its DTG (€) compared to the true but unobserved dynamic
network in (a). Solid boxes in (a) represent time intervals of the respective edge occurrence within the true dynamics. Dashed boxes in (b) indicate
snapshots at specific time points and the green dotted lines mark the corresponding moments in (a). The sequence of graph snapshots yields the

incomplete graph sequence

Gk, . - ., Gs. The temporal betweenness centrality (TBC) of
vertex b is then defined as:

S—-1
TBC,s(b) =Y Y

k=1 a,ceV\b
O,m,s (@,¢)>0

Ok,m,S ((l, b: C)
Okm,s (4, €)

(1)

The second sum in Eq. (1) accounts for all shortest paths
starting from vertex a and the first sum ensures that all
subsequences starting at a snapshot after k, Gy, ..., Gs,
| > k, are included in the calculation of this measure. This
is necessary to adequately capture the complete dynamic
behaviour in the network over time [27]. For example,

consider a graph sequence with all vertices connected to
each other at the first snapshot but with fewer connections
at the following snapshots. Applying the TBC without
summing over all later subsequences will not represent
the dynamics after the first snapshots because all short-
est temporal paths will be of length one due to the fully
connected first snapshot. However, TBC cannot explic-
itly handle incomplete graph sequences and hence it will
miss (shortest) temporal paths when calculating a vertex’
centrality.

Consider Fig. 2 and assume that we have only observe
the sequence as shown in Fig. 2b; what can then be
inferred about the true underlying sequence in Fig. 2a? It
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is obvious that the edge {A, C} in snapshot G; must have
occurred before the next observed snapshot Go. The edges
{A,D} and {B, D} observed in snapshot G, on the con-
trary must have occurred in the dynamic network at a time
point between snapshots G; and G but we do not know
the order of occurrence and thus the possible temporal
paths. Our proposal is to fill the gap between snapshots
with additional snapshots, in order to reveal additional
(shortest) temporal paths that are likely to exist. These
added snapshots are copies of observed snapshots and will
be referred to as clones.

Definition 1 Given a static graph Gi(V,Ey) of snap-
shot k we define clones of Gy as Gy (V, Ey;,) such that
G, (V,Exj) = Gr(V, Ep) forjx = 1,2, ..., Jx.

Based on definition 1 and using the notation Gy, for
Gy (V, Exj,) we can now define a cloned graph sequence.

Definition 2 Given a original graph sequence
G1, Go, ..., Gs and clones Gy, with k = 1,2,...,§ and
jk = 1,2,...,Jx a cloned graph sequence is defined as the
ordered sequence G1,1,G1,2, - . -, Gijyr- -+ GsJse

Augmenting the original graph sequence with clones
Gy, raises the question of how to choose the number
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of clones Ji per snapshot. This is generally flexible and
may vary depending on the application. We propose the
following three plausible approaches:

1. Adding a sufficient number of clones Ji per snapshots
k such that any static path in Gx_1 UG not presented
in Gx_1 and Gy alone can be found as a temporal
path. This is always possible and depends on the
number of different edges between G_; and G.

2. Adding clones based on assumptions about the
expected duration of the occurrence of edges.

3. If the number of unobserved discrete time points
between G_; and Gy is known a corresponding
number of clones can be added.

Figure 3 shows an example of temporal path search in
a graph sequence including cloned snapshots. Given the
true dynamic network depicted in Fig. 1 and the observed
snapshots of Fig. 2b, we constructed the graph sequence
presented in Fig. 3a and decided to clone each of its snap-
shot once, resulting in the graph sequence of Fig. 3b.
As shown in Fig. 3¢, clones can detect shortest temporal
paths that are in fact a true shortest temporal paths (red
dashed arrows). However, cloning compensates only for
unobserved edge durations and ordering of occurrences,
but it cannot detect unobserved edges and hence also no

a)

®E ®E
©0® ©0 ©v

b)

d; dz ds

Fig. 3 Cloned graph sequence. The incomplete observed graph sequence in (a) is based on the incomplete graph sequence of Fig. 2. The first two
observed snapshots are cloned as shown in the graph sequence in (b) and the respective DTG in (c). Green boxes indicate clones. Both true temporal
paths from A to B (red dashed arrows) in the original complete graph sequence were found due to cloning (see Fig. 1). However, a spurious (shortest)
temporal path was also detected that is not present in the original sequence (indicated by the yellow dashed arrows)

ds ds ds
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temporal paths that contain these unobserved edges. Fur-
thermore, if cloning overestimates edge durations or the
order of occurrence (as for the edge (B, D)), it might detect
false shortest temporal paths (indicated by the yellow
dashed arrows). We call this problem excess of cloning and
discuss its implications in more detail in the simulation
section.

Exploiting the idea of cloning snapshots, we extend the
TBC of Eq. (1) to a clone temporal betweenness centrality
(CTBC):

S

cracish =YY Y
k=1 ji=1 4a,ceV\b
all(lfm,s(a,c)>0

Jk
o (a,b,c)
k,m,S (2)

Jk ?
Oom, S(a, <)

where o,]("m s(a, b, c) denotes the number of shortest tem-
poral paths from a to ¢ passing b, starting at the ji-th

clone of snapshot k. Similarly, a,](’,‘m’ 5(a, ¢) denotes the total
number of shortest paths from a to b starting at the ji-
th clone of snapshot k. The CTBC successively sums the
sequence of observed and cloned snapshots starting at the
jk-th clone of snapshot k until the last clone of snapshot
S. CTBC s applicable for graph sequences of directed and
undirected temporal networks. The idea of cloning snap-
shots when calculating temporal centrality measures can
also easily be applied to other temporal centrality mea-
sures like the temporal closeness centrality (see Additional
file 1).

REN: a new algorithm for finding shortest temporal paths
An appropriate algorithm is necessary to calculate the
above temporal centrality measures. The summation over
all subsequences in Egs. 1 and 2 can be computationally
demanding for long graph sequences because a shortest
temporal path in Gg,...,Gs might not be a (shortest)
temporal path in Ggy1,...,Gs which necessitates a new
query. As a consequence, a new search for shortest tempo-
ral paths has to be started for each snapshot of the graph
sequence Gy, ..., Gs. For example, there are two shortest
temporal paths starting from vertex A at snapshot 1 and
ending at vertex B at snapshot 4 in Fig. 1. Both paths have
to pass vertex D at snapshot 3, meaning that a temporal
path starting at snapshot 4 or later cannot be subpath of
these shortest temporal paths.

Our REN algorithm tackles the problem of consec-
utive queries by searching for temporal paths in the
reversed order of snapshots, defined as G* = Gg, ..., Gj.
A reversed temporal path is defined as py (c,a) =
(cny...,a—1) = rev (pk,n(a, c)), where rev(-) is the
function that reverses the edge directions in a DTG and
therefore the order of the vertices of a temporal path.
The basic idea is then to move along all reversed tem-
poral paths starting from a specific vertex ¢ at snapshot
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S until snapshot 1 and to store each descendent ver-
tex b of ¢ and its lowest snapshot number k& where b
is connected to ¢ by an edge or temporal path. Even if
there are shortest temporal paths found before reach-
ing the first snapshot it is crucial to move along all
reversed temporal paths up to the first snapshot of the
considered graph sequence. Otherwise shortest tempo-
ral paths that start at or near the first snapshot are
not found.

In the following, we will prove that the computational
time of REN is linear with respect to the number of snap-
shots S when searching for all shortest temporal paths in
Gk,...,Gs, Y k €[1,S — 1]. First, we prove that a query
along a particular reversed shortest temporal path finds all
upper temporal subpaths that are also shortest temporal
paths too.

Lemma 2 Let Gg,..., Gy k < n, be a graph sequence
and let y;, (a,c) = p) (a,c) be a specific shortest tem-
poral path in Ty, ,(a, c). Then, moving along the reversed
temporal path p;k(c, a) = rev (p}c 2 (@ c)) from vertex ¢

to vertex a finds all n—k shortest temporal paths y/, , (b, c),
k <1 < nfrom any vertex b to vertex c that are upper tem-
poral subpaths of y; . (a,¢) =y, (a,by,c) and for which
b=b; e y,é,n,n(a, by, c).

Proof A specific shortest temporal path y/é’n’n(a, ) €

Ciun(a,c) is characterised by a unique combination of
n — k hops and halts. This temporal path contains then
n — k upper temporal subpaths, each starting at a different
snapshot k,k + 1,...,n — 1. For [ = k it directly follows
that yl’, o, (@ ©) = y,é,n,n,(a, o).
Now, let [ = k+ 1 and let b € V\c be a vertex on
y,én,n,(a, ¢), that is it holds y,;,n,n,(a, bic) = ¥ n(@0).
Applying Lemma 1 yields that the upper temporal sub-
path pé, 4 (b, ¢) of p;c L@ = y,;, un(@ b1, ©) is also ashortest
temporal path Vll, (D> ©). This holds for all further [ =
k+2,...,n—1,ie. y,;n,n (a, ¢) contains n — k upper tempo-
ral subpaths (including y,é’ (@ €) itself) that are shortest
temporal paths.

Then, it follows that p},(c,a) = rev (p;m(a, c)) con-

tains all reversed upper temporal subpaths pj ,(c,a) =

rev (p;n(a,c)) = rev (yl’nn(a,c)) with k < | <
n. Thus, following the reversed upper temporal path
P, (c;a) reveals all n — k shortest temporal paths of

y,;’n,n (a,c). O

With Lemma 2 it is possible to show that one query
for all reversed temporal paths starting at vertex c is suf-
ficient to reveal all shortest temporal paths that end at
¢ of a graph subsequence starting at a snapshot at or
after k.
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Theorem 1Let G = Gi,...,G,k < n
be a graph sequence and let Ty,(,c) =

;:kl ] UaeV\c Vimn(a,c) be the set of all shortest
temporal paths that start from any vertex at snapshot
| > k and end in vertex ¢ at snapshot m < n. Further,
let p;k(c, D) = Uae\/\cp;,k(c’ a) be the set of all reversed
temporal paths starting from vertex ¢ at smapshot n
and ending at any vertex a € V\c at snapshot k. Then,
every shortest temporal path yimn(a,c) € Tiu(,c)
is a reversed subpath of a reversed temporal path in
p:‘l,k(c, -) and is therefore obtained by moving along every

Pi(ca) € p(c0).

Proof Every shortest temporal path vy, ,(a,¢c) €
Iy, (-, c) is a subpath of a temporal path in pg,(-,¢) =
Usev\e Pn(@ ©). Then, the set of all reversed tempo-
ral paths pj‘[’k(c, ) = rev (pk,n(-,c)) also includes the
set of reversed shortest temporal paths I‘Z,n(-,c) =
rev (Tiu(-0)).

Lemma 2 shows for every specific shortest tempo-
ral path yl” (@ €) € Trpu(c) that the reversed path

pfn,l(c, a) = rev (p}m (a, c)) = rev (Vl/,m,m (a, c)) con-
tains all m — [ upper subpaths of Vlim, (@ ¢) that are also
shortest temporal paths. Finally, because pj ,(c,a) is a
subpath of p;‘l’ (ca) e PZ, (¢, ), it will be detected by mov-
ing along the reversed temporal paths of p; (¢, ). This
holds foralla € V. O

Let P1s(,¢) = Ui:l Ufn:k UbeV\cpk,Wl(b’ ¢) denote
the set of all temporal paths starting from any vertex
b € V\c at a snapshot k and ending in vertex ¢ not later
than at snapshot S. The set of all reversed temporal paths
starting in vertex ¢ and ending in any vertex b # c is
’P;l(c, ) = rev (’PLS(~, c)). Further, let Ni(c) € V\c be
the set of all neighbours of ¢, i.e. adjacent vertices of ¢, at
snapshot k. By applying Theorem 1 to all ¢ € V, REN can
be outlined as follows:

1. Reverse the order of the observed snapshot sequence
asG* =Gs,...,Gr.

2. Select a start vertex ¢ and set ’P;l (c,) =40.

3. For snapshot k = S: Find all adjacent vertices
b € Ns(c). Each edge between c and b forms a
reversed temporal path pg,s(c, b) = (cs,bs_1) and is
stored in the set P ; (c, -).

4. For snapshotsk=S-1,...,1:

(a) List all adjacent vertices b € N (c). Each edge
between ¢ and b € Ny (c) forms a reversed
temporal path p,’ik(c, b) = (¢, br—1) and is
stored in the set Py (c, -). Set
Prk(b, ) = (bk-1, k) = Viks(b;c).
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(b) Listall vertices a € V\{N(c) U c} that are
adjacent to any vertex b for which
P16 D) € Pgi(c).
Join the reversed temporal paths p; 1k (b,a)
and pjn, 1 (¢, b) at vertex b to obtain the
reversed temporal path pj , (¢, @) and store it
in P, (c, ).
Set Ykm,S (a,¢) = Pkmmin (a, c) for
Mmin = arg Mily,k<m<s |pZ,,k(C; a)l.

5. Repeat steps 2 up to 4 for all other c € V.

Figure 4b gives an example of how REN finds all shortest
temporal paths starting at vertex A and ending at ver-
tex B in at least one relevant subsequence of graphs. This
is achieved by applying one query for shortest tempo-
ral paths only once over the reversed snapshot order for
each vertex. The graph sequence is represented as a DTG
(Fig. 4a) and without loss of generality we focus on the
shortest temporal paths starting from Ag and ending at
Bg and show that the algorithm finds all shortest tem-
poral paths for which B is a destination vertex by one
linear query. The blue dashed edges indicate steps on a
reversed temporal path which are potential edges of a
shortest temporal path. Red dashed edges indicate short-
est temporal paths whenever it was detected by following
a reversed temporal path. We start the query from vertex
Bg at snapshot S = 6 and follow all its reversed tem-
poral paths up to snapshot 1 (cf. images in Fig. 4b I to
VI). In column dg in image I, vertex B has two adjacent
vertices, forming the hob (B, Ds) and the halt (Bg, Bs).
Focusing on Ds, there is one hop (Ds, C4) and one halt
(D5, D4) in ds from snapshot 5 to 4. The first reversed
temporal path that connects B and A is detected in d4 via
(D4, A3) and according to Lemma 1 it reveals the shortest
temporal path y466(A,B) = (A3,Ds,Ds,Bg). The paths
pZA(B,D) = (B4, D3) in d4 and p§,3(D,A) = (D3,A) in
ds add up to the shortest temporal path y346(4,B) =
(A2, D3, Bs) in Fig. 4b IV. Hence, we can infer that any
temporal paths from A to B starting before snapshot 4
and ending after snapshot 4, are shortest temporal paths.
The detection of y346(A,B) has the following implica-
tions: further shortest paths starting at a snapshot [ < 4
must end in By or before. This means also that stored
edges beyond snapshot 4 like (Cy, D5) or (D4, Ds) can-
not be any longer part of further shortest temporal paths.
Since (D4, Ds) is part of ya66(A,B), we concluded that
y4.6,6(A, B) is not part of a shortest temporal path start-
ing at a snapshot [/ < 4. Figure 4b V and VI complete the
query for shortest temporal paths via reversed temporal
paths.

Usually, the time complexity of algorithms for calculat-
ing temporal centrality measures based on shortest tem-
poral paths are dominated by the number of snapshots.
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b)

111

a specific snapshot /

Fig. 4 Example for the algorithm procedure of REN. A DTG representation of a graph sequence G = Gy, .. ., Gg in (@). The six reversed DTGs in (b)
demonstrate the stepwise query for shortest temporal paths y; 16 (A, B) from A to Bin a successively reversed graph sequence. Blue dashed edges
indicate hops and halts that potentially are parts of shortest temporal paths. Red dashed edges indicate detected shortest temporal paths starting at

The authors of the original version of TBC indicate that
the time complexity of their algorithm is cubic in the
number of snapshots [15]. For long graph sequences they
therefore propose to use larger window sizes w to dis-
cretize the dynamic graph Gg r into a reduced number of
snapshots. This obviously results in a loss of information
affecting the accuracy of the temporal centrality mea-
sures. REN improves on this limitation because it requires
for each vertex only one search over G*. Thus its time
complexity is linear in the number of snapshots. Hence,
the calculation of centrality measures like TBC becomes
feasible in settings with long graph sequences but also
for graph sequences with additional snapshots like the
proposed CTBC. For example, TBC and CTBC have an
overall running time of O(S - |V|®) using REN. REN’s
running time benefits from sparse and dense graphs (see

Fig. 5). While the first is obvious due to the small number
of temporal paths, the latter can be explained by step 4 of
our algorithm. In a dense graph sequence, the number of
edges is close to the maximum number of edges for every
snapshot, that is most vertices b will be b € Ny (c). Thus,
the expensive search of step 4(b) can be omitted for these
vertices.

If the observed graph sequence is represented as edge
list for each snapshot, the space complexity of our algo-
rithm is O(S - |Eqs)| + S - |V]?), where [Eqs)| =
Zi:l |Ex| denotes the total number of edges in the
dynamic network. The second term denotes the space
needed to save all temporal paths of the graph sequence.
Note, in the worst case scenario, i.e. when each snap-
shot contains a saturated graph, space complexity will be
O@-S-|V]2.
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Fig. 5 Computing time of REN. Average time (in seconds) needed to calculate the CTBC for 200 vertices using the REN algorithm. Colours indicate
graph sequences with different number of snapshots. Each snapshot is based on a random Erdés-Rényi model with graph densities ranging from
0.03 up to 0.96. Calculations were done on a single core of a 2.53GHz Intel hexacore processor using 8GB memory

Results
Simulation study
We define a group infection network (GIN) to compare the
performance of the CTBC to the TBC in an incomplete
graph sequence setting. A GIN contains M € N subgraphs
GV EMmY 4y = 1,..., M. GINs are either undirected
or directed, but neither multiple edges between vertices
nor loops (i.e. {a, a}) are allowed. The probability p of an
edge is the sum of a baseline probability 7 and the prob-
ability 74 = DY (a)/|[E™|, where D" (a) denotes the
degree of a node a € V™ (i.e. the number of its incident
edges) and |[E?| denotes the total number of edges in
subgraph m. Thus, 7, reflects a rich-get-richer principle.
We used the representation of a graph sequence con-
sisting of k = 1,...,S snapshots to simulate a GIN as
a dynamic network. The initial GIN contains no edges.
At snapshot k = 1 a first vertex is randomly chosen
and edges connecting it with any other vertices generated
independently with probability p. At snapshots k > 2 all
vertices having one or more incident edges are allowed
to connect with other vertices of the same subgraph with
probability p. After x - m < S snapshots, k € N, a con-
nected vertex is randomly chosen as bridge vertex b. At
the next snapshot, only the bridge vertex builds an edge
with a vertex from the next subgraph m + 1, meaning
that only b has neighbours in V" and V"+1_ This pro-
cess is repeated until k = S. Edges within a GIN remain
for . € N snapshots and will then vanish. The dynamic
of a GIN depends on A, where small values of A lead
to rapid changes in the network structure whereas high
values of A yield slow changes in the dynamic structure.

A dynamic GIN G(V,M, S, t,t4,k,)) is thus defined by
seven parameters.

We generated GINs containing 10 subgraphs, each con-
sisting of 5,10,20,40 or 80 vertices, given an overall net-
work size of |V| € [50,100,200,400,800], respectively.
The GIN parameters were set to T = 0.0125, k = 8 and
A = 1,2,...,10, i.e. edge durations ranged from 1% to
10% of the total number of snapshots. We simulated 500
undirected GINSs for each combination of parameters and,
based on the complete graph sequence of 100 snapshots,
we calculated the TBC from Eq. 1 for each vertex. Ver-
tices were ranked according to their TBC values to make
them comparable across graph sequences with different
number of snapshots. Ranks of vertices with the same cen-
trality value were averaged. The ranks of the true TBC is
our reference in the following comparison.

Of each simulated complete graph sequence the incom-
plete graph sequences were generated by randomly draw-
ing « = 10%,20%, . ..,50% snapshot, i.e. containing 10,
20, 30, 40 and 50 snapshots. TBC and CTBC (cf. Eq. 2)
were estimated for each vertex and ranks were assigned
according to their respective centrality values. To calcu-
late CTBC, we set the number of clones equal to the
number of unobserved snapshots between two observed
snapshots, following our third proposed approach regard-
ing the question how to choose the number of clones. This
implies a tendency to overestimate the edge duration. As a
consequence false temporal paths might be included (see
next section).

For every simulation run, Spearman’s rank correlation
coefficient p between the ranks based on the true TBC
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values and the TBC respectively CTBC values of the
incomplete graph sequence were computed. A high pos-
itive p indicates that the centrality measure relying on
incomplete information ranks the vertices similar to the
true ranks. In addition, the detection rate was assessed,
which is the proportion of how often the most impor-
tant vertex (rank 1) in the incomplete graph sequences
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matches the true most important vertex of the complete
graph sequence in all simulation runs.

The Box plots in Fig. 6 show the results of the rank cor-
relation p for different edge durations X, observation rate
o and network sizes |V]. In all incompleteness scenarios,
CTBC outperforms TBC for all A except for the combina-
tion (@ = 10%, A = 1). This could be due to an excess of
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Edge durationA

Fig. 6 Spearman’s rank correlation coefficient p for TBC and CTBC in an undirected GIN scenario. Box plots of p for TBC (dotted) and CTBC (solid)
based on different combinations of number of vertices (|V| € [50, 100, 200, 400, 800]), different proportions of randomly observed snapshots (0.2,
03,04, 0.5) of the original graph sequence consisting of 100 snapshots and different edge durations (A € [1,2,...,10]). The results are based on 500
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cloning. As expected, longer edge durations (A > 1) con-
siderably improve the performance of CTBC compared to
TBC. In addition, the results indicate that the improve-
ment is independent of the network size |V| (columns of
Fig. 6). Interestingly, CTBC was strongly correlated (p ~
1) with the true TBC for longer edge durations in settings
where at least 40% snapshots were observed, while TBC
reached a plateau at a lower correlation. In general, if only
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a = 10% of all snapshots were observed, both methods
were weakly correlated with the true TBC, even in situ-
ations with an edge duration of A = 10 indicating that
long edge durations cannot compensate for missing edge
observations.

Figure 7 shows the detection rate for the most important
vertex. While TBC and CTBC had poor detection rates in
settings of low observation rates (¢« = 10%), the detection
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Fig. 7 Detection rate of the most important vertex based on TBC and CTBC in an undirected GIN scenario. Detection rate for TBC (dotted) and CTBC
(solid) based on different combinations of number of vertices (|V| € [50, 100, 200, 400, 800]), different proportions of randomly observed snapshots
(0.2,0.3,0.4, 0.5) of the original graph sequence consisting of 100 snapshots and different edge durations (A € [1,2,...,

10]). The results are based
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rate of CTBC tended to be better in settings with larger
observation rates, especially in combination with longer
edge durations.

The simulation results for the temporal closeness cen-
trality support our proposal of cloning snapshots, even if
the benefit was smaller than for the temporal between-
ness centrality, especially regarding the detection rate of
the most important vertex (see Fig. 8 and Fig. 9).

Excess of cloning

As mentioned before, an excess of cloning can introduce
false (shortest) temporal paths which lead to biased cen-
trality values. In a further simulation study, we evaluated
this bias by generating a GIN with the given parameters
[V = 200, M = 10, t = 0.0125, xk = 8, S = 50
and A = 1,2,3. Incomplete graph sequences were sam-
pled assuming an observation rate of « = 25%, 50%, 100%.
That means, for example in the scenario ¢ = 100% all true
snapshots were observed and for each snapshot a specified
number of clones were wrongly introduced. As before,
true ranks were based on the TBC values for the original
graph sequence. For the calculation of CTBC, we fixed the
number of cloneston, =0,...,8.

Figure 10 shows clearly the expected problem of an
excess of cloning in scenario &« = 100% (first row). As
expected, the original TBC and no cloning (1, = 0) are
perfectly correlated (p = 1.0), but the correlation of
CTBC decreases with each additional clone. Note, that for
n. = 1 the length of the graph sequence is already dou-
bled. However, the effect of an excess of cloning is less bad
for longer edge durations A.

The scenarios with lower observation rates show that
the correlation values of CTBC are comparable to the val-
ues of TBC in settings with shorter edge durations or
even larger for longer edge durations — despite the excess
of cloning. Most important, although the performance
of CTBC decreases with additional number of clones, it
outperforms TBC even for large n,.

Application to real dynamic networks

We used a real age-related dynamic network to investi-
gate the performance of CTBC compared to TBC in a
real world application. The dynamic network was cre-
ated from a microarray human brain gene expression data
set [18] that consists of 173 samples obtained from 55
individuals between 20 and 99 years of age. The reader
may wish to refer to [11] for more details on the gener-
ation of this age-specific protein-protein-interaction net-
work. From the original dynamic network, we selected
only genes belonging to the KEGG metabolic pathways
(hsa:01100) [29, 30] and their adjacent genes outside this
pathway. This dynamic subnetwork contained 1,128 genes
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(vertices) and 31,643 temporal edges between 1,275 dif-
ferent vertex pairs which were connected by an edge at
least in 1 out of 37 time points. Overall, the subnetwork
contained 506 permanent edges that were present at all 37
snapshots, but also 1,931 temporal edges that existed only
for one snapshot. Disregarding the permanent edges, the
subnetwork showed a right skewed distribution of short
to long edge durations.

To verify that the subnetwork kept the dynamic behav-
ior of the whole network, we compared both regarding
their dynamic edge density, that is the ratio between the
observed number of edges at time ¢ and the total num-
ber of possible edges at that time point. The dynamic edge
density was similar for both networks the original network
at all time points.

We used all observed 37 time points to calculate the
true TBC of the dynamic subnetwork and ranked the ver-
tices according to their TBC value. Then we selected every
fourth snapshot to build an incomplete graph sequence
with nine snapshots. The incomplete graph sequence con-
tained 23% of the original 31,643 temporal edges that
were present in 80% of the original 1,275 vertex pairs.
Vertices were ranked according to their TBC and CTBC
value estimated in the incomplete graph sequence. CTBC
was calculated ten times where the number of clones 7,
between snapshots was increased from one to ten.

The performance of TBC and CTBC was measured by
the absolute rank difference (ARD) that compares the esti-
mated ranks of the incomplete graph sequence to the
true ranks of the complete graph sequence. Results are
summarized in Table 1. It can be seen that all versions
of CTBC"),n, = 1,...,10, outperformed TBC regard-
ing the median, the first and third quartile as well as the
interquartile range of the ARD. Further, the ARD of all
CTBC versions showed smaller variability than of TBC.
The median of CTBC has its minimum for seven or more
clones, while the first and third quartiles are lowest for
CTBC®. The similarity of CTBC versions with six or
more clones per snapshot and their coincident improve-
ment of the ARD compared to TBC suggests that CTBC is
robust against false positive edges introduced by cloning.
We further calculated Spearman’s rank correlation coeffi-
cient p between the true ranks and the estimated ranks by
TBC and CTBC. Albeit all methods achieved a high posi-
tive correlation with the true ranks (o > 0.89), CTBC had
higher correlation values than TBC in all versions.

Since incomplete graph sequences might completely
miss some edges, the centrality values of vertices being
incident to missing edges can be heavily biased. It is obvi-
ous that due to the information loss of these edges even
cloning cannot decrease the ARD. In the real data exam-
ple, this is reflected by very high absolute rank differences
in all versions of CTBC and TBC, marked as outliers in
the box plots (see Fig. 11).
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Fig. 8 Spearman’s rank correlation coefficient p for TCC and CTCC in an undirected GIN scenario. Box plots of p for TCC (dotted) and CTCC (solid)
based on different combinations of number of vertices (|V| € [200,400,800]), different proportions of randomly observed snapshots (0.2, 0.3, 0.4,
0.5) of the original graph sequence consisting of 100 snapshots and different edge durations (A € [1,2,...,10]). The results are based on 500
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Discussion and conclusion
To the best of our knowledge this is the first work
that introduced the problem of incomplete graph
sequences when calculating temporal centrality measures.
Our extension of existing temporal centrality measures
addresses this problem by adding ‘clones’ of observed
snapshots as extra snapshots into the graph sequence.
The idea was motivated by real world dynamic networks,
where edges occur for shorter and longer time durations
rather than only during the specific observed snapshot.
Furthermore, incomplete graph sequences are the rule
rather than the exception in experimental and observa-
tional studies, where typically only a few snapshots of
the total graph sequence can be obtained due to ethical,
technical or financial reasons with varying time length
between snapshots.

Since the clone temporal centralities augment the orig-
inal graph sequence by adding snapshots, we needed
an algorithm that can handle large graph sequences in

reasonable time. With our new algorithm REN (Reversed
Evolution Network) (shortest) temporal paths can be
detected efficiently along a successively by one snapshot
reduced graph sequence. The time complexity of the algo-
rithm is linear in the number of snapshots and hence
it allows the calculation of temporal centrality measures
even in settings with long graph sequences.

Using the clone temporal betweenness centrality
(CTBC) as an example for clone temporal centralities,
our simulation studies demonstrate a superiority of CTBC
relative to the original temporal betweenness centrality
(TBC) [15] with respect to Spearman’s p and the detec-
tion rate of the most important network vertex. We also
applied CTBC and TBC to a data set of an age-related
gene expression network of the human brain, consisting
of edges with shorter and longer durations. The analy-
sis confirmed the better performance of CTBC compared
to TBC. Both, the results from the simulation study and
the real data example showed that the cloned temporal
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Table 1 TBC and CTBC performance regarding absolute rank
differences to true ranks and Spearman’s p

Method 1stQt. Median 3rd Qt. 0

TBC 275 815 90.0 0.89
cTBC™ 240 495 65.0 093
CTBC® 19.0 455 550 093
CTBC® 16.5 365 50.0 093
CTBC® 15.0 350 470 093
CTBC® 17.0 350 480 092
CTBC® 16.0 345 59.0 092
CTBCO 17.0 340 61.0 092
CTBC® 16.0 340 63.0 092
CTBC® 18.0 340 68.0 092
CTBCUO 18.0 340 70.0 092

CTBC" was calculated using nc clones per snapshots. Bold numbers indicate the
minimum value

centralities are affected by an excess of cloning, since
the true edge durations will tend to be overestimated,
which again can result in the detection of false tem-
poral paths. Except in data scenarios with short edge
durations, cloning still provides better results even if too
many clones were introduced in the observed snapshot
sequence. There are three intuitive explanations why our
approach outperforms the original approach even under
an excess of cloning:

1. Not all wrongly introduced temporal paths due to
cloning are shortest temporal paths and hence will
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not alter the cloned temporal centrality measures
that are based on shortest temporal paths.

2. The original approach does not only miss true
shortest temporal paths, it also detects false shortest
temporal paths. This is due to the definition of a
shortest temporal path: it is the temporal paths with
the smallest number of hops and halts of all temporal
paths between two vertices. For example, assume
that there exist only two temporal paths, starting at a
specific snapshot. Further, let one of them be a
shortest temporal path. If only the longer temporal
path can be found - due to the incomplete graph
sequence - it will be falsely declared as a shortest
temporal path.

3. If a shortest temporal path is missed, some of its
subpaths as well as paths including this shortest
temporal path will be missed too. Cloning snapshots
raises the chance of finding at least some of those
temporal paths.

However, while cloning snapshots is easy to implement,
it cannot compensate for unobserved edges, resulting in
inaccurate centrality values. Moreover, our method does
not rely on probabilistic models describing the evolu-
tion of a dynamic network. Hence, we plan to investigate
whether using probabilistic models for dynamic networks
or exploiting a priori knowledge about the network topol-
ogy can improve the estimation of temporal centrality
measures.

Based on our results, we recommend using our clone
temporal centrality measures in settings of incomplete
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Fig. 11 Results of the age-related dynamic brain network. Box plots of the absolute rank difference for the age-related dynamic brain network. The
incomplete graph sequence with 9 snapshots was built on every 4th snapshot from the original graph sequence that consisted of 37 snapshots in
total. The network included 1128 vertices. CTBC was calculated with different number of clones between snapshots. Very high absolute rank
differences were caused by unobserved rare edges, that were crucial for the connectivity of (groups of) vertices in the dynamic network
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graph sequences instead of the original temporal cen-
trality measures. Additionally, using REN will improve
computational speed in settings of long graph sequences.
The R-code of our methods is available upon request from
the authors and will be made available on CRAN.

Additional file

Additional file 1: Clone temporal closeness centrality (CTCC). Definition
of the clone temporal closeness centrality. (PDF 96 kb)
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