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Abstract

Background: CRISPR is a versatile gene editing tool which has revolutionized genetic research in the past few years.
Optimizing sgRNA design to improve the efficiency of target/DNA cleavage is critical to ensure the success of CRISPR
screens.

Results: By borrowing knowledge from oligonucleotide design and nucleosome occupancy models, we
systematically evaluated candidate features computed from a number of nucleic acid, thermodynamic and secondary
structure models on real CRISPR datasets. Our results showed that taking into account position-dependent
dinucleotide features improved the design of effective sgRNAs with area under the receiver operating characteristic
curve (AUC) > 0.8, and the inclusion of additional features offered marginal improvement (∼2% increase in AUC).

Conclusion: Using a machine-learning approach, we proposed an accurate prediction model for sgRNA design
efficiency. An R package predictSGRNA implementing the predictive model is available at http://www.ams.sunysb.
edu/~pfkuan/softwares.html#predictsgrna.
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Background
Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR)/Cas system is a heritable and adap-
tive prokaryotic immune system that protects cells by
destroying foreign genetic elements [1]. Over the past few
years, CRISPR has emerged as a powerful gene editing
technology [2, 3]. CRISPR consists of a single guide RNA
(sgRNA) and an enzyme called Cas9. The sgRNA is com-
posed of a short synthetic RNA (approximately 20 base
pairs (bp), known as spacer target) located within a N-bp
scaffold. The spacer target is designed to bind to a specific
sequence in the genome, whereas the Cas9 protein acts
as a biomolecular scissor. This system has proven to be a
powerful tool for studying individual gene function and
for genome engineering.
The design of sgRNA is an important aspect to ensure

the success of CRISPR-Cas9 screens. It is desirable to
design sgRNA libraries which have maximum on-target
and minimum off-target effects. The binding specificity
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of the sgRNA is determined by the 20 bp spacer target
and a protospacer adjacent motif (PAM) sequence (gen-
erally NGG or NAG) on the genome. Once the sgRNA
binds to the target sequence, the Cas9 nuclease cuts
3-bp upstream of the PAM sequence. Different groups
have studied the sequence features of spacer target sites
that predict sgRNA on-target efficiency [4–7]. In partic-
ular, [5] investigated the position-dependent sequence on
sgRNA efficiency and whether these features could repro-
ducibly predict sgRNA efficiency in several publicly avail-
able CRISPR datasets. They proposed a predictive model
using the position-dependent mono-nucleotide composi-
tion across a 40 bp sequence encompassing 5’ flanking,
spacer target and 3’ flanking region; and further demon-
strated that their model performed better than the model
of [4]. On the other hand, [6, 7] proposed a predictive
model based on gradient-boosted regression trees using
position-dependent and independent sequence proper-
ties, location of the sgRNA within the protein and melting
temperatures.
Aspects of sgRNA design share similarities to oligonu-

cleotide designs used for microarrays. In both cases,
optimal oligonucleotide design aims to increase binding
sensitivity and specificity while minimizing off target
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hybridization. A position dependent sequence bias has
been observed in the design of oligonucleotides in
Affymetrix microarrays [8], whereas in our earlier work
[9] we showed that the thermodynamic and secondary
features of the oligonucleotides affect the hybridization
intensities in Nimblegen arrays. In addition, [6, 7] investi-
gated position dependent and independent features, posi-
tion of the guide within the genes, interaction with the
PAM sequence and melting temperatures, and showed
that these features improved the prediction model in
CRISPR/Cas9 screens; whereas microhomology features
did not improve the prediction. In this paper, we com-
puted a comprehensive list of features of the target
sequence from a number of nucleic acid, thermodynamic,
and secondary structure models by adopting some ideas
of microarray designs. In a similar manner as [6, 7], we
systematically characterized the effect of these features on
the efficiency of sgRNA design, and seek to understand
if the inclusion of these features improves the design of
effective sgRNAs in CRISPR/Cas9 knockout screens.

Methods
We used the sets of efficient and inefficient sgRNAs from
the CRISPR/Cas9 screens of [10] and [11] compiled by [5].
The first dataset consists of 731 efficient and 438 ineffi-
cient sgRNAs targeting ribosomal genes [10], the second
dataset consists of 671 efficient and 237 inefficient sgR-
NAs targeting non-ribosomal genes [10] and the third
dataset consists of 830 efficient and 234 inefficient sgR-
NAs targeting essential genes in mouse embryonic stem
cell (mESC) line, JM8 [11]. The procedures for identify-
ing efficient and inefficient sgRNAs were used exactly as
described in [5]. Spacer lengths in the reported studies
were 20 bp [10] and 19 bp [11]. Using these sets of sgR-
NAs, we computed primary sequence, thermodynamic,
and secondary structures as candidate features. Further
details are provided below.

DNA sequence candidate features
Position-dependent nucleotide composition
Similar to [5], we created vectors of position-dependent
mono-nucleotide composition (PD Mono) for the 40 bp
long sequences comprised of the spacer targets, and 5’
and 3’ flanking regions. In addition, we extracted position-
dependent dinucleotide composition (PD Dinuc) for these
40 bp sequences and computed the single and dinu-
cleotide frequencies (Freq) for the spacer target. Since
positions 32 and 33 were part of the PAM sequence (GG),
they were excluded from the analysis.

Thermodynamics and secondary structure properties of [9]
(Thermo)
Motivated by our earlier work which studied the
relationship between oligonucleotide properties and

hybridization signal intensities in microarray design [9],
we computed the thermodynamic properties: melting
temperature (Tm), GC content, entropy change (�S),
enthalpy change (�H), free energy change (�G); and
secondary structures: longest polyN, repetitive sequence
(repeat), length of a potential stem-loop (LSL) and mini-
mum energy folding (MEF). Tm was computed according
the formula

Tm = 81.5+16.6
(
log10([Na

+] )
)+0.41∗(%GC)−600/L

where [Na+] was assumed to be 0.2M [12]. �G, �H and
�G were calculated by summing the respective entropy,
enthalpy and free energy parameters of each dinucleotide,
including the initiation parameters and penalty for
self complementary duplexes according to the position-
dependent nearest neighbor approach as described [13].
These parameters were provided in Tables 1 and 2 of [13].
MEFwas computed using the hybrid-ss-min program
in OligoArrayAux package, whereas LSL was computed
using the palindrome function in the EMBOSS package.
Longest polyN and repeat were calculated as previously
described [9]. These properties were computed for the
spacer target sequence.

DNA secondary structures based on dinucleotide and tetra
nucleotide properties of [14] and [15] (Packer)
Following a previously described approach [16], we com-
puted the minimum, maximum and average values of
both the tetranucleotide energy and flexibility scores as
described [15]. These scores were given in Tables 3 and
4 of [15]. In addition, we computed the minimum, max-
imum and average values of the dinucleotide roll, twist,
slide and shift scores as described [14]. The dinucleotide
values of these properties were given in Tables 1, 2 and
3 of [14]. These scores were representations of the three-
dimensional DNA structure and anisotropic flexibility
[14]. Similar to above, we computed these properties for
the spacer target sequence.

Physiochemical properties of [17] (PhyChem)
We adapted the approach described by [17] which was
developed for predicting nucleosome occupancy and
computed the 12 physiochemical properties (A-pillicity,
base-stacking, B-DNA twist, bendability, DNA bend-
ing stiffness, DNA denaturation, duplex disrupt energy,
duplex free energy, propeller twist, protein deformation,
protein-DNA twist and Z-DNA). For each property, we
computed the minimum, maximum and average dinu-
cleotide scores for the spacer target sequence. The dinu-
cleotide values of the 12 physicochemical properties were
given in Table 1 of [17].
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Pseudo k-tuple nucleotide composition of [18] (PseKNC)
The PseKNC model was also originally developed for
predicting nucleosome occupancy by taking into account
global sequence-order effects. PseKNC represents the

DNA sequence as vectors
[
f1
d , . . . ,

f4k
d , wθ1

d , . . . , wθλ

d

]T

where d = ∑4k
j=1 fj + w

∑λ
j=1 θj, fj’s are the k-tuple

nucleotide frequencies and

θj = 1
m(L − j − 1)

L−j−1∑

s=1

m∑

t=1

[
Pt(rsrs+1) − Pt

(
rs+jrs+j+1

)]2

m is the number of local DNA properties considered,
Pt(rsrs+1) and Pt

(
rs+jrs+j+1

)
are the score of the t-th

DNA local structural property for dinucleotide rsrs+1 and
rs+jrs+j+1 at position s and s + j, respectively. λ is the
order of correlations along the DNA sequence and w is
the weight factor. Our candidate k, λ and w took values of
k = 2, 3, . . . , 6, λ = 1, 2, . . . , 15, and w = 0, 0.1, 0.2, . . . , 1.
We considered the following strategy to choose the opti-
mal parameters for the PseKNC model. A three way cross
validation was performed on each dataset using elastic net
[19]. The parameters corresponding to the PseKNCmodel
with the largest average area under the receiver operating
characteristic curve (AUC) were selected for subsequent
analysis. Based on this criterion, we set k = 2, λ = 1
and w = 0.5. Similar to [18], we considered m = 6 DNA
local structural properties which were divided into local
translational (rise, slide and shift) and angular (twist, roll
and tilt).

Optimal pairwise alignment (Align)
We computed the optimal global pairwise alignment
scores between the seed region and scaffold using the
Needleman-Wunsch algorithm [20] which served as a
measure of the potential of the k PAM-proximal seed
region of the spacer target to interact with the scaffold
sequence. The seed region was defined as the immediate
k nucleotides next to the PAM sequence. We considered
k = 5, . . . , L, where L is the length of spacer target.

Results and discussion
For each dataset, we computed a score for every feature
as a measure of strength of association with sgRNA effi-
ciency. If the feature was a binary variable, a log odds ratio
between efficient and inefficient sgRNAs was computed.
If the feature was a continuous variable, two-sample
t-statistic was computed. We divided the features into
8 classes (1) position-dependent mono-nucleotide (PD
Mono), (2) position-dependent dinucleotide (PD Dinuc),
(3) frequencies of mono and dinucleotides (Freq) (4)
optimal pairwise alignment between spacer target and

scaffold (Align) (5) thermodynamics and secondary struc-
tures of [9] (Thermo) (6) secondary structures of [14, 15]
(Packer) (7) physiochemical properties (PhyChem) of [17]
and (8) pseudo k-tuple nucleotide composition of [18]
(PseKNC). We found that most of the features were con-
sistently associated with sgRNA efficiency across datasets
(Figs. 1 and 2).

Candidate feature ranking
To rank the contribution of each feature to the efficiency
of sgRNA design, we fitted a logistic regression model
within each dataset using the binary sgRNA efficiency
indicator as the response and the features as predictors.
The Bayesian Information Criterion (BIC) for the fitted
model was computed. The features were ranked by the
BIC scores and the top 10 most important features were
shown in Additional file 1: Figure S1. The top ranked fea-
ture based on average BIC scores across the three datasets
was the 16-th feature from PseKNC model. This feature
is a function of TT dinucleotide frequency. In addition,
we computed the area under receiver operating character-
istic curves (AUCs) for continuous features. The top 10
features ranked by AUC were shown in Fig. 3, in which
the 16-th feature from the PseKNCmodel was also ranked
number one. The third measure we considered for feature
ranking was the permutation based variable importance
score from the random forest prediction algorithm. Ran-
dom forest [21] is a non-parametric ensemble approach
based on a large number of classification trees trained
on bootstrap samples. The permutation based variable
importance score of a feature is defined as the difference
in prediction accuracy before and after permuting this
feature, averaging over all trees. We used the unscaled
version of variable importance score as recommended
by [22, 23] to avoid bias due to number of trees grown.
The top 10 features ranked by variable importance are
shown in Additional file 1: Figure S2. Based on these
results, the frequencies of T and TT had the strongest
association with sgRNA efficiency, in which higher fre-
quencies of T and TT were associated with decreased
efficiency.

Predictive modeling
To assess the contribution of the 8 different feature classes
in prediction sgRNA efficiency, we formed all possi-
ble combinations of feature classes

(∑8
i=1

(8
i
) = 255

combinations
)
. We adapted the strategy in [5] in con-

structing and evaluating the predictive model for sgRNA
efficiency:

1. To evaluate intra-platform consistency within the
same class of genes, we performed 3-way cross
validation within dataset 1 (sgRNA targeting
ribosomal genes) from [10]. We randomly split
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Fig. 1 Pairwise correlation plot for each class of features. Left column is the pairwise correlation plot between ribosomal and non-ribosomal genes
from [10].Middle column is the pairwise correlation plots between ribosomal genes from [10] and mESC essential genes from [11]. Right column is
the pairwise correlation plots between non-ribosomal genes from [10] and mESC essential genes from [11]. Each point is a feature

dataset 1 into 3 parts of equal sample size, trained the
model on two parts (training set) and evaluated the
performance of the resulting predictive model on the
remaining part (test set). This process was repeated 3
times by leaving out a different test set, and results
were averaged over 10 iterations of random sampling.

2. To evaluate intra-platform consistency across
different classes of genes, the predictive algorithm
was trained on dataset 1 (ribosomal genes) and tested
on dataset 2 (non-ribosomal genes).

3. To evaluate inter-platform consistency, the
predictive algorithm was trained on datasets 1 and 2
(ribosomal+non-ribosomal genes) from [10] and
tested on dataset 3 (mESC essential genes) from [11].

The elastic net algorithm [19] was used in constructing
the predictive model on the training set based on 10 fold
cross-validation. Since the features we considered in this
paper were functions of the nucleotide composition, they
were correlated and the elastic net algorithm automat-
ically selected non-redundant informative features. The

objective function of elastic net consists of a loss function
+ penalty:

min
β

||y − Xβ||2 + λ
{
α||β||1 + (1 − α)||β||2}

where ||β||1 = ∑p
j=1 |βj| and ||β||2 = ∑p

j=1 β2
j .

We evaluated the performance on the test set in
terms of AUC. The optimal cutpoints were determined
by maximizing the Youden index(J)=Se+Sp−1, where
Sensitivity(Se)= TP

TP+FN and Specificity(Sp)= TN
TN+FP . The

results were shown in Tables 1, 2 and 3. For each test set,
we reported these performance measures for the predic-
tivemodels constructed using each of the 8 feature classes,
as well as the combinations of feature classes with the
maximum AUC (Comb Feature). Across all comparisons,
integrating multiple feature classes showed improvements
in terms of AUC compared to position-dependent mono-
nucleotide models (PD Mono) in [5]. Among the 8 indi-
vidual feature classes, position-dependent dinucleotide
models (PD Dinuc) consistently outperformed other fea-
ture classes in predicting sgRNA efficiency and were close
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Fig. 2 Pairwise correlation plot for each class of features. Left column is the pairwise correlation plot between ribosomal and non-ribosomal genes
from [10].Middle column is the pairwise correlation plots between ribosomal genes from [10] and mESC essential genes from [11]. Right column is
the pairwise correlation plots between non-ribosomal genes from [10] and mESC essential genes from [11]. Each point is a feature

to results from the combination of feature classes mod-
els in all 3 scenarios. A similar pattern was also observed
in [6, 7], in which they showed that position depen-
dent dinucleotide features yielded the largest average Gini
importance among the set of features considered in their
dataset [4, 7].
We also compared the results using the random forest

and boosted regression to construct the predictive model.
Random forest [21] was implemented in the R package
randomForest, whereas the boosted regression based
on extensions to AdaBoost [24] and gradient boosted
machine [25] was implemented in the R package gbm. The
results were shown in Additional file 1: Tables S1, S2 and
S3 (randomforest) and Additional file 1: Tables S4, S5
and S6 (gbm). These results were comparable to the results
from elastic net.
Related work for predicting CRISPR/Cas9 guide effi-

ciency based on nucleotide properties and melting tem-
peratures includes azimuth [4, 6, 7], which constructed
a predictive model based on gradient-boosted regression

trees as described earlier. This method was recommended
by [26] for in-vivo (U6) transcribed guides. In contrast,
the sgRNA scorer of [27] was a predictive model
based on the support vector machine (SVM) algorithm
using position dependent mono-nucleotide on 5’ flank-
ing (5 bp), spacer target and 3’ flanking (NGG + 5 bp)
region. We included these two methods for comparison
in Table 3 and Fig. 4. In this comparison, each method
was trained on different datasets, but the performance
was evaluated on the same test dataset generated by an
independent research group, i.e., [11] dataset. The statisti-
cal significance for pairwise AUC comparisons was based
on DeLong’s test [28]. Our proposed predictive algo-
rithm achieved higher AUC compared to both azimuth
and sgRNA scorer (p < 0.001 in both cases). On
the other hand, azimuth had better performance than
sgRNA scorer (p < 0.001). We have also implemented
azimuth (based on continuous outcome gbmmodel) and
sgRNA scorer (based on binary outcome SVM model)
using the sequence features identified by [6, 7] and [27],
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Fig. 3 Top 10 most informative features ranked by AUC by dataset. The last panel is the ranking by average AUC aggregating the three datasets

respectively on the same training data (i.e., [10] riboso-
mal and non-ribosomal genes) (Table 3). As expected,
the performance of sgRNA scorer was comparable to
the model using position dependent mono-nucleotide
(Table 3), whereas the performance of azimuth was
comparable to the gbm results in Additional file 1:
Table S15. Our proposed predictive algorithm achieved
higher AUC compared to the refitted sgRNA scorer
(p = 0.048) and comparable performance to the refitted
azimuth (p > 0.1).
We also included comparison using a regression model

based on (1) the average log2 fold change (12 cell dou-
blings vs initial seeding states) of HL-60 and KBM-7 cell
lines for [10] data and (2) the average log2 fold change
(mESC vs plasmid control) of replicate 1 and replicate 2
of mouse ESC JM8 cell lines for [11] data. We compared
the performance of the sequence properties in predic-
tion in terms of AUC, Pearson correlation coefficient,
Spearman rank correlation coefficient and mean squared

error on the test data. The results were presented in
Additional file 1: Tables S7, S8 and S9. In addition, similar
to the binary outcomemodel as described above; position-
dependent dinucleotide models (PD Dinuc) consistently
outperformed other feature classes in predicting sgRNA
efficiency and were comparable to results from the com-
bination of feature classes models in all 3 scenarios. Fusi
et al. [6] and Doench et al. [7] showed that the regres-
sion model outperformed classification model using their
dataset [4, 7]. However, we observed that the regression
model and the classification model yielded comparable
performance in both [10] and [11] datasets. The com-
bination feature prediction model from the regression
model (Comb Feature) exhibited larger AUC than both
azimuth and sgRNA scorer (p < 0.001 for all pair-
wise AUC comparisons using DeLong’s test [28]), but no
difference using Spearman rank correlation coefficient for
Comb Feature versus azimuth (p = 0.88 from Fisher’sZ-
transformation test [29, 30]) as shown in Additional file 1:
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Table 1 AUC, Youden index (J), Sensitivity (Se) and Specificity
(Sp) from the 3-way cross validation within dataset 1 (ribosomal
genes)

Feature class AUC J Se Sp

PD Mono 0.826 0.535 0.855 0.680

PD Dinuc 0.848 0.575 0.788 0.787

Freq 0.778 0.441 0.677 0.764

Align 0.613 0.188 0.746 0.442

Thermo 0.525 0.086 0.812 0.273

Packer 0.601 0.186 0.634 0.551

PhyChem 0.722 0.380 0.711 0.669

PseKNC 0.731 0.376 0.683 0.693

Comb Feature 0.867 0.618 0.826 0.792

Comb Feature: PD Mono+PD Dinuc+Freq+Thermo+Packer+PhyChem+PseKNC.
We reported the average performance from the 3-way cross validation over 10
iterations of random sampling

Table S9. The results from random forest and boosted
regression were presented in Additional file 1: Tables S10,
S11 and S12 (randomforest) and Additional file 1:
Tables S13, S14 and S15 (gbm). These results were compa-
rable to the results from elastic net.
Following [6, 7], we also included the results from leave-

one-gene out prediction framework to obtain a general-
ization of our predictionmodel to new genes in Additional
file 1 (Section 5 and Tables S19 and S20). The con-
clusion remained the same, i.e., Comb Feature yielded
the largest AUC and PD Dinuc followed closely. Addi-
tional results including performance evaluation using 30
bp sequence [6, 7] instead of 40 bp sequence were pre-
sented in Additional file 1: Tables S16, S17 and S18. The
results indicated that the performance of the prediction
models were comparable regardless whether a 40 bp or 30
bp sequence was used.

Table 2 AUC, Youden index (J), Sensitivity (Se) and Specificity
(Sp) from intra-platform comparison (training set: ribosomal
genes, test set: non-ribosomal genes)

Feature class AUC J Se Sp

PD Mono 0.785 0.443 0.717 0.726

PD Dinuc 0.792 0.478 0.765 0.713

Freq 0.700 0.332 0.779 0.553

Align 0.594 0.159 0.881 0.278

Thermo 0.616 0.222 0.639 0.580

Packer 0.637 0.207 0.431 0.776

PhyChem 0.659 0.241 0.633 0.608

PseKNC 0.647 0.243 0.694 0.549

Comb Feature 0.806 0.492 0.851 0.641

Comb Feature: PD Mono+PD Dinuc+Thermo + Packer+PhyChem

Table 3 AUC, Youden index (J), Sensitivity (Se) and Specificity
(Sp) from inter-platform comparison (training set: ribosomal and
non-ribosomal genes, test set: mESC essential genes)

Feature class AUC J Se Sp

PD Mono 0.797 0.486 0.751 0.735

PD Dinuc 0.832 0.544 0.792 0.752

Freq 0.751 0.382 0.716 0.667

Align 0.574 0.131 0.490 0.641

Thermo 0.641 0.261 0.817 0.444

Packer 0.667 0.241 0.514 0.726

PhyChem 0.726 0.351 0.718 0.632

PseKNC 0.733 0.370 0.660 0.709

Comb Feature 0.848 0.566 0.843 0.722

azimuth 0.795 0.463 0.857 0.607

sgRNA Scorer 0.669 0.288 0.548 0.739

azimuth (retrained) 0.833 0.543 0.787 0.756

sgRNA Scorer (retrained) 0.804 0.474 0.786 0.688

Comb Feature: PD Mono+PD Dinuc+Freq+Align+Thermo+Packer+PhyChem+
PseKNC. azimuth and sgRNA Scorer were the results based on the softwares by [7]
and [27], respectively developed using different training datasets. azimuth
(retrained) and sgRNA Scorer (retrained) were the results obtained by refitting the
algorithms on the current training set (ribosomal and non-ribosomal genes)

Fig. 4 AUC curves for our proposed predictive model using
combination features (Comb Feature), azimuth and sgRNA scorer.
azimuth and sgRNA Scorer were the results based on the softwares
by [7] and [27], respectively developed using different training
datasets. azimuth (retrained) and sgRNA Scorer (retrained) were the
results obtained by refitting the algorithms on the current training set
(ribosomal and non-ribosomal genes)
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We created an R package predictSGRNA implement-
ing the proposed predictive algorithm based on position-
dependent dinucleotide model, available at http://www.
ams.sunysb.edu/~pfkuan/softwares.html#predictsgrna.

Conclusions
In this paper, we explored various aspects of nucleotide
compositions including position dependent models, sec-
ondary structure and thermodynamics to gain better
understanding of the nucleotide properties on CRISPR
sgRNA design efficiency in a similar way as [6, 7]. Candi-
date feature ranking in terms of association with sgRNA
effiency identified features which characterize the flexibil-
ity of the underlying DNA structure. Specifically, we found
that the frequency of T and TT dinucleotide exhibited
the strongest negative association with sgRNA efficiency.
Packer et al. [14] illustrated that TT dinucleotide has the
most rigid step and least flexible in terms of the abil-
ity to slide and shift, which could explain the decreased
efficiency of sgRNA with higher abundance of TT din-
ucleotides. The results from the different predictive
algorithms showed that across datasets, the position
dependent mono-nucleotide model [5] achieved good
operating characteristics while the prediction algorithm
trained on position dependent dinucleotide model offered
additional improvement in terms on AUC. The advantage
of position dependent dinucleotide model in predicting
sgRNA efficiency was also observed in [6, 7].
One factor that may guide improvement of future

predictive algorithms is chromatin structure. Chromatin
accessibility (packed vs unpacked) has been shown to be
the major determinant of genome-wide binding of dCas9-
sgRNA in [16]. Examples of epigenetic marks which
are implicated in chromatin remodeling and accessibility
include DNase I hypersensitive sites, transcription fac-
tor binding, DNA methylation and histone modification.
Future work will include integrating both the nucleotide
composition features and chromatin structures as fea-
tures in the predictive model to characterize the binding
efficiency of sgRNA.
In this study, we used datasets of size 3141 and achieved

AUC of > 0.8. Prior efforts to improve the efficiency of
RNAi design utilized high-throughput functional testing
of the efficacy of different RNAi sequences to gener-
ate large (2182) [31] and very large datasets (∼250000)
[32]. These large datasets in turn were used to develop
improved prediction algorithms using machine-learning
approaches similar to those used here [33, 34]. It is gen-
erally accepted that the first large test set (2182) was very
useful for improving RNAi design, there is still uncertainty
regarding the utility of examining very large datasets [34].
Part of the unresolved issues are the degree to which
different prediction algorithms are dependent upon the
vector used for shRNA expression [35] as well as the

sequence context in the genome outside of the immedi-
ate target [36]. Therefore, as more CRISPR/Cas9 screens
datasets are becoming available, we anticipate that the
specificity of sgRNA efficacy prediction can be further
improved by considering the vector-dependent level of
expression of the sgRNA.

Additional file

Additional file 1: Supplementary Information. The pdf document that
contains all supplementary notes, figures and tables. Figures S1-S2 plot the
top 10 most informative features ranked by BIC and variable importance
scores, respectively. Tables S1-S3 contain the results from randomforest
in binary outcome model. Tables S4-S6 contain the results from gbm in
binary outcome model. Tables S7-S9 contain the results from elastic net in
continuous outcome model. Tables S10-S12 contain the results from
randomforest in continuous outcome model. Tables S13-S15 contain
the results from gbm in continuous outcome model. Tables S16-S18
contain the results comparing 30bp and 40bp sequences. Tables S19-S20
contain the results from leave-one-gene out prediction. (PDF 151 kb)
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