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Limitations of a metabolic network-based
reverse ecology method for inferring
host–pathogen interactions
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Abstract

Background: Host–pathogen interactions are important in a wide range of research fields. Given the importance of
metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was
proposed to infer these interactions. However, the validity of this method remains unclear because of the various
explanations presented and the influence of potentially confounding factors that have thus far been neglected.

Results: We re-evaluated the importance of the reverse ecology method for evaluating host–pathogen interactions
while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and
phylogeny data. Our data analyses showed that host–pathogen interactions were more strongly influenced by
genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the
reserve ecology-based measures.

Conclusion: These results indicate the limitations of the reverse ecology method; however, they do not discount
the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing
more suitable methods for inferring host–pathogen interactions and conducting more careful examinations of the
relationships between metabolic networks and host–pathogen interactions.
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Background
Diseases spread in natural host (e.g., human and plant)
populations via pathogens. Investigations of host–pathogen
interactions are important not only in the context of
basic scientific research but also in applied biological
research fields such as medical science and disease
ecology [1–3]. The development and progress of several
new technologies and high-throughput methods have
generated considerable host–pathogen interaction data,
which have accumulated in several databases such as
the Pathogen-Host Interactions database (PHI-base) [4]
and Host Pathogen Interaction Database [5].
Elucidating the molecular mechanisms of host–pathogen

interactions is important for host–pathogen interaction
inference; in particular, pathogens use their biomo-
lecules to hijack and re-wire numerous biochemical
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pathways in their hosts during infection [6]. Recogni-
tion of the importance of metabolic crosstalk between
hosts and pathogens led to the proposal of a reverse
ecology approach based on metabolic networks [7] as a
computational framework for estimating host–pathogen
interactions, which has attracted increasing attention
[8]. Metabolism, a series of chemical reactions, is often
represented as a network (known as a metabolic
network). Metabolic networks have mainly been studied
from a complex network perspective given the advances
in network science [9, 10], especially network biology
[11]. Indeed, many studies have evaluated adaptations
to different environments (i.e., ecological interactions)
by examining metabolic networks [12–14]. Specifically,
Lévy et al. [15] used a graph theoretical algorithm to
identify the set of exogenously acquired nutrients
(known as a seed set) in metabolic networks, and
proposed measures for estimating the cooperative inter-
actions between a species pair [16, 17]: the biosynthetic
support score (BSS) and the metabolic complementarity
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index (MCI). The BSS quantifies the metabolic ability
of an organism (e.g., host) to meet the nutritional
requirements of another organism (e.g., pathogen) [16].
The MCI indicates the degree of support one organism
provides to another organism through biosynthetic
complementarity (i.e., potential for syntrophism). Al-
though the authors [16] stated that the MCI is particu-
larly useful for estimating pairwise interactions between
co-occurring microbes, it is also expected to be useful
for assessing host–pathogen interactions because of the
common occurrence of pathogenic symbiosis in plants
[18] and insects [19]. A previous study [17] showed that
these measures (particularly the BSS) were effective for
predicting host–pathogen interactions. The reverse
ecology method has been implemented as a software
[16] and R-package [20], and has been applied in
several microbial ecology studies such as studies of the
human gut microbiome (e.g., [21, 22]).
However, more careful examination may be required

to determine the importance of reverse ecology-based
measures (i.e., BSS and MCI) on host–pathogen in-
teraction inference. In particular, previous studies did
not take several alternative factors into account. For
example, genome size and total gene number were not
directly evaluated, although it is well-known that these
genomic parameters of pathogens are lower than those
of free-living microbes [23]. The oxygen requirement of
pathogens has also been omitted in previous models,
despite the importance of oxygen in host–pathogen inter-
actions [24] (i.e., pathogens exhibit remarkable adaptabil-
ity and prevail in a wide range of oxygen concentrations);
in addition, metabolic networks of aerobes are larger and
less modular (or compartmentalized) than those of anaer-
obes [25, 26]. The effect of metabolic network modularity
on host–pathogen interactions has not yet been evaluated,
although previous studies [27, 28] showed that the meta-
bolic network modularity of obligate host-associated
bacteria was lower than that of free-living bacteria. In
turn, genomic, physiological, and network parameters
may influence the BSS and MCI values; thus, controlling
for these potentially confounding effects is necessary to
determine the importance and relevance of the BSS and
MCI. However, previous studies did not control for
these confounding effects. More importantly, the effects
of phylogenetic signals were not considered, although
the importance of phylogeny in evaluating associations
between biological features has been well-established
through comparative phylogenetic analyses [29, 30]. For
example, an opposite conclusion may be derived when
considering comparative phylogenetic analysis [31, 32].
Thus, we re-evaluated the contribution of the parameters

BSS and MCI to pathogen/non-pathogen classification
while statistically controlling for potentially confounding
effects using data related to oxygen requirement, genome,
and metabolic networks. We also performed comparative
phylogenetic analyses to evaluate the effects of phylogenetic
signals on the association between reverse ecology-based
measures and host–pathogen interactions.

Methods
Host–pathogen interactions
Host–pathogen interaction data were downloaded from
PHI-base (www.phi-base.org) [4] on July 28, 2016. Patho-
genic species were chosen based on the availability of
metabolic network data in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database [33] and information re-
lated to oxygen requirement in the Microbial Physiology
and Metabolism (MIPMET) database (takemoto08.bio.kyu-
tech.ac.jp/mipmet/); 54 mammalian pathogens, 13 plant
pathogens, and 15 insect pathogens were selected
(Additional file 1). The classification of mammalian/
plant/insect pathogens was defined based on the infor-
mation of Host Description (i.e., host classification) for
each pathogen in the XML file downloadable from
PHI-base. Specifically, the host species of mammalian
pathogens are categorized into Rodents, Rabbits &
Hares, Primates, Odd-toed Ungulates, and Even-toed
Ungulates. The host species of plant pathogens are
classified into Eudicots, Flowering Plants, and Mono-
cots. Host species insects are classified as Bees, Beetles,
Flies, Black-legged Ticks, Moths, and Fleas.

Non-pathogenic species
We defined 273 candidate non-pathogenic species based
on microbial physiology and metabolism data (i.e.,
lifestyle, habitat, and growth temperature) (Additional
file 2). Data related to microbial physiology and metabol-
ism were collected from the literature (e.g., [25, 26, 34])
and are available in the MIPMET database. The datasets
for microbial physiology and metabolism were down-
loaded from the database on August 25, 2016. We first
selected species that were classified both as Free-living in
the Biotic category and as Mesophilic in the Temperature
category, while species classified as Host-associated in the
Habitat category were ignored. We next removed species
whose genera appeared in the PHI-base dataset. Finally,
we only selected species whose oxygen requirement data
were available in the database.

Biosynthetic support score and metabolic
complementarity index
The BSS and MCI values between species were calcu-
lated using NetCooperate software [16], downloaded
from the website (depts.washington.edu/elbogs/NetCoo-
perate/NetCooperateWeb.cgi) on September 2, 2016.
The BSS is defined as the fraction of the seed set of an
organism that is available in the metabolic network of
another organism. The MCI is defined as the fraction of

http://www.phi-base.org/
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the seed set of an organism that is available in the non-
seed set of another organism. Both the BSS and MCI
range from 0 (no potential for cooperation) to 1 (perfect
cooperation). The metabolic networks, required for the
software, were constructed according to previous studies
[17, 25]. XML files (version 0.7.1) containing metabolic
network data (i.e., substrate–product relationships and re-
versibility/irreversibility of chemical reactions) were down-
loaded from the KEGG database [33] (ftp://ftp.genome.jp/
pub/kegg/xml/kgml/metabolic/organisms/) on August 26,
2016. Based on the XML files, metabolic networks were
represented as directed networks, in which the nodes
and edges correspond to metabolites and reactions
(i.e., substrate–product relationships), respectively. Be-
cause the use of such data may be desirable to ensure
reproducibility, the present dataset on metabolic net-
works is available upon request. When calculating the
BSS and MCI between hosts and microbes, we focused
on representative host species whose metabolic path-
ways have been well-characterized using experimental
approaches, because the metabolic networks of hosts
registered in PHI-base may be not available in the
KEGG database; specifically, we used the metabolic
networks of Homo sapiens (human), Arabidopsis thali-
ana (thale cress), and Drosophila melanogaster (fruit
fly) for mammal, plant, and insect host species, re-
spectively. The BSS and MCI are asymmetric between
a species pair [16] (i.e., host and microbe, in this
study); thus, we considered two types of BSS and MCI
values, respectively: we calculated scores for the bio-
synthetic support of a microbe for a host (BSSMH),
biosynthetic support of a host for a microbe (BSSHM),
biosynthetic complement of a microbe for a host
(MCIMH), and biosynthetic complement of a host for a
microbe (MCIHM).

Genomic and network parameters
For microbes, we obtained the genome size and number
of total protein-encoding genes from the KEGG database
on October 30, 2016. As network parameters, we evalu-
ated the number of nodes (N) and number of directed
edges (E). We focused on network modularity, since a
previous study [28] demonstrated its importance on
pathogen/non-pathogen classification. The modularity
of networks is often measured using the Q-value (e.g.,
[35]). Q is defined as the fraction of edges that lie
within, rather than between, modules relative to that
expected by chance. The Q-value is a size-invariant
measure; thus, the role of network size on modularity
can be analyzed as an independent topological variable
of interest [28] (however, see [36]). A network with a
higher Q-value indicates a higher modular structure.
Thus, we need to find the global maximum Q-value
over all possible divisions. Since it is hard to find the
optimal division with the maximum Q in general, ap-
proximate optimization techniques are required. In
this study, a spectral optimization method was used
for directed networks [37, 38] to avoid the resolution
limit problem in community (or module) detection
[35, 39] as much as possible.

Statistical analysis
To evaluate the contribution of each parameter (or factor)
to pathogen/non-pathogen classification, we conducted
logistic regression analyses using R software (version
3.3.2; www.R-project.org). There was no biological
replicate in our dataset (see also Additional file 1).
The ordinary logistic regression based on fixed effects
was first considered, for which we constructed full
models encompassing the given explanatory variables,
and selected the best model based on the sample
size-corrected version of Akaike information criterion
(AICc) values using the R package MuMIn (version
1.15.6). The quantitative variables were normalized to
the same scale, with a mean of 0 and standard devi-
ation of 1, using the scale function in R before the
analysis. We used the power.roc.test function in the R
package pROC (version 1.9.1) to estimate the required
sample size based on the area under the receiver op-
erating characteristic curve (AUC) value of the best
model, statistical power, and balance between control
and case observations (i.e., non-pathogens and patho-
gens). To avoid model selection bias, we also adopted
a model-averaging approach [40], from which we ob-
tained the averaged models in the top 95% confidence
set of models using the model.avg function in the R
package MuMIn. Genome size and total gene number
were log-transformed for all analyses.
To remove the effects of phylogenetic signals from the

regression analyses, we performed phylogenetic logistic
regression analyses using the function phyloglm in the
R-package phylolm (version 2.5). The phylogenetic trees,
which are required for phylogenetic regression, were
constructed using 16S rRNA sequence data according to
the all-species living tree project [41] (Additional files 3,
4 and 5). 16S rRNA gene sequences were obtained from
the KEGG database on November 30, 2016. After
multiple alignments of the nucleotide sequences using
ClustalW2 software, the phylogenetic tree was con-
structed using NJplot (doua.prabi.fr/software/njplot).
Similar to our approach for logistic regression analyses,
we constructed full models and then selected the best
model based on AICc values. We also obtained the aver-
aged models.
The contribution (i.e., non-zero estimate) of each ex-

planatory variable to the pathogen/non-pathogen dichot-
omy was considered to be complete when the associated
p-value was less than 0.05.

ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/organisms/
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Results and Discussion
Re-evaluation of the metabolic network-based reverse
ecology method
The conditions for the present data analysis may differ
from those used in the previous study [17]. For example,
the pathogen and non-pathogen datasets may differ
between this study and the previous study because the
dataset was not clearly described in the previous study.
Metabolic networks may also differ between this study
and the previous study because the database has been
updated. To determine whether the differences in analyt-
ical conditions were not limiting, we first evaluated the
validity of the reverse ecology method under similar
conditions as those used in the previous study; that is,
we performed statistical analysis using only the BSS
(BSSHM and BSSMH) and MCI (MCIHM and MCIMH)
values. We then determined the contributions of the
BSSs and MCIs to pathogen/non-pathogen classification
(Table 1). Our results were similar to those of the previ-
ous study and were consistent with empirical evidence.
In particular, biosynthetic support of hosts for microbes
(BSSHM) was observed in host–pathogen interactions;
however, biosynthetic support of microbes for hosts
(BSSMH) was negatively or not associated with the inter-
actions. This result reflects the parasitism of pathogens
(i.e., pathogens benefit from hosts, while hosts do not
benefit from pathogens). For plants and insects, the bio-
synthetic complement of microbes for hosts (MCIMH)
was observed in the host–pathogen interactions because
of pathogenic symbiosis in plants [18] and insects [19].
The biosynthetic complement of the hosts for microbes
(MCIHM) showed a certain degree of negative contribu-
tion to the pathogen/non-pathogen classification. This
indicates that pathogens avoid benefiting from hosts in
the context of biosynthetic complementation. This result
is puzzling; however, it may be explained as follows.
MCIHM is defined as the fraction of the seed set of a
microbe that is available in the non-seed set of a host,
whereas BSSHM is the fraction of the seed set of the
microbe available in all metabolites (i.e., union of the
Table 1 Influences of reverse ecology-based measures on pathogen

Variables Mammalian pathogens Plant path

Estimate
[Averaged]

Estimate
[Best]

Estimate
[Averaged

BSSHM 1.505 (<0.01) 1.485 (<0.01) 2.058 (0.0

BSSMH 0.086 (0.74) 0.51 (0.55)

MCIHM −1.191 (<0.01) −1.201 (<0.01) −2.098 (0.

MCIMH 0.083 (0.75) 2.043 (<0

AICc 284.4

BSSHM and BSSMH correspond to the biosynthetic support score (BSS) of hosts for m
the metabolic complement index (MCI) of hosts for microbes and the MCI of micro
on logistic regression are shown. Values in brackets indicate associated p-values. Va
size-corrected version of the Akaike information criterion value
seed set and non-seed set) of the host. Thus, the nega-
tive effect of MCIHM despite the positive effect of BSSHM

indicates that the seed set of the microbe is mainly
supported by the seed set of the host. This suggests
competition between hosts and microbes (i.e., microbes
consume the nutrients required by the host), which is a
parasitic property.

Effects of genomic, physiological, and network
parameters
We aimed to confirm the contributions of the BSS and
MCI to pathogen/non-pathogen classification. However,
the validity of the BSS and MCI remains controversial;
this is because of other factors that may dominantly
contribute to pathogen/non-pathogen classification, as
described in the Background section. Thus, we next
constructed full models encompassing all explanatory
variables (BSSHM, BSSMH, MCIHM, MCIMH, genome size,
total gene number, oxygen requirement, N, E, and Q) to
control for potentially confounding effects. The AICc
values in the best models generally decreased because of
the consideration of the physiological, genomic, and pri-
mary network parameters (Tables 1 and 2). This indicates
the importance of consideration of these parameters. The
averaged models showed that host–pathogen interactions
were affected by the oxygen requirement (i.e., anaerobic
or not) and primary network parameters (i.e., N and E) of
microbial metabolic networks rather than by the BSS and
MCI, although these metabolic network-based reverse
ecology parameters were found to partly contribute to the
best models (Table 2). This is partly because the BSS and
MCI are strongly related to the other parameters. In
mammalian pathogens, for example, BSSHM is positively
correlated with N (Spearman’s rank correlation coefficient
rs = 0.94, p < 2.2 × 10−16) and E (rs = 0.94, p < 2.2 × 10−16).
MCIHM is also positively associated with with N (rs = 0.84,
p < 2.2 × 10−16) and E (rs = 0.84, p < 2.2 × 10−16). Empirical
evidence supports these results. In particular, mammalian
pathogens are generally facultative or strictly aerobes. This
is consistent with the observation that pathogens must
/non-pathogen classification

ogens Insect pathogens

]
Estimate
[Best]

Estimate
[Averaged]

Estimate
[Best]

3) 2.347 (0.01) 2.356 (0.01) 2.592 (<0.01)

−1.787 (0.03) −1.871 (0.02)

06) −2.124 (0.05) −2.135 (0.02) −2.265 (0.01)

.01) 2.134 (<0.01) 2.365 (0.01) 2.727 (<0.01)

87.6 111.2

icrobes and the BSS of microbes for hosts, respectively. MCIHM and MCIMH are
bes for hosts, respectively. Estimates in the best and averaged models based
lues in bold indicate statistical significance. AICc denotes the sample



Table 2 Influence of explanatory variables on pathogen/non-pathogen classification when considering genomic, physiological, and
network parameters in addition to reverse ecology-based measures

Variables Mammalian pathogens Plant pathogens Insect pathogens

Estimate
[Averaged]

Estimate
[Best]

Estimate
[Averaged]

Estimate
[Best]

Estimate
[Averaged]

Estimate
[Best]

BSSHM 0.841 (0.29) 2.17 (0.08) 2.347 (0.01) 0.133 (0.90)

BSSMH −0.838 (0.35) 0.674 (0.60) −1.042 (0.41) 1.129 (0.06)

MCIHM −0.143 (0.86) −1.758 (0.19) −2.124 (0.05) 0.534 (0.53)

MCIMH −0.696 (0.07) −0.752 (0.03) 1.819 (0.01) 2.134 (<0.01) 1.207 (0.10)

Genome size −1.951 (0.16) −2.621 (0.04) 0.657 (0.73) −1.326 (0.47)

#Genes 1.631 (0.29) 1.812 (0.15) −1.193 (0.54) 0.561 (0.80)

Oxygen −1.726 (<0.01) −1.646 (0.01) −16.211 (0.99) −18.171 (0.99) −18.264 (0.99)

N −4.564 (<0.01) −4.874 (<0.01) −0.615 (0.78) −7.541 (<0.01) −8.816 (<0.01)

E 5.552 (<0.01) 5.79 (<0.01) 1.64 (0.33) 7.181 (<0.01) 7.213 (<0.01)

Q −0.307 (0.17) 0.367 (0.33) −0.656 (0.09) −0.577 (0.10)

AICc 241.7 87.6 90.3

The variable “Oxygen” indicates the species oxygen requirement (i.e., anaerobe or not). N and E correspond to the number of nodes and number of directed
edges, respectively. Q indicates network modularity. See the footnote to Table 1 for a description of all other table elements
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adapt to varied oxygen concentrations [24]. Mammalian
pathogens show smaller genome sizes, and both mamma-
lian and insect pathogens have relatively smaller metabolic
networks. This indicates the minimalism of pathogens
[23]. However, the previous study [17] showed that the
number of nodes had a limited effect on pathogen/non-
pathogen prediction using receiver operating characteris-
tic curves. This discrepancy between the present and
previous study is related to the use of different analysis
methods. The receiver operating characteristic-based
analyses used in the previous study did not control for
confounding effects; thus, the effect of the number of
nodes was likely underestimated. Moreover, the previous
study did not evaluate the effect of another primary net-
work parameter: the number of edges. Pathogens have a
relatively large number of directed edges, indicating that
the metabolic networks of the pathogens are relatively
dense. This may be because many metabolic pathways, ex-
cept for central metabolism (such as energy metabolism),
in pathogens depend on host species metabolism [42, 43].
Pathogens lack peripheral metabolic pathways (e.g., lipid
metabolism and amino acid metabolism), which is sup-
ported by the importance of amino acids on host–patho-
gen metabolic interactions [8] and is consistent with the
conclusion of a bioinformatics study on the pathway-
based inference of host–pathogen interactions [44]. Meta-
bolic networks exhibit a bow-tie (or core–peripheral)
structure [45]: they can be decomposed into densely con-
nected giant components (core) and thinly connected per-
ipheral subnetworks. Central metabolism is located at the
core; thus, metabolic networks of pathogens are denser
than those of non-pathogens because they only consist of
densely connected components. In contrast to the previ-
ous studies [27, 28], metabolic network modularity did
not differ between pathogens (or host-associated species)
and non-pathogens, which is in line with the conclusion
of other studies. In particular, the size of the metabolic
network is a major determinant of network modularity
[46]; that is, the difference in metabolic networks between
pathogens and non-pathogens is explained by network
size (i.e., N and E) rather than network modularity. Fur-
thermore, the previously observed difference in network
modularity between host-associated species and free-living
species was probably due to a lack of available data on
metabolic reactions; rather, metabolic network modularity
was found to be dependent on species growth conditions
such as oxygen requirement [47]. These previous studies
also support the importance of the oxygen requirement
and primary network parameters. However, it remains
possible that the observed limited effect of the BSS
and MCI is due to the sample size; in particular, our
dataset contained only 13 plant pathogens and 15 in-
sect pathogens; thus, statistical power for detecting an
effect may be low. However, the AUC values obtained
from the best models in the cases of plant pathogens
and insect pathogens were relatively high at 0.844
and 0.905, respectively. When the statistical power of
0.95 was considered, the required sample sizes of
plant pathogens and insect pathogens were 9 and 6,
respectively. This result indicates that the sample
sizes pose few problems.

Effect of phylogenetic signals
As described in the Background, it is important to
consider the effects of phylogenetic signals when investi-
gating the associations between biological features. We
removed the phylogenetic effects using phylogenetic
logistic regression. The AICc values in the best models
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generally decreased with consideration of the phylogeny
(Tables 2 and 3), indicating the importance of phylogeny.
Again, the averaged models revealed the limited effects
of the BSS and MCI on pathogen/non-pathogen classifi-
cation (Table 3). Moreover, the averaged models showed
that the other parameters were only minimally associated
with host–pathogen interactions; however, clear contribu-
tions of primary network parameters (i.e., N and E) were
observed in the case of insect pathogens. According to the
best models, each parameter partly contributes to patho-
gen/non-pathogen classification. For example, the genome
sizes of mammalian pathogens were smaller than those of
non-pathogens, and the metabolic networks of mam-
malian pathogens were denser than those of non-
pathogens. In addition, biosynthetic complementation
of the microbes for the insect host was observed. Insect
pathogens are typically aerobic. However, the averaged
models showed that these results were not statistically
robust. The difference between the best model and
averaged model was due to model selection bias. These
results indicate phylogenetic bias in host–pathogen
interactions (i.e., phylogenetic information, rather than
reverse ecology-based measures and other parameters,
determines whether a species is pathogenic). The effect
of phylogenetic signals (the fact that important biological
associations were not conclusively determined with phylo-
genetic correction) has been observed in a wide range of
research fields (e.g., in metabolic networks [31] and in spe-
cies–species interactions in food webs [32]). However,
more careful examinations are required because of the
limitations of phylogenetic comparative analysis. In par-
ticular, phylogenetic comparative analysis assumes a
Brownian motion-like evolution of biological traits on a
phylogenetic tree with accurate branch lengths, and thus
Table 3 Influences of explanatory variables on pathogen/non-pat
phylogenetic signals

Variables Mammalian pathogens Plant pat

Estimate
[Averaged]

Estimate
[Best]

Estimate
[Average

BSSHM 0.558 (0.31) 0.448 (0.15) −0.08 (0.

BSSMH −0.531 (0.40) −0.164 (0

MCIHM −0.126 (0.83) −0.826 (0

MCIMH −0.269 (0.44) 0.592 (0.3

Genome size −0.805 (0.25) −0.644 (0.04) 0.767 (0.6

#Genes 0.005 (1.00) −0.642 (0

Oxygen −0.486 (0.23) −0.483 (0.20) −5.029 (0

N 0.309 (0.81) −0.078 (0

E 1.023 (0.17) 0.865 (0.04) 1.398 (0.3

Q −0.047 (0.73) 0.274 (0.3

AICc 199.6

See the footnotes to Tables 1 and 2 for descriptions of table elements. Estimates in
are shown
may result in misleading conclusions. We constructed the
phylogenetic trees based on 16S rRNA sequences only to
reduce computational costs. Ideally, a highly resolved
phylogenic tree [48] constructed based on a common pro-
tein set across organisms may be required. In addition,
statistical power decreases when a dataset is reduced in
size following phylogenetic corrections [49]. As mentioned
in the previous section, our dataset contained only a few
samples for plant pathogens and insect pathogens; thus,
statistical power may have been low. Ideally, the sample
sizes required for suitable statistical power would be eval-
uated. However, methods for estimating the sample sizes
have not yet been established for the phylogenetic logistic
regression model. Thus, more careful examinations are
required to determine the limited effect of the BSS and
MCI. In this context, a larger dataset of host–pathogen
interactions should be evaluated. The development of
high-throughput sequencing techniques will enable the
collection of such data. For example, metagenomic
techniques can now reveal host–pathogen interactions
[50]. Similar to numerous previous studies of host–
pathogen interactions, our study was limited because
of the lack of availability of accurate datasets for non-
pathogenic species (i.e., negative set) owing to the
lack of experimental evidence, although we avoided
this limitation as much as possible by using data re-
lated to microbial physiology and metabolism. Meta-
genomic techniques may also enable acquisition of a
more accurate dataset.

Conclusions
The results presented herein call into question the import-
ance of the current version of the metabolic network-
based reverse ecology approach (i.e., BSS and MCI) for
hogen classification when removing the effects of

hogens Insect pathogens

d]
Estimate
[Best]

Estimate
[Averaged]

Estimate
[Best]

92) 0.531 (0.67)

.86) −1.309 (0.37) −1.494 (0.12)

.37) 0.346 (0.76)

1) 1.159 (0.17) 1.53 (0.03)

1) −0.973 (0.45)

.71) −0.049 (0.98)

.99) −3.849 (0.99) −2.864 (0.04)

.96) 1.085 (0.02) −5.549 (0.03) −4.766 (0.01)

2) 5.288 (0.03) 4.711 (<0.01)

3) −0.547 (0.14) −0.539 (0.12)

68.4 91.2

the best and averaged models based on phylogenetic logistic regression
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host–pathogen interaction inference. Metabolic networks
are still not fully understood in detail. For example,
enzyme promiscuity [51], which implies that enzymes can
catalyze multiple reactions, act on more than one sub-
strate, or exert a range of suppressions (in which enzym-
atic function is suppressed by over-expressing enzymes
with originally different functions [52]), suggests the exist-
ence of many hidden metabolic reactions. Consideration
of these hidden metabolic reactions is important for un-
derstanding metabolic interactions in ecosystems. How-
ever, the results of the present study do not entirely
discount the metabolic network-based reverse ecology
approach; rather, these findings emphasize the need for
developing more suitable methods for estimating host–
pathogen interactions. For example, the definition of seed
sets is controversial. Previous studies [15, 17] used a
strongly connected component decomposition algorithm
to identify a seed set. However, this method only focuses
on network topology and does not consider biochemically
feasible reactions. For example, it may be necessary to
identify seed sets based on an algorithm of network
expansion to generate the set of all possible metabolites
that can be produced from a set of compounds, similar to
the approach adopted in a previous study [53]. An ap-
proach for pathway-based inference of host–pathogen
interactions [44] would also be useful, which would allow
for more careful comparisons of metabolic networks
between hosts and pathogens. Moreover, there are sev-
eral metabolic models based on flux balance analysis.
Originally, flux balance analysis was used to model
metabolic processes in single species; however, in re-
cent years, this method has started to be applied in
microbial ecology (e.g., to examine the cooperative
and competitive dynamics between different species)
[54–58]. These methods can improve understanding
of interspecies interactions at the metabolic level, al-
though the computational costs are higher compared
to those required with the reverse ecology method.
Metabolic network-based reverse ecology remains a
challenging research topic in the post-genomic era be-
cause of the importance of the human microbiome
[59] and the earth microbiome [60]; thus, more careful
investigations of the relationships between metabolic
networks and host–pathogen interactions are needed.
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