Klein et al. BMIC Bioinformatics (2017) 18:317
DOI 10.1186/s12859-017-1711-z

BMC Bioinformatics

GRAPE: a pathway template method to @ e
characterize tissue-specific functionality from
gene expression profiles

Michael I. Klein!, David F. Stern? and Hongyu Zhao®"

Abstract

Background: Personalizing treatment regimes based on gene expression profiles of individual tumors will facilitate
management of cancer. Although many methods have been developed to identify pathways perturbed in tumors,
the results are often not generalizable across independent datasets due to the presence of platform/batch effects.
There is a need to develop methods that are robust to platform/batch effects and able to identify perturbed pathways
in individual samples.

Results: We present Gene-Ranking Analysis of Pathway Expression (GRAPE) as a novel method to identify abnormal
pathways in individual samples that is robust to platform/batch effects in gene expression profiles generated by
multiple platforms. GRAPE first defines a template consisting of an ordered set of pathway genes to characterize the
normative state of a pathway based on the relative rankings of gene expression levels across a set of reference
samples. This template can be used to assess whether a sample conforms to or deviates from the typical behavior of
the reference samples for this pathway. We demonstrate that GRAPE performs well versus existing methods in
classifying tissue types within a single dataset, and that GRAPE achieves superior robustness and generalizability
across different datasets. A powerful feature of GRAPE is the ability to represent individual gene expression profiles as
a vector of pathways scores. We present applications to the analyses of breast cancer subtypes and different colonic
diseases. We perform survival analysis of several TCGA subtypes and find that GRAPE pathway scores perform well in
comparison to other methods.

Conclusions: GRAPE templates offer a novel approach for summarizing the behavior of gene-sets across a collection
of gene expression profiles. These templates offer superior robustness across distinct experimental batches compared
to existing methods. GRAPE pathway scores enable identification of abnormal gene-set behavior in individual samples
using a non-competitive approach that is fundamentally distinct from popular enrichment-based methods. GRAPE
may be an appropriate tool for researchers seeking to identify individual samples displaying abnormal gene-set
behavior as well as to explore differences in the consensus gene-set behavior of groups of samples. GRAPE is available
in R for download at https://CRAN.R-project.org/package=GRAPE.
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Background
One of the primary obstacles impeding the advancement

variability remains within many of the subtypes and pre-
vents reliable prediction of response to targeted treat-

of rational cancer treatments is the tremendous inter-
tumoral heterogeneity. In some cancers there are well-
established subtypes that account for a portion of the
heterogeneity. However significant genetic and epigenetic
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ments. In some cases the absence of targeted therapies
is due to lack of therapeutically actionable mutational
targets. For example in RAS driven cancers the pro-
tein product of the driver mutation itself is not directly
druggable, and an understanding of which down-stream
pathways are perturbed as a result of the driver muta-
tion may help identify potential drug targets. Another
example is the subset of triple-negative breast cancers
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that harbor PI3K mutations. Although inhibitors are avail-
able for these tumors, toxicity issues limit their usage.
Finding secondary drug targets on a case-by-case basis
can improve the therapeutic index for these patients
via synergistic drug combinations. In these cases and
many others, there is a critical need for computational
methods that are capable of extracting functional infor-
mation from the transcriptional profiles of individual
samples.

Analysis of individual genes, e.g., using t-tests or fold
changes to detect differentially expressed genes, is often
unable to account for the complex interactions among
genes whose protein products interact in complicated
ways. Another problem with methods based on expres-
sion of individual genes is high correlations of expression
within gene subsets, which muddles the identification
of important ones in many circumstances. To over-
come these limitations, researchers have developed many
pathway-based methods in which the signals from pre-
defined collections of genes, i.e. pathways, are considered
together.

In this paper we present a method for inferring whether
a pathway is differentially regulated based on the rank-
ings of the genes using their expression values within the
pathway. Our method is called GRAPE, an acronym for
Gene-Ranking Analysis of Pathway Expression. GRAPE
uses pairwise gene expression ordering within individual
samples of a particular collection of genes to create a tem-
plate representing the consensus ordering for components
of the pathway within the collection. For every pair of
genes (gene A, gene B), the template ordering is assigned
to be either gene A > gene B or gene B > gene A depend-
ing on which ordering is present in the majority of samples
in the collection.

The template concept behind GRAPE was inspired by
Differential Rank Conservation (DIRAC) [1]. The differ-
ence between GRAPE and DIRAC is the way in which
disagreement is quantified between a sample and a tem-
plate, as well as between two templates. In DIRAC, the
disagreement between a sample and a template is simply
the proportion of reversals, i.e., gene pairs that are oppo-
sitely ranked in the sample compared to the template. This
implicitly assigns an equal weight to all reversals. Instead,
GRAPE uses a weighted penalty function in which the
contribution of a reversal to the disagreement depends on
the proportion of the reversals occurring within the refer-
ence collection. For example, consider a reversal in a new
sample that is not part of the reference collection. If the
reversal occurs in zero percent of the reference samples
(i-e., unanimous vote) it will contribute much more highly
to the distance between the sample and the template
than if it had occurred in 40% of the reference samples.
The purpose of this weighting function is to reduce the
importance of gene pairs whose ordering is subject to high
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biological variability. In fact, DIRAC is a special case of
GRAPE using a constant weight function. We hypothesize
that by leveraging the flexibility afforded by the weight
function to make efficient use of gene-ranking informa-
tion, GRAPE may be ideally suited for the purpose of
characterizing the tissue-specific behavior of individual
pathways.

In the original description of DIRAC [1], the authors
primarily used DIRAC to compare the amount of vari-
ability between different stages of cancer progression.
An extension of DIRAC, Expression Variation Analy-
sis, was developed to analyze gene expression variability
within gene sets at improved computational efficiency
[2]. This improvement was partially achieved by avoid-
ing the use of templates when comparing the variability
between phenotypes. Here, we show that GRAPE tem-
plates can be used in a much wider range of applications.
For example, tissue-specific characterization of the typi-
cal pathway behavior and variability within healthy tissues
may facilitate identification of perturbed pathways within
individual tumor samples. We reason that the molecular
underpinnings of a pathological state may be identified
by detecting pathways exhibiting departure from the nor-
mal state. A similar idea has been previously applied at
the level of individual transcripts in [3], where the authors
used “anti-profiles’, i.e., the ranges of gene expression in
normal samples, in an effort to diagnose colon cancer
based on analysis of peripheral blood. We explore the
value of applying this approach at the pathway-level using
GRAPE.

We evaluate the usefulness of GRAPE in three domains.
First we consider whether it is a viable tool for identifica-
tion of tissue-specific pathway behavior. Next we consider
the ability of GRAPE to integrate data generated from
multiple distinct datasets within and between different
technological platforms. This is an important consid-
eration as both microarrays and RNA-Seq technologies
are plagued by reproducibility issues, including dynamic
range differences between platforms, gene-specific plat-
form biases, batch effects, and poor resolution of lowly
expressed genes [4—6]. Finally we consider an additional
potentially powerful application of GRAPE by represent-
ing each tumor sample by a vector of pathway scores.
We demonstrate how this pathway space representation
can be used to analyze different disease subtypes. We
further evaluate the ability of the pathway space represen-
tation to predict patient survival in several TCGA cancer
subtypes.

Methods

GRAPE is a generalization of the DIRAC method pro-
posed in [1]. For completeness we describe the procedure
from scratch.
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Binary representation of pathway gene expression
Consider a pathway consisting of m genes. We denote
P =[g1,2,-..,%m] to be the expression levels of the genes
belonging to the pathway within a particular sample. The
continuous valued vector P is transformed into a binary
valued vector B of length m x (m — 1)/2, correspond-
ing to all unique pairs of distinct genes within P. If a
pair of genes (g;,gj) are not equal, the value assigned is
the indicator that g; is less than g. If g; = g; the value
is randomly assigned to be one or zero with probability
0.5. In practice the latter case happens almost exclusively
when both genes are not expressed. The original repre-
sentation of the sample P =[g1, £, . ..,%xu] thus becomes
B =[14,<g,, 141 <g3»- - - 1g,,_1 <g,,]. The resulting represen-
tation contains identical information to ranking the m
genes and resolving ties arbitrarily. The benefit of this
binary representation is that information across samples
can be aggregated by simple arithmetic operations, as
discussed in the following sections.

Construction of binary template and probability template
over collection of samples

Consider a collection of samples comprising the reference
phenotype. For a particular pathway, P, the probabil-
ity template, denoted by Tp, is constructed by averaging
across each entry of the binary representation of all of
the samples in the collection. That is, we have Tp =
[Pg1<grrPgr<gsr - - - Pgm_1<gm)» Where pg g is the propor-
tion of samples in the reference collection for which the
expression of gene i is smaller than the expression of gene
j. A binary template, denoted by T3, is then created by
rounding the entries of Tp to zero or one. In the event
that an entry in the probability templates is exactly 0.5 it
is randomly assigned to be zero or one. Tp represents the
consensus ordering within the reference collection, while
Tp contains information about the amount of variability
there is for each gene pair.

Distance metric between a sample and a template
Construction of the binary template and probability tem-
plate described above is identical between GRAPE and
DIRAC. There is a crucial difference, however, in how the
distance between a sample and a template is calculated.
In DIRAC the distance is the proportion of violations
between the sample and the binary template. Letting E be
the set of all gene pairs, |E| denote the size of set E, we can
write this as:

1
Dpirac = 7] Z | T3ij — Bij| - 1)

(ij)eE

In GRAPE this calculation is modified to reduce the
impact of uninformative gene pairs, i.e., gene pairs that
appear in both orders with comparable frequency. To
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accomplish this a weight function is applied to the proba-
bility template:
D _! T, T B
GRAPE = ¢ Z w (Tp,i;) | Tsij — Bij| »
(ij)eE
where S = Z w(Tp,).
(B))eE

For all of the results presented here, the following
quadratic weight function was used:

w(x) = (x — 0.5)%,Vx €[0,1]. (3)

In the supplementary information (Additional file 1:
Topic S1) a procedure for optimizing the weight func-
tion based on the mean-variance ratio is presented. The
quadratic weight function above was chosen because it
displayed mean-variance characteristics that were very
similar to the optimal weight function and the classi-
fication performances were not significantly different.
Moreover, the simple analytical form enables much faster
computation compared to the more time-consuming
numerical optimization procedure.

Pathway score function

The last step of GRAPE is to create a pathway score repre-
senting the degree of abnormal regulation of a particular
sample relative to the reference collection. Given a col-
lection of n reference samples, one first calculates 75 and
Tp for a particular pathway. Then, for each sample in
the reference collection, the GRAPE distance is calculated
relative to the template. The median and inter-quartile
distances of the distribution of distances are calculated
and denoted 6 and &y, respectively. For a new sample, i.e.,
one that is not in the reference collection, we first calcu-
late the distance from the template, d,ey, and then define
the pathway score function, f, as follows:

0 ifdyew <0
d"eaﬂ otherwise

f (dnew) = { (4')

The purpose of this pathway score function is to quan-
tify the abnormality of a pathway corrected for the center
and spread of the distribution of distances of the refer-
ence samples for that pathway. To avoid situations where
the inter-quartile distance is zero or near-zero, § is set to
be the maximum of §p and the distance of a single rever-
sal of a pair that has template probability of 0.75. That is,
& = max(89, w(0.75)/S).

Gene expression processing

In the case of genes with multiple mapped probes,
the average over all mapped probes was used. We also
repeated the inter-dataset analysis using max variance
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probe instead of the average for multi-probe aggrega-
tion, and we observed that the results did not change
appreciably. For classification, all samples were standard-
ized to have mean O and standard deviation 1 across
all genes. This standardization only impacts the perfor-
mance of the classification methods that are based on
absolute expression, as GRAPE and DIRAC are invari-
ant to any monotonic normalization. In the multi-dataset
analyses, transcription profiles were considered to be
only the genes that occur in every dataset within the
analysis. Standardization was performed over the com-
mon set of genes, rather than all of the genes for each
dataset.

All TCGA gene expression data were Illumi-
naHiSeq_RNASeqV2. All TCGA data were downloaded
using the R package “TCGA2STAT”. Two samples were
discarded from analysis due to suspicion of being outliers
(see Additional file 1: Topic S2).

Software details

Random Forests and SVM functions were taken from
the R libraries “randomForest” and “e1071’; respectively.
DIRAC was implemented without any external functions.
GSEA was implemented using the desktop application [7].
Default parameters were used. Combat was implement
using the R library “SVA” [8]. GSVA was implemented
using the Bioconductor R package “GSVA” [9].

Survival analysis

Multivariate survival prediction was performed using a
penalized Cox Proportional Hazards Model (pCPHM)
with a ridge (L2) penalty using the R library “penalized”
[10]. Thirty iterations of 3-fold cross-validation were per-
formed for each method. To reduce the noise in the
comparison the same CV splits were used for each of
the methods. Additionally, the cross-validation partitions
were constrained to preserve the ratio of events to non-
events within each fold. To match the number of features
for GSVA and GRAPE, the set of GE features was filtered
to include only the top 4500 features, ranked according
to standard deviation. For each method, a two-step fea-
ture selection procedure was used within the training set.
In the first step, univariate associations with survival were
calculated for each feature using the function “gt” within
the R library “globaltest” [11]. In the second step, the
top N features having smallest p-value were chosen for
the final model. A line search over the interval [5200]
was used to identify the value for N for which the cross-
validated likelihood is maximized. The function “optL2”
in the “penalized” package was used to select the value
of the ridge parameter lambda in the pCPHM, and to
evaluate the internal cross-validated likelihood of the var-
ious sized models. All features were standardized in the
pCPHM.
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Results

Classification of healthy tissues using individual pathways
within the same dataset

GRAPE templates were designed with the dual goals of
sensitively capturing biological variation and being robust
to noise. We evaluated these qualities by comparing the
classification performance of GRAPE templates with four
other methods: DIRAC, Pathway Centroid (PC), Support
Vector Machine (SVM) and Random Forests (RF). In PC,
the template is defined to be the centroid of the path-
way genes and the distance of a sample to the template
is the Euclidean distance. GRAPE, DIRAC and PC are
examples of template generating methods, while SVM
and RF are state of the art machine learning methods.
PC is included to contrast the performance of a tem-
plate based on relative gene expression with that of a
template based on absolute gene expression. The term rel-
ative expression is used throughout this paper to mean
methods that are based on gene rankings as opposed
to the absolute expression values. This usage is adopted
from [12], and refers to the relationships among the genes
within a single profile, not to be confused with an alterna-
tive usage referring to the relationships between different
profiles.

The Cancer Genome Atlas (TCGA) Pan-Cancer anal-
ysis project has made available a repository of genetic
information from patient biopsies [13]. An underused
subset of TCGA is the data from the matched normal
sections of the biopsies that are often extracted along with
the tumors. We analyzed four healthy tissue types from
TCGA. Thirty-five RNA-Seq transcription profiles were
randomly selected for each of lung, kidney, breast and
head-neck healthy samples. Although more samples were
available for lung, breast and kidney, a balanced dataset
was used to better evaluate classification performance.
The expression data from all samples were first standard-
ized by subtracting the mean and dividing by the standard
deviation. For each of the three template generating meth-
ods, a template for each tissue-type was first generated
from the training set, and the samples in the testing set
were then classified according to which of the templates
they were most similar to using the relevant distance mea-
sure. For the two machine learning methods, classification
was performed only using the genes within one pathway.
In order to ensure robustness of the results, the classifi-
cation accuracy was averaged over ten splits of five-fold
cross validation.

The DIRAC and GRAPE shared template is comprised
of two vectors: 1) a probability template indicating the
proportion of samples for which each gene pair occurs
in one of the two orderings (7p), and 2) a binary tem-
plate derived by rounding the probability template to
one or zero and representing the consensus order for
the tissue type (73). One of the advantages of DIRAC



Klein et al. BMIC Bioinformatics (2017) 18:317

and GRAPE compared to the machine learning meth-
ods is that the templates can be easily visualized and
interpreted. An example is shown in Additional file 1:
Figure S1, where the binary templates (Additional
file 1: Figure S1A) and probability templates (Additional
file 1: Figure S1B) for each tissue type are shown for the
KEGG “Folate Biosynthesis” pathway. This pathway only
contains 11 genes and the corresponding templates con-
sist of 55 gene pairs. The pairwise information in the
binary templates corresponds to distinct consensus order-
ings of the genes for each tissue type (Additional file 1:
Figure S1C). In DIRAC the distance from a sample to
each template is the percentage of inversions relative to
the binary template. In GRAPE each inversion is weighted
by a function of the probability template value for the
gene pair. The DIRAC five-fold cross validation accu-
racy is 0.82 and the GRAPE accuracy is 0.90 for this
pathway.

The classification accuracy of all five methods was com-
pared for the set of KEGG and BioCarta pathways that
have between 25 and 100 genes (Fig. 1). This lower bound
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on the pathway size was chosen because we observed
that GRAPE and DIRAC classification accuracies were
strongly correlated with pathway length for pathways
with fewer than 25 genes (Additional file 1: Figure S2).
Although both GRAPE (Fig. la, green) and DIRAC
(Fig. 1a, blue) achieve greater than 85% accuracy for the
majority of pathways, GRAPE significantly outperforms
DIRAC in this context. This indicates that the addition of a
weight function to decrease the impact of noisy gene pairs
improves the discriminative power of the GRAPE algo-
rithm. Both GRAPE and DIRAC dramatically outperform
PC (Fig. 1a, red). This suggests that it is advantageous
to use rank-based template methods over absolute gene
expression values, which are subject to much greater vari-
ability. Among the three template-generating methods,
GRAPE achieves the highest classification accuracy in 169
out of 171 pathways. In this context, GRAPE was compa-
rable to RF (Fig. 1a, purple) and SVM (Fig. 1a, brown) in
classification performance. GRAPE achieves a higher clas-
sification performance than RF in 79 out of 171 pathways,
and it outperforms SVM in 57 out of 171 pathways. The
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Fig. 1 Classification of four different healthy tissue types within TCGA dataset: breast, lung, head and neck, and kidney. Five-fold cross-validation was

performed 10 times for 171 KEGG and BioCarta pathways using each of five

methods. In each panel, the pathways are ordered according to the

classification performance of GRAPE (green). The viewing range is lower bounded by 0.6, as only PC had any pathways (n=15) that failed to achieve
this threshold. b Proportion of pathways for which each method had largest accuracy. If multiple methods achieved the max (within .001 counted),
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results for the full set of KEGG and BioCarta pathways
(max 250 genes) are summarized in Additional file 1:
Table S1.

SVM achieves the best classification performance for
the largest percentage of pathways (49%), followed by
GRAPE (25%), RF (25%), and DIRAC (1%) (Fig. 1b).
DIRAC achieves classification accuracy within 0.05 of the
top performing method in 64% of the pathways, compared
to 96% for GRAPE, 1% for PC, 98% for both RF and SVM
(Fig. 1c, left). Out of 171 pathways, 165 pathways achieved
at least 90% classification accuracy using GRAPE (Fig. 1c,
right), and 123 pathways achieved classification accuracy
of at least 95% (not shown). For SVM and RF, 164 and
163 pathways achieved 90%, respectively, and 134 and 142
pathways achieved 95%, respectively. For DIRAC, 140 and
55 pathways achieved classification accuracies of 90% and
95%, respectively. By far the poorest performing method
was PC, for which only 18 pathways achieved at least 90%
classification accuracy and none achieved 95%.

Classification across multiple datasets

One of the challenges of microarray-based gene expres-
sion profiling is lack of reproducibility between distinct
experiments of similar biological samples [4, 5]. Part of
the problem is the use of numerous distinct platforms for
generating gene expression data. However, lack of con-
cordance of gene expression often persists even among
experiments containing similar or even identical biologi-
cal samples using the same microarray platform [5]. We
hypothesized that pathway methods based on relative
expression may be more robust to experimental incon-
sistencies than methods based on absolute expression.
We reasoned that relative expression methods may be
more robust to discrepancies in the range of expression
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values that often exist among distinct datasets [5]. To
evaluate this hypothesis, we compiled a collection of
11 datasets of three normal tissue types: muscle, lung
and colon (Table 1). Six of the datasets were generated
using Affymetrix Human Genome U133 Plus 2.0 Array
(GEO accession: GPL570). Among these six datasets, two
datasets were chosen for each tissue type. The remaining
five datasets were generated using Agilent-014850 Whole
Human Genome Microarray 4x44K G4112F (GEO acces-
sion: GPL6480). These consisted of two muscle datasets,
two lung datasets and one colon dataset. These datasets
were selected by manually querying GEO for datasets
with at least 15 samples of the appropriate healthy tissue.
Only healthy samples were included except for the colon
datasets, where we did include samples from patients with
inflammatory bowel disease (IBD) and low-grade dyspla-
sia because of insufficient quantity of healthy samples.
Figure 2 shows the classification performance of the
five methods when distinct Affymetrix datasets were used
for training and testing. There are eight possible ways to
split the six datasets such that one dataset from each of
the three tissue types is contained in each of the training
and testing sets, respectively. The classification accuracies
were calculated to be the average of all eight splits. Two
pathways were removed because they had fewer than 25
genes covered by the Affymetrix array. All five methods
had lower classification accuracies in this setting in com-
parison to analyses of single datasets. The GRAPE average
classification accuracy across all pathways was 0.96 for a
single dataset and 0.72 with multiple datasets. The DIRAC
and PC average classification accuracies showed a similar
decrease, from 0.92 to 0.71 for DIRAC and from 0.75 to
0.60 for PC. The fall-off was much greater for SVM and
RF, as the average classification accuracy decreased from

Table 1 Gene Expression datasets used in healthy tissue classification

GEO accession Platform Tissue # Samples Figs.2
GSE47881 Affymetrix (GPL570) Muscle 45 2,54
GSE9419 Affymetrix Muscle 22 2
GSE4302 Affymetrix Lung 44 2,54
GSE5058 Affymetrix Lung 24 2
GSE4183° Affymetrix Colon 23 2,54
GSE9254 Affymetrix Colon 19 2
GSE42507 Agilent (GPL6480) Muscle 44 S3, S4
GSE23697 Agilent Muscle 35 S3
GSE40588 Agilent Lung 60 S3,54
GSE15197 Agilent Lung 39 S3
GSE41667¢ Agilent Colon 33 S4

?Indicates which classification analyses each dataset was part of. The classification analyses are indexed by figures, with Fig. 2 referring to the Affymetrix only multi-dataset
analysis, Additional file 1: Figure S3 referring to the Agilent only multi-dataset analysis and Additional file 1: Figure S4 referring to the mixed-platform analysis

©8 healthy, 15 IBD
€12 healthy, 21 low grade dysplasia
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0.96 to 0.49 for SVM and from 0.96 to 0.54 for RF. The
numbers of pathways achieving classification accuracies
greater than 90% (Fig. 2c) were 14 for GRAPE (9 achieved
> 95%), 12 for DIRAC (8 achieved > 95%), 7 for PC (3
achieved > 95%) and zero for both RF and SVM.

In order to investigate if this pattern is specific to
Affymetrix datasets, we repeated the analysis using four
Agilent datasets, two for lung and two for muscle (Table 1,
Additional file 1: Figure S3). Higher classification per-
formances were expected compared to the Affymetrix
experiment, since only two different tissue types were
used in the Agilent experiment. The average classifica-
tion accuracies over all 169 eligible pathways were 0.92
for DIRAC, 0.91 for GRAPE, 0.74 for PC, 0.65 for RF and
0.62 for SVM. The numbers of pathways achieving clas-
sification accuracies greater than 90% (Additional file 1:
Figure S3C, right) were 114 for GRAPE (98 achieved >
95%), 116 for DIRAC (98 achieved > 95%), 41 for PC (35
achieved > 95%), 12 for RF (9 achieved > 95%) and zero
for SVM.

We next evaluated classification involving multiple
datasets from two microarray platforms (Additional file 1:
Figure S4). One Affymetrix dataset for each of muscle,
lung and colon was combined with one Agilent dataset for
the same tissues (Table 1). The sizes of the datasets were

balanced by randomly selecting 23 samples from each
dataset. The classification accuracies were calculated by
averaging over all eight possible splits of test and train sets,
as was done for Fig. 2. The classification performances
for all five methods were dramatically lower in this case
in comparison to the single platform cases. The average
classification performance was 0.42 for both GRAPE and
DIRAC, 0.48 for PC, 0.44 for RF and 0.47 for SVM. None
of the methods had any pathways achieving classification
accuracies of 90%, and only PC had any pathways (n = 3)
achieving 80% accuracy.

All three multi-dataset classification experiments were
also performed using the full set of KEGG and BioCarta
pathways (max 250 genes) and the results are summarized
in Additional file 1: Table S1.

Rates of absolute and relative inter-dataset differential
expression

We hypothesized that the superior classification perfor-
mance of the relative expression methods across datasets
of the same microarray platforms (Fig. 2, Additional file 1:
Figure S3) is caused by differences in the rates of inter-
dataset differential expression between relative expression
and absolute expression methods. We defined the abso-
lute rate of differential expression (ARDE) for a pair of
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datasets to be the proportion of genes for which the
nominal p-value is below 0.01 using the two-sided t-test.
We defined the relative rate of differential expression
(RRDE) to be the proportion of gene-pairs for which
the exact two proportion binomial test yields nominal p-
values below 0.01. We considered the set of genes that
occur in at least one KEGG or BioCarta pathway (only
pathways with < 150 genes were considered). This set
contains 4470 distinct genes that appear in the Agilent
datasets and 4413 genes that appear in the Affymetrix
datasets. To reduce the computational cost, the RRDE
was estimated by averaging the RRDE over 10 random
draws of 200 genes. The variation across the draws was
minimal, lending confidence to the accuracy of the esti-
mation procedure. The ARDE was calculated over the full
set of genes using both standardized (ARDE-S) and non-
standardized (ARDE-N) versions of each dataset, where
standardization was applied to the full gene expression
profiles.

The RRDE, ARDE-N and ARDE-S were calculated
for each pair of datasets used in the Affymetrix anal-
ysis (Additional file 1: Table S2). The average ARDE-
S across the three homo-tissue dataset pairs was 0.78
(ARDE-N = 0.97) and the average ARDE-S across the
nine hetero-tissue dataset pairs was 0.83 (ARDE-N =
0.93). The corresponding average RRDEs for the homo-
and hetero-tissue dataset pairs were 0.26 and 0.37,
respectively. The hetero-tissue average rate of differen-
tial expression is expected to encompass both the bio-
logical differences among the tissues and also the batch
effects among the different experiments. By contrast,
the corresponding homo-tissue rates are a reflection of
the magnitude of the batch effects alone, as true bio-
logical differences are not expected between different
datasets of the same disease-free tissue. Therefore the
ratio of the hetero-tissue to homo-tissue average rate
of differential expression can be considered a measure
of the signal to noise for each metric of differential
expression rate. For ARDE-S this ratio was 1.07 (0.96 for

Table 2 ARDE and RRDE of Affymetrix Datasets
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ARDE-N), and for RRDE this ratio was 1.39 (Table 2).
A similar pattern was observed among the four Agilent
datasets, for which the ARDE-S, ARDE-N and RRDE
ratios were 1.09, 1.12 and 1.63, respectively (Table 2,
Additional file 1: Table S3). This supports the observation
from the classification analyses that biological signal can
be more readily separated from batch-effects using rela-
tive expression methods rather than absolute expression
methods. Further support for the relationship between the
hetero-tissue/homo-tissue ratio and classification perfor-
mance was observed when considering the datasets from
mixed Affymetrix/Agilent analysis. In this case the ratios
were 1.01, 1.02 and 1.14 for ARDE-S, ARDE-N and RRDE,
respectively (Table 2, Additional file 1: Table S4).

We evaluated how the relative differential expression
pairs are distributed among the genes. For this anal-
ysis we compared the two Affymetrix muscle datasets
and the two Affymetrix lung datasets. The full set of
4413 pathway genes were considered for this analysis.
We define the Differential Ordering Measure (DOM)
of a gene to be the number of significant differen-
tially ordered pairs (exact two proportion binomial test
P < 0.01) containing the gene, divided by the average
number of significant differentially ordered pairs over all
of the genes. Additional file 1: Figure S5A shows the
distributions of DOMs in the muscle and lung compar-
isons. Both distributions have long right tails, indicat-
ing that a small subset of genes are accounting for a
large proportion of batch effects. To further visualize the
impact of the genes with largest DOMs, we plotted the
cumulative contribution of all of the genes ordered from
largest to smallest DOM (Additional file 1: Figure S5B).
Additional file 1: Table S5 contains the top 100 dif-
ferentially ranked genes in each comparison and their
corresponding DOMs. Inconsistent gene pairs did not
exclusively occur among genes expressed at low levels,
as some genes were observed to be among the most
expressed in one dataset and among the least expressed in
the other dataset.

ARDE-N ARDE-S RRDE
Affymetrix Mean Homo-Tissue 0.97 0.78 0.26
Affymetrix Mean Hetero-Tissue 093 0.83 037
Affymetrix Hetero/Homo Ratio 0.96 1.07 1.39
Agilent Mean Homo-Tissue 0.86 0.84 0.22
Agilent Mean Hetero-Tissue 0.96 0.92 0.36
Agilent Hetero/Homo Ratio 1.12 1.09 1.63
Mixed Mean Homo-Tissue 0.95 0.8 048
Mixed Mean Hetero-Tissue 097 0.81 0.54
Mixed Hetero/Homo Ratio 1.02 1.01 1.14

Ratios of hetero/homo tissue differential expression rates emphasized for each experimental setting
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Comparison with combat

One of the most popular methods for removing batch
effects in gene expression data is Combat [8]. We applied
Combeat to each of the multi-data settings described above
(Figure 2, Additional file 1: Figure S3 and S4) and then
calculated the classification accuracies of RF and SVM
after batch correction. For example, in the Affymetrix
3 tissues experiment, Combat was applied over all six
Affymetrix batches. Classification with SVM and RF was
then applied over the eight possible splits of the datasets,
exactly as was done in the non-batch adjusted case. We
compared the results with the classification accuracies
of GRAPE obtained without batch correction (Additional
file 1: Figure S6). The post combat classification accu-
racies were much lower than those obtained by the
relative expression methods. All of the pathways had clas-
sification accuracies below 0.75 for both SVM and RF
(Additional file 1: Figure S6). The results suggest that
Combat removed much of the biological variability asso-
ciated with the tissue types along with the batch effects.
We note that although Combat does support inclusion
of biological covariates, the software did not allow us to
include tissue type in the model because tissue type was
confounded with batch membership.

Identifying differentially expressed pathways between
breast cancer subtypes
We investigated the ability of GRAPE to identify pathways
that are differentially ordered between three breast can-
cer subtypes: luminal A, luminal B and basal-like. These
subtypes are well established and can be reliably classified
using PAM50 classifier [14, 15] as well as other classifiers
[16]. For this analysis we used RNA-Seq profiles of 231
luminal A tumors, 127 luminal B tumors and 97 basal-like
tumors from TCGA [17]. Additionally, 103 normal breast
samples from TCGA were used as the reference sam-
ples. For this analysis the set of 397 KEGG and BioCarta
pathways having at most 250 genes were considered.
Differential pathway analysis was applied to each pair
of subtypes. For each of the tumor samples, pathway
scores were calculated for each pathway, as described in

Table 3 Breast Cancer Pathway Analysis Summary
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the “Methods” section. P-values were calculated for each
pathway using the two-sided t-test applied to the pathway
scores in each subgroup. For the comparison of basal-like
and luminal A, 324 out of 397 pathways had Bonferroni
adjusted p-values below 0.01. All of the pathways that
achieved this level of significance were more disordered
in the basal-like subtype. Similar results were observed for
the comparison of luminal B and luminal A subtypes. In
this case 322 pathways achieved the significance thresh-
old and all of these pathways were more disordered in the
luminal B subtype. These results suggest that the lumi-
nal A subtype is much more similar to normal breast
tissue than either of the other two subtypes. For the com-
parison of basal-like and luminal B, 115 pathways were
identified as differentially ordered, with 102 and 13 of
these identified as more disordered in the basal-like and
luminal B subtypes, respectively. Volcano plots summariz-
ing the three comparisons are shown in Additional file 1:
Figure S7.

The results of the GRAPE analysis were compared to
those of gene set enrichment analysis (GSEA), which is
one of the most popular algorithms for detection of dif-
ferentially expressed pathways [18]. The recommended
threshold of FDR g-value below 0.25 was used to iden-
tify differentially expressed pathways. In the comparison
of basal-like and luminal A, GSEA identified 26 pathways,
with all of them enriched in the basal-like subtype. For
the comparison of luminal B with luminal A, 62 path-
ways were identified with 57 of them enriched in luminal
B. Surprisingly, GSEA identified only 1 pathway as differ-
entially expressed between the basal-like and luminal B
subtypes. All of the GRAPE and GSEA results are sum-
marized in Table 3. In light of the discrepancies between
the GRAPE and GSEA results, a control experiment was
performed in which the subtype labels were randomly
permuted. Neither GRAPE nor GSEA identified any path-
ways as statistically significant in the control experiments
for any of the three comparisons. To better understand
why GRAPE identified so many pathways in each compar-
ison, we calculated the number of differentially expressed
genes between each pair of subtypes. Out of 4849 genes

Met. Subtypes # Pathways? Upinclass 1 Upin2 % DE genes
GR Basal vs. Lum. A 324 (362) 324 (357) 0(5) 33(61)
GS Basal vs. Lum. A 26 26 0 33(61)
GR Lum B.vs. Lum. A 322 (369) 322 (369) 0(0) 10 (32)
GS Lum B.vs. Lum. A 62 57 5 10(32)
GR Basal vs. Lum. B 115 (227) 102 (193) 13 (34) 23(53)
GS Basal vs. Lum. B 1 1 0 23 (53)

@For GRAPE significance threshold is Bonferroni P below 0.01, threshold of nominal 0.01 P-value shown in parentheses. For GSEA significance threshold is FDR g-value below

0.25
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occurring at least one pathway, 1597, 496 and 1118 genes
were identified at the Bonferroni adjusted 0.01 level in
basal-like vs. luminal A, luminal B vs. luminal A and lumi-
nal B vs. basal-like, respectively. Additional analyses of
the GRAPE and GSEA pathway rankings are presented in
the supplemental materials (Additional file 1: Topic S3,
Additional file 1: Figure S8 and Additional file 1: Table S6).

TCGA survival prediction

We evaluated the ability of GRAPE pathway scores to
predict patient survival within several cancer subtypes.
We compared GRAPE with Gene Set Variation Analy-
sis (GSVA) [9], a method that computes pathway scores
for individual samples based on enrichment. GSVA was
shown to perform very well at predicting cancer survival
in comparison to three other enrichment-based pathway
score methods [9], Pathway Level analysis of Gene Expres-
sion (PLAGE) [19], single sample GSEA (ssGSEA) [20] and
combined z-score [21]. In addition to comparing GRAPE
and GSVA, we included the original gene expression (GE)
data in the comparison. For this analysis we expanded the
pathway set to include all pathways with at most 250 genes
from the MSigDB c2 collection (4314 pathways total). This
pathway set includes the KEGG and BioCarta pathways as
a subset and was chosen in order to more closely match
the experimental conditions of the previous comparative
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analysis in which the full MSigDB c2 collection was
used [9].

Survival analysis was performed using ridge regres-
sion for two TCGA cancer types: lung adenocarcinomas
(LUAD) and breast invasive carcinoma (BRCA). These
cancer types were chosen because the TCGA collections
include large numbers of both tumor and normal samples.
For both cancers, within stage survival analysis was per-
formed for stages two and three. Stage four was omitted
due to insufficient samples, and stage one was omitted due
to low event frequency. For GRAPE, GSVA and GE, fea-
ture selection was performed as described in the methods.
Model performance was evaluated by computing the con-
cordance index (CI) of each prediction with the test-set
survival data.

In the case of LUAD stage 2, GSVA achieved a mean (+
sd) CI of 0.56+0.037 (Fig. 3), outperforming both GRAPE
(0.51 & 0.04) and GE (0.50 =+ 0.044). GSVA was also the
best performing method for BRCA stage 2, achieving a
mean CI of 0.60 £ 0.034, compared to 0.58 &= 0.045 for GE
and 0.52 % 0.039 for GRAPE. In the case of BRCA stage
3, GRAPE achieved a mean CI of 0.65 £ 0.032, outper-
forming GSVA (0.62 £ 0.048) and GE (0.58 % 0.053). In
the case of LUAD stage 3, all of the methods performed
similarly, achieving mean CIs of 0.62 =+ 0.03 for GRAPE,
0.61 + 0.04 for GSVA, and 0.62 + 0.034 for GE. The
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Fig. 3 TCGA Survival Prediction. Survival prediction was performed using GRAPE pathway scores, GSVA pathway scores and gene expression (GE).
For each feature set, concordance index (Cl) of 30 iterations of 3-fold cross validation is shown. Mean Cls are shown in red
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differential performances between GRAPE and GSVA in
3 out of 4 cases demonstrates that these methods are cap-
turing complementary information about the pathways.
Moreover, the fact that GRAPE outperformed both GSVA
and GE in one of the cases suggests that GRAPE pathway
scores offer a unique representation of gene expression
profiles that researchers may consider including in many
different prediction contexts.

Pathway-space visualization of colonic diseases

We evaluated the usefulness of several pathway-space
representations on interpretation of three different colon
diseases. The dataset, originally presented in [22], con-
sists of 8 normal colon samples, 15 IBD samples, 15 colon
adenoma samples and 15 colorectal cancer (CRC) sam-
ples. For each of the 397 KEGG and BioCarta pathways
that have fewer than 250 genes, three sets of pathway
scores were calculated: 1) GRAPE pathway scores using
the quadratic weight function (eq. 3), 2) GRAPE path-
way scores using a uniform weight function, and 3) GSVA
pathway scores. For simplicity the first two pathway space
representations are designated by GRAPE and DIRAC,
respectively, although this is a slight abuse of notation
since the DIRAC method does not contain any notion
of pathway scores as originally presented. In addition to
these three pathway space representations, a gene space
representation consisting of the complete gene expression
profiles was also considered. For GRAPE and DIRAC, the
normal samples were used as the reference and pathway
scores were calculated for all of the samples, including the
normal samples themselves. Principal component analy-
sis (PCA) was applied to each matrix of pathway-scores as
well as to the gene space. Pairwise plots of the first three
principal components (Fig. 4) show that the samples clus-
ter by disease status (black for normal, green for IBD, blue
for adenoma, and red for CRC) to varying extents for all
four methods. Although none of the four representations
display complete separation of the disease types, to our
eyes the GRAPE and DIRAC representations both display
better separation of subtypes compared to the GSVA and
gene space representations.

It is difficult to determine from Fig. 4 alone whether
DIRAC or GRAPE achieves better separation of the dis-
ease types. To compare the methods further, we removed
the IBD samples and repeated the analysis using the nor-
mal, adenoma and CRC subtypes. In this case it is evident
that the GRAPE pathway scores achieve better separation
of the subtypes compared to the DIRAC pathway scores
(Additional file 1: Figure S9).

A useful feature of the GRAPE pathway space represen-
tation is that the normal samples cluster tightly together
and serve as a reference for interpreting the other sam-
ples. PC1 appears to capture the magnitude of distance
from normal samples and does not discriminate between
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disease types. PC2 discriminates adenoma samples (above
0) from IBD samples (below 0), with the normal sam-
ples tightly clustered around 0. The CRC samples dis-
play heterogeneous PC2 scores, with some CRC samples
closely resembling normal colon, while most of the others
resemble adenomas. PC3 appears to reflect the variabil-
ity between adenomas and CRC samples, with adeno-
mas mostly having PC3 scores near or above zero and
with CRC samples mostly having scores near or below
zero.

To see which pathways contributed most to the sepa-
ration between adenomas and IBD in PC2, we looked at
the most extreme loadings (Additional file 1: Table S7,
Additional file 1: Figure S10). The largest positive loadings
correspond to pathways that have larger pathway scores in
adenomas, while the largest negative loadings correspond
to pathways that have larger pathways scores in IBD. Eight
out of the 20 most negative loadings belonged to pathways
involved in immune response and inflammation. Eleven
of the 20 most positive loadings were pathways involved
in DNA damage and stress response or cell cycle regu-
lation. The most extreme loadings for PC3 are shown in
Additional file 1: Table S8. The results suggest that differ-
ent signaling pathways may be involved in formation of
colon adenomas compared to colorectal cancer.

Discussion

In this article, we first introduced GRAPE as a gener-
alization of DIRAC and then explored the usefulness
of GRAPE in several novel applications. First we eval-
uated the ability of GRAPE to classify four healthy tis-
sues and observed that its performance is almost on par
with machine learning methods and superior to DIRAC
and PC. Compared with the machine learning methods,
GRAPE and DIRAC display vastly superior ability to clas-
sify tissue-types across multiple-datasets generated with
a common technology platform. Although the perfor-
mance gap is lower in this setting, GRAPE outperforms
DIRAC and PC when three or more tissues are classified.
Moreover, we found that the inter-dataset performance of
GRAPE remains superior to that of the machine learn-
ing methods even after the application of a popular batch
correction procedure. None of the methods, however,
achieved acceptable classification performance across dis-
tinct datasets from different microarray platforms. We
showed that pathway scores derived from GRAPE tem-
plates of healthy tissues can be used to identify path-
ways that are differentially expressed between breast
cancer subtypes. We performed survival prediction of
several cancer subtypes and found that GRAPE pathway-
scores outperformed other pathway-space and gene-
space representations in some cases. Finally we showed
that GRAPE pathway-space representations of samples
enable good characterization of the separation between
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Fig. 4 Pairwise plots of first three principal components (PC) for four representations of four colonic tissue types. Normal colon in black, IBD samples
in green, adenomas in blue, and colorectal cancer in red. For GRAPE, DIRAC and GSVA, pathway scores were calculated for 397 KEGG and BioCarta
pathways. The gene space representation consists of the gene expression matrix after removal of genes with standard deviation below 0.01

three colonic diseases compared to other pathway-space
representations.

Classification of healthy tissues using individual pathways

It is interesting that the majority of KEGG and BioCarta
pathways were able to discriminate among four healthy
tissue-types using multiple classification techniques. This
observation suggests that different biological pheno-
types are distinguished by numerous, sometimes subtle,
changes in gene expression, rather than by pronounced
differences in the expression of a few genes. Although
this may not be surprising, it has important implications
for choosing a method for pathway level analysis. Specifi-
cally, popular methods based on enrichment analysis that
emphasize the most differentially expressed genes may
be less powerful for some applications that call for sen-
sitive detection of meaningful biological differences. By

contrast, template-generating methods, including but not
limited to those presented here, characterize the typical
profile of all pathways an investigator may be interested
in, and allow for detection of all differentially expressed
pathways regardless of whether the genes in the pathway
are among the most differentially expressed across the
genome.

The observation that GRAPE performs nearly as well
as RF and SVM demonstrates the rich information con-
tent contained in the relative rankings of gene expression
values. Of course we do not mean to suggest that the infor-
mation content is identical to that contained in absolute
gene expression. Indeed, it is easy to imagine a situa-
tion in which the relative rankings of a set of genes are
identical but yet there are profound differences in the
absolute levels of expression. Rather, our analysis sug-
gests that the information content within the relative
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rankings is sufficient for many applications. Previous anal-
yses have shown that relative expression analyses perform
well for genome-wide classification [12]. Here we extend
this observation to classification using pre-specified
subsets of genes that comprise established biological
networks.

Single platform multi-dataset classification of healthy
tissues

In the single platform multi-dataset analyses (Fig. 2,
Additional file 1: Figure S3), PC achieved the best clas-
sification performance for 20% (Affymetrix) and 25%
(Agilent) of the pathways. This is in stark contrast to
the single-dataset analysis in which PC was not the best
performer for any pathway. Although the average classifi-
cation performance of PC was lower in the multi-dataset
analyses, the decrease was smaller than for the other four
methods. One explanation for this disparity is that PC per-
forms better on microarray data compared to RNA-Seq
data, as the former is typically normalized before stan-
dardization while the latter is presented in units of RPKM
(Reads per Kilobase of Transcript per Million mapped
Reads) and spans a wide range values, likely leading to
excess kurtosis. This suggests that the performance of
PC on RNA-Seq data may be improved by implement-
ing quantile normalization instead of the minimalistic
standardization procedure used here.

The better results from PC indicate that the superior
performance of GRAPE and DIRAC relative to RF and
SVM cannot be wholly attributed to use of gene expres-
sion rankings as opposed to absolute expression mea-
surements. We speculate that the improved performance
of all three methods compared to the machine learning
methods stems from the fact that the machine learning
pathways determine variable importance from the train
set exclusively and are therefore unable to account that
the discriminating value (i.e., importance) of the genes
may change considerable in the presence of systematic
batch effects. By contrast the template-based classifi-
cation methods do not determine variable importance
within the train set. These methods are therefore able to
consider all of the genes equally, and can better utilize
genes that have the greatest discriminating value in the
presence of batch effects, even if these are not the same
as the most discriminatory genes within the training set
alone. Consistent with this is our observation that small
percentage of genes account for large percentage of incon-
sistent gene-pairs, suggesting that a minority of genes
display severe inter-dataset inconsistencies. It is possible
that RF and SVM are more vulnerable to these incon-
sistencies because they may assign importance to only a
small subset of genes.

The idea that it may be advantageous to use the max-
imum number of genes when classifying tissue types
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across multiple datasets also explains the comparative
improvement of DIRAC relative to GRAPE in the multi-
dataset analyses. Whereas in the single dataset analy-
sis of four classes GRAPE outperformed DIRAC (with
ties not counted) in 387 out of 395 pathways, in the
Affymetrix analysis of three classes GRAPE outperformed
DIRAC in 221/381 pathways and in 141/260 pathways
in the Agilent analysis of two classes. Perhaps the inter-
dataset performance of GRAPE is diminished relative to
DIRAC because the weight function reduces the impact
of some of the genes. The number of classes in each
analysis is likely to have affected the performance dif-
ferences between DIRAC and GRAPE. The results sup-
port the trend that the relative performance of GRAPE
compared to DIRAC improves as the number of classes
increases. Single-dataset analyses with different numbers
of classes further support this trend (Additional file 1:
Figure S11).

Between platform multi-dataset classification of healthy
tissues

The accuracy of inter-platform multi-dataset analyses was
very poor for all methods. Even though SVM and PC com-
paratively outperformed GRAPE and DIRAC in this set-
ting, we do not consider this to be important because all
five methods had average classification accuracies below
50% across all pathways, and none achieved classification
performance of 90% for any pathway. The results indi-
cate that between-platform effects are considerably more
severe than batch effects between datasets using the same
platform.

According to the 2006 Microarray Analysis of Qual-
ity Control studies [4, 5], the causes of inter-platform
effects likely include differences in probe-sequence and
unreliable quantification of poorly expressed genes. If
genome-wide gene-expression profiling using multiple
platforms is to become routine in clinical settings, the
reliability of the data must be improved considerably.
One possible approach is to subset the genome so
that it only includes gene-pairs that are ranked con-
sistently across inter-platform datasets for similar bio-
logical samples. The feasibility of this approach would
first need to be evaluated by determining whether such
a subset exists across many different datasets of the
same healthy tissue types. This suggestion is consistent
with the theme behind using gene-rankings instead of
absolute expression: it is better to consider a smaller
quantity of information that is reliable than a larger
quantity that is not. Perhaps, if combined with stream-
lining the technical procedure as much as possible
to mitigate “pre-analytical” variability, this sub-setting
strategy could enable reliable identification of abnor-
mal pathways using GRAPE or other template-generating
methods.
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Inter-dataset classification with Combat Vs. GRAPE

The poor inter-dataset classification performances of
RF and SVM after application of Combat highlights
the difficulty of distinguishing biological variability from
experimental variability when the two are confounded.
Presumably the classification performances would have
been much better in a situation in which each of the
datasets (“batches”) contained samples of each tissue type.
Our results suggest that rank-based methods may offer
a strong alternative for robust classification in same-
platform situations where the biological effects are not
balanced across batches. Examples of such situations
would be meta-analyses that seek to improve statistical
power by pooling many smaller studies.

GRAPE vs. GSEA

The discrepancy in the number of differentially expressed
pathways between pairs of breast cancer subtypes iden-
tified by GRAPE compared to GSEA highlights the dif-
ferences between template-based pathway methods and
enrichment methods. In GRAPE the identification of a
pathway as differentially expressed depends only on the
expression levels of the genes within the pathways. By
contrast, in GSEA, a pathway is identified as differen-
tially expressed if the genes within the pathway are over-
represented near the top of a list ranking all of the genes in
the genome according to the degree of differential expres-
sion. This implies that the identification of a pathway as
differentially expressed or not depends in part on the gene
expression values of genes that are not in the pathway.
Another way to express this difference is that enrichment
methods are competitive in the sense that each path-
way is implicitly compared to other pathways as part of
the enrichment determination, whereas template-based
methods are completely non-competitive. Because of this
difference the two methods offer complementary infor-
mation and may each be preferred in certain situations.
For example, GRAPE may offer more sensitive detection
of differentially expressed pathways whose genes may not
be among the most differentially expressed across the
genome. On the other hand, GSEA may be preferred in sit-
uations where researchers seek to identify only the most
likely drivers of a disease rather than all differentially
expressed pathways.

Pathway scores enable pathway-space portrayal of
samples relative to a reference

One of the limitations of any classification algorithm is
that such algorithms require predetermined class defini-
tions. In the case of a complex disease such as cancer,
however, there is significant heterogeneity within many
of the established subtypes and uncovering the structure
in this heterogeneity can be critical to predicting drug
response or prognosis. A potentially powerful application
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of GRAPE is to identify biological patterns at the pathway
level by comparing the samples of interest to a suitable
reference template. This is accomplished by calculating
pathway scores for individual samples that quantify the
dissimilarity of each pathway within the sample from the
behavior observed within the reference collection. By con-
sidering both the reference template and the amount of
variability of the reference samples around the template
for each pathway, abnormally behaving pathways in an
individual patient can be identified. Mathematically, this
can be thought of as a transformation from the space of
gene expression values, to a reduced dimensional space of
pathway scores. The pathway scores were designed to be
analogous to one-sided z-scores so that abnormal path-
ways can be detected by surveying the pathway scores.
This pathway-space representation enables considera-
tion of the interactions of different pathways. For exam-
ple, a particular cancer subtype may be defined by the
abnormal behavior of two pathways and lack of abnormal
behavior of a third pathway. Although the pathway scores
are derived from the gene-expression values, they con-
tain information about the interactions of genes that may
not be accessible to prediction algorithms based on indi-
vidual genes. As such the pathway scores can be used as
an additional set of features for supervised prediction or
unsupervised clustering. We demonstrate the usefulness
and novelty of the GRAPE pathway space representation
at predicting patient survival within several cancer sub-
types. Our results suggest that in some contexts GRAPE
pathways scores capture useful information from the nor-
mal samples that is not present in other representations.
Our analysis of colonic diseases relative to healthy colon
tissue further demonstrates the use of pathway scores
to cluster different pathological states and identify path-
ways that are differentially perturbed among the subtypes.
Additional potential applications include drug sensitiv-
ity analysis applied to pharmacogenomics datasets and
unsupervised clustering to identify new cancer subtypes.

Conclusion

We presented a new class of pathway methods that use
healthy reference samples to quantify the abnormality
of individual pathological samples. We observed that
methods based on pairwise rankings offer superior sig-
nal to noise ratios in the presence of single platform
inter-dataset batch effects compared to methods based
on absolute gene expression. Our classification results
suggest that GRAPE is the method best-suited for iden-
tification of abnormal pathway behavior, as it is the only
template-based method that can discriminate among dif-
ferent tissue types with accuracies similar to state of the
art machine learning techniques within a single dataset.
GRAPE offers a convenient, reliable, and versatile pro-
cedure for determining whether a network of genes is
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behaving abnormally. GRAPE pathway scores provide
researchers with a unique perspective of patient tran-
scription profiles that may lead to improvements in the
prediction performances of a wide range of personalized
medicine applications.
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