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Abstract

Background: Accurately predicted contacts allow to compute the 3D structure of a protein. Since the solution space
of native residue-residue contact pairs is very large, it is necessary to leverage information to identify relevant regions
of the solution space, i.e. correct contacts. Every additional source of information can contribute to narrowing down
candidate regions. Therefore, recent methods combined evolutionary and sequence-based information as well as
evolutionary and physicochemical information. We develop a new contact predictor (EPSILON-CP) that goes beyond
current methods by combining evolutionary, physicochemical, and sequence-based information. The problems
resulting from the increased dimensionality and complexity of the learning problem are combated with a careful
feature analysis, which results in a drastically reduced feature set. The different information sources are combined
using deep neural networks.

Results: On 21 hard CASP11 FM targets, EPSILON-CP achieves a mean precision of 35.7% for top-L/10 predicted
long-range contacts, which is 11% better than the CASP11 winning version of MetaPSICOV. The improvement on 1.5L
is 17%. Furthermore, in this study we find that the amino acid composition, a commonly used feature, is rendered
ineffective in the context of meta approaches. The size of the refined feature set decreased by 75%, enabling a
significant increase in training data for machine learning, contributing significantly to the observed improvements.

Conclusions: Exploiting as much and diverse information as possible is key to accurate contact prediction. Simply
merging the information introduces new challenges. Our study suggests that critical feature analysis can improve the
performance of contact prediction methods that combine multiple information sources. EPSILON-CP is available as a
webservice: http://compbio.robotics.tu-berlin.de/epsilon/
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Background
Contact prediction methods identify residue pairs that
are in spatial proximity in the native structure of a pro-
tein. Contacts can be used as constraints to guide ab
initio methods [1–5] and to reconstruct the 3D structure
of a protein [6–11]. In the 11th Critical Assessment of
Structure Prediction (CASP11), a bi-annual set of blind
studies to assess the current state of the art in protein
structure prediction, predicted contacts were the deci-
sive factor to model the structure of target T0806-D1
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with unprecedented accuracy for ab initio methods [12].
Furthermore, predicted contacts can be used to compute
long-range contact order (LRO) [13] to predict the folding
rates of globular, single-domain proteins [14]. This is pos-
sible because long-range contact order and its variations
correlate with protein folding rates [13, 15–17].
Despite recent successes, contact prediction remains a

difficult problem. The difficulty is primarily due to the size
of the solution space which renders an exhaustive search
unfeasible. To render the search tractable, information are
given as priors to constrain the search space. Currently,
many different sources of information are used in contact
prediction. Each source comes with its specific strengths
and weaknesses. It is therefore promising to combine as
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many sources as possible so as to combine their strengths
and to alleviate their weaknesses. Methods from machine
learning are well-suited for this task; they can be used to
automatically determine how information sources should
be combined and which combination is most appropriate
under which conditions.
Ensembling is one common approach in machine learn-

ing to combine multiple sources of information. It uses
diverse models, each capturing different aspects of the
data. Ensembling is an established technique to boost the
performance of predictors [18–20]. Existing meta meth-
ods for contact prediction follow this general idea. They
typically outperform methods based on only a single
source of information [21–23].
Clearly, merging multiple information sources is a

promising way towards improving contact prediction
accuracy. However, leveraging multiple sources of infor-
mation via machine learning introduces new challenges.
Inevitably, the combination of information increases the
dimensionality of the feature space that is used as input
to the machine learning algorithm. This is problematic,
because the high dimensionality of the feature space
increases learning complexity, data size, and training
time. High-dimensional spaces also promote over-fitting
because a learner might pick up irrelevant patterns in the
data that explains the training data but does not general-
ize to unseen data. Therefore, we cannot simply rely on
the concatenation of features that work well by themselves
and need to find a more powerful representation of our
information to construct strong prediction methods.
In this paper, we develop a novel meta prediction

method called EPSILON-CP (combining evolutionary,
physicochemical and sequence-based information for
contact prediction, eps is extended to epsilon) based on
deep neural networks that combines sequence-based, evo-
lutionary, and physicochemical information. In the case of
contact prediction, traditional features used in sequence-
basedmethods suffer from high dimensionality. Our study
suggests that many of these features are not effective
in the context of meta contact prediction. Meta con-
tact predictors include features based on other predictors
(for instance co-evolutionary information). We develop a
new representation with drastically reduced dimension-
ality that translates into a deep neural network predictor
with improved performance.
We show that this approach reaches 35.7% accuracy

for the top L/10 long-range contacts on 21 CASP11 free
modeling target domains, 11% better than the CASP11
winning version of MetaPSICOV, where L is the length of
the protein. The increase inmean precision on 1.5L is 17%.
We further show through a feature importance analysis
that dropping the amino acid composition from the fea-
ture set results in a dimensionality reduction of up to 75%.
The approach presented here might be seen as a roadmap

to further boost the performance of contact prediction
methods.

Related work
The focus of this paper is the combination of information
sources to improve contact prediction. Therefore, we will
review related work with respect to the leveraged infor-
mation sources. In addition, we will discuss how current
meta approaches combine multiple information sources
for contact prediction.

Evolutionary information
The first source of information stems from evolution-
ary methods. Statistical correlations in the mutations of
residue pairs are indicative of contacts. Since the muta-
tion of a residue can lead to a destabilization of the
structure, the other residue mutates as well to maintain
stability. Evolutionary methods look for co-evolving pat-
terns in multiple sequence alignments (MSA). Different
methods have been developed for the statistical analysis
of MSAs and to reduce the effects of phylogenetic bias
and transitive couplings that can lead contact prediction
astray [24].
Dunn et al. [25] introduced the average product

correction (APC) tomitigate the effect of phylogenetic bias
in the computation of mutual information. PSICOV [26]
builds on APC to also remove the effect of indirect cou-
pling. Other approaches work with different assumptions
and use pseudo likelihood maximization [27, 28]. The
downside of evolutionary methods is that they are criti-
cally dependent on the quality of the MSA. The number
of homologous sequences in the MSA needs to be in the
order of 5L sequences [29, 30], where L is the length of the
protein.
Evolutionary methods are highly specialized. Each

method adds only a single dimension (the output of the
evolutionary algorithm) to the meta learning approach.
They have been shown to work well on their own,
but combining multiple different methods can further
improve the results [21, 23].

Sequence-based information
The second source of information is extracted from the
sequence of amino acids. Sequence-based contact pre-
dictors identify sequence patterns indicative of a contact
by applying machine learning on sequence-derived fea-
tures. SVMcon [31], a sequence-based approach, ranked
among the top predictors in CASP7. The approaches
vary in their use of machine learning algorithms and
the overall composition of the feature set, as well as
the training procedures [21, 23, 31–33]. Commonly
used features are for example the amino acid com-
position, secondary structure predictions, and solvent
accessibility.
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Sequence-based methods are robust when only few
sequences are available. Most successful entries in recent
CASP experiments had a significant sequence-based com-
ponent [21, 23, 31]. However, this class of methods does
not benefit to the same degree from sequence homologs as
evolutionary methods and therefore does not excel even if
a large number of sequences is available.
Commonly, sequence-based learners use very high

dimensional feature sets with many weak features. An
associated problem is the curse of dimensionality. The
training data that is necessary for proper generalization
increases exponentially [34]. Further, some features may
overlap with othermore high level features that are used in
meta approaches. For example, amino acid compositions
or evolutionary profiles identify evolutionary patterns,
which is something evolutionary methods do as well.

Physicochemical information
The third source of information is extracted from candi-
date structures (decoys). Decoys are the result of sampling
the energy function in ab initio structure prediction and
contain the physicochemical knowledge that is encoded
in this function. Since native contacts should be favored
by the energy function, they appear more frequently
in decoys than non-contacts. A successful approach in
CASP9 used simple occurrence statistics [35] to identify
contacts. [36] use a similar approach and add and energy-
dependent weighting of the decoys. EPC-map [22] uses an
intermediate graph structure based on the identified contacts
and its neighbors in the decoys to extract additional features.
Structure-based approaches work well in ab initio con-

tact prediction because it has lower requirements on
the availability of homologous sequences compared to
sequence-based approaches [22]. However, ab initio struc-
ture prediction methods are challenged by large proteins
and proteins with complex topology. According to [37],
folding simulations become the limiting factor for pro-
teins exceeding 120− 150 residues in length. This is again
due to the large conformational space that has to be sam-
pled. Further, Rosetta [38] is biased towards low contact
order proteins [39].
In the context of meta approaches, physicochemical

information might play an important role because it is
extracted from structure prediction decoys and not from
sequence information. Thus, physicochemical informa-
tion is orthogonal to sequence-based and evolutionary
information.

Meta approaches
Meta approaches combine multiple sources of informa-
tion.Wewill briefly review different metamethods, focus-
ing on what types of information they combine and how
they combine the information. The presented methods
are categorized based on the combination process into

averaging and stacking. In averaging, the final prediction
is a (weighted) average of the contact predictions from
multiple methods. In stacking, the combination process
is treated as a learning problem. The predictions of indi-
vidual models are used as input features to a machine
learning algorithm, usually in combination with other
features. Stacking allows to capture more complex rela-
tionships in the data than weighted averaging but is also
prone to overfitting.

Averaging
EPC-map [22] combines physicochemical and evolution-
ary information. The final output is a linear combination
of the result of the SVM ensemble, GREMLIN and the fre-
quency fij of contact Cij occurring in the decoys.
MemBrain [40] combines evolutionary and sequence-
based information. The sequence-based approach uses
ensembling of models trained on different subsets of the
training data. The features are constructed from a win-
dow centered at the residue. The final feature vector is
created by a) concatenation or b) parallel combination.
Additionally, in the latter case, the feature dimensional-
ity is reduced by applying gPCA [41]. The final output
is a linear combination of the sequence-based and the
evolutionary prediction.

Stacking
BCL::Contact [42] leverages sequence-based and physic-
ochemical information. The physicochemical information
comes from 32 different servers. Each server provides
ten different models. Based on these models two features
are generated (inverse of minimum distance observed
between residues i, j and how many other servers pre-
dicted i, j to be in contact) and combined with common
sequence-based features, all in all 90 features. The classi-
fier is a single layer neural network with 32 neurons.
PhyCMAP [43] combines sequence-based information

with two co-evolutionary methods (PSICOV, Evfold). The
sequence-based features include a context-specific inter-
action potential and the homologous pairwise contact
score. The features (roughly 300) are fused and used to
train a Random Forest classifier. Additionally, physical
constraints are used to filter false positive predictions.
PConsC [21] combines sequence-based information

with two different evolutionary methods. The evolu-
tionary information is obtained using different multiple
sequence alignments which adds further variety. The final
classifier is a RandomForest trainedonthe fused feature set.
MetaPSICOV [23] combines sequence-based informa-

tion with the output of three evolutionary methods. The
high level evolutionary input features are merged with the
crude sequence-based features for a total of 672 features.
The classifier is a single layer neural network with 50
neurons.
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Table 1 Overview: Leveraged information per algorithm

Algorithm Physicochemistry Evolutionary Sequence Features

EPC-map � �(1) 228

MemBrain �(1) � 400/200

BCL::Contact � � 90

PhyCMAP �(2) � ≈ 300

PConsC �(2) � 252

MetaPSICOV �(3) � 672/731

EPSILON-CP � �(5) � 171

The number of features specified for MetaPSICOV refer to Stage1/ Stage2. The
number of features specified for MemBrain refer to the serial/parallel combination.
The first part of the table contains methods that linearly combine the features/high-
level predictions, the second part non-linearly. The numbers in parentheses for
evolutionary information denote the number of different methods utilized

EPSILON-CP (our method) uses stacking to combine
physicochemical, evolutionary and sequence-based infor-
mation, therefore extending over current methods. We
critically analyze feature importance to reduce the dimen-
sionality of the feature set. As we will show later, this
allows us to use a more complex neural network architec-
ture which improves performance (Table 1).

Methods: Contact Predictor EPSILON-CP
Contact definition and evaluation
Two residues are considered to be in contact if the dis-
tance between their respective Cβ atoms (Cα for glycine)
is smaller than 8Å in the native structure of the protein.
Contacts are classified according to the sequence separa-
tion of the contacting residues. Long-range contacts are
separated by at least 24 residues. Long-range contacts cap-
ture information about the spatial relationship of parts of
the protein that are far apart in the sequence. As a result,
they are the most valuable type of contact for structure
prediction.
The standard evaluation criteria for contacts is the pre-

cision of the top ranked contacts. Predicted contacts are
sorted in descending order by confidence and the top
predictions up to a given threshold are taken into con-
sideration. We will use L/10, L/5, L/2, L and 1.5L for the
threshold, where L is the length of the protein in residues.
We use the precision on these lists as the performance
criterion. The precision is defined as the ratio of true pos-
itives (TP) to the number of true and false positives (FP)
combined (Prec = TP / (TP+FP)). True positives are pre-
dicted contacts that are indeed in contact in the native
structure. False positives are predicted contacts that are
not in contact in the native structure.

Data and training setup
The final neural network is trained on 1542 proteins.
The hyperparameters are determined with a 5-fold cross-
validation on 1479 proteins, with the remaining 63

proteins as a holdout set. We used random splits for
the folds. In total, there are over 22 million train-
ing examples. Note that we use 5-fold cross-validation
along the different proteins, not contact training exam-
ples. This ensures that training samples from validation
proteins are unseen by the learner during parameter
tuning.
The final training set has been build gradually over

intermediate experiments, which are described below.We
started from an original training set with 1179 proteins
from EPC-map train [22] and MetaPSICOV training sets
[23]. To filter similar proteins, we made pairwise com-
parisons with HHSearch [44] and removed redundant
sequences with an E-value below 10−3. The E-value is
close to zero for a highly specific match (lower is more
specific/has higher sequence similarity). In the beginning,
we struggled with slow training and could not fit all the
data into memory. To alleviate this issue, we subsampled
the data. The subsampled training set included 557 pro-
teins from EPC-map train and 187 proteins from MetaP-
SICOV train that exceeded 200 amino acids (randomly
chosen). This set is used in “Feature importance analysis
reveals that AA composition is obsolete in meta contact
predictors” section. Because of this analysis, we are able
to extend the original training set to also include pro-
teins from MetaPSICOV test. These proteins represent
difficult prediction cases because they have smaller multi-
ple sequence alignments. To include as many as possible,
we relaxed the initial, stringent filtering with HHSearch.
We kept 19 proteins that exceed an E-value of 10−3 but
have a sequence identity below 50% for matches that
did not span more than half of the sequence. The mean
sequence identity for our whole set is below 77% (com-
puted with ClustalOmega [45]) and the HHsearch E-value
is < 10−3 for roughly 99% of the proteins. This diversity
allows for random cross-validation splits without the fear
of overfitting.
To further prevent overfitting, we use early stopping on

the validation sets. The number of residues range from
25 to 499. The median size of the number of alignments
is 377.
We use the following data sets to benchmark our algo-

rithm. The test data sets include proteins from all four
CATH [46] classes (mainly alpha, mainly beta, alpha beta
and few secondary structures). It covers 31 of the top
100 CATH superfamilies, 178 in total and roughly 50% of
all architectures as well as 118 different folds. The mean
sequence identity between the proteins from the train-
ing set and proteins from the test sets is roughly 6.2%
(computed with ClustalOmega [45]).

CASP11
We take the 21 hard FM targets from CASP11 for which
PDB structures are available. The targets are evaluated on
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a domain basis with the official CASP11 domain assign-
ments (http://predictioncenter.org/casp11/domains_sum
mary.cgi). The sequence lengths are between 110 and 470.

NOUMENON
The NOUMENON [47] benchmark data set was designed
to avoid observation selection bias in contact predic-
tion. We removed 75 proteins matching a protein in the
training set with a HHsearch E-value < 10−3 to avoid
overfitting, leaving 75 proteins.

Pooled data set
The last benchmark set pools the proteins from EPC-
map_test [22], D329 [48], SVMcon [31] and PSICOV [26].
We removed all proteins with a HHsearch E-value < 10−3

matching a protein from the training set, leaving a total
of 358 proteins. The size of the proteins varies from 46 to
458 amino acids.

Data generation
We generate multiple sequence alignments with HHblits
[44] (version 2.0.16) with an E-value of 10−3 and the
UniProt20 [49] database fromMarch 2013.
We use the contact prediction scores of the following

five evolutionary methods: PSICOV [26], GREMLIN [30],
mfDCA [50], CCMpred [27] and GaussDCA [51].
We obtain secondary structure predictions from

PSIPRED [52] and solvent accessibility from SOLVPRED.

Features
Our meta prediction method EPSILON-CP combines
sequence-based information, evolutionary information,
and physicochemical information. The 171 features are
primarily based on the standard sequence-based features
that have been used in previous studies [23, 31]. Addi-
tionally they include the prediction of five evolutionary
methods and EPC-map.
The features can be divided into local and global fea-

tures. Local features are computed on a window of the
sequence.We use twowindows of size 9 centered at i, j and
a window of size 5 located at themidway (i+j)/2, where i, j
denote the sequence position. The column features con-
sist of the secondary structure predictions (probability for
H,E,C), solvent accessibility (buried or not buried) and the
column entropy of theMSA. All of the column features, in
addition to the amino acid composition, are replicated on
a global sequence level as well.
The global features consist further of the number of

effective sequences in the alignment, the sequence length,
number of sequence in the alignments, the sequence posi-
tions i, j, as well as the sequence separation.
The co-evolutionary features are computed for the

residue pair i,j. We use the mutual information and the
APC corrected mutual information [25] as well as the

predictions of PSICOV, GaussDCA, mfDCA, CCMpred
and GREMLIN and a mean contact potential [53, 54].
Further, the prediction of EPC-map for i, j is included.

By construction, EPC-map does not have predictions for
all possible residue-residue pairs because contacts that do
not appear in any decoy are not scored. The absence of an
EPC-map prediction is encoded as zero.

Architecture and training
Our machine learning system is a fully connected 4-
hidden layer neural network with 400-200-200-50 neu-
rons.We use theMaxout [55] activation function tomodel
non-linearity and softmax activation in the last layer.Max-
out units are generalizations of rectified linear units and
have been specifically developed to work in tandem with
dropout [56]. Dropout randomly “drops” units and their
connections during training. It forces the network to learn
a more robust representation and approximately corre-
sponds to training and averaging many smaller networks.
This approximation is only accurate for linear layers. Since
Maxout units learn an activation function by combin-
ing linear pieces, it is linear almost everywhere except at
the intersections of the linear pieces. Dropout is there-
fore more accurate in Maxout networks compared to
networks that use non-linear functions [56]. We apply
dropout with p = 0.5 after each hidden layer to avoid
overfitting. We use stochastic gradient descent with a
learning rate of 0.01, a decay of 1e−6 and mini batches
of size 100. The gradient descent is accelerated with [57]
momentum of 0.5. The weights are initialized using the
initialization scheme proposed by [58] which scales the
weights by the respective layer dimensions. We set EPC-
map predictions on EPC-map_train proteins to zero to
avoid overfitting. This is necessary because EPC-map
has been trained on EPC-map_train. Each input feature
is standardized by subtracting its mean and dividing by
standard deviation.
We build the neural network with Keras [59] and trained

it between 500 and 600 epochs. Due to dropout, the
network can be trained for a long time, both training
and validation error still decrease after 500 epochs of
training. Training of the neural network was performed
on a CPU, not taking advantage of possible speed-ups
achievable on a GPU. Training for a single epoch took
roughly 45min on a machine with two CPUs and 24
threads. Each CPU has six 2.6GHz cores (E5-2630). The
network outputs a probability for each class (contact,
non-contact).
We obtained the best results with a first hidden

layer that had significantly more units than input fea-
tures, instead of commonly used bottleneck layers.
We hypothesize that this architecture might allow the
network to generate a new meta representation that cap-
tures of the information more effectively.

http://predictioncenter.org/casp11/domains_summary.cgi
http://predictioncenter.org/casp11/domains_sum
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Results and discussion
In the first experiment, we evaluate the performance of
EPSILON-CP on the three benchmark sets described in
Methods. We compare our method to the CASP11 ver-
sion of MetaPSICOV [23], which outperformed all other
methods in CASP11. At the time of writing, the contact
prediction assessment results of CASP12 became avail-
able. In CASP12, EPSILON-CP ranked behind the newer
version of MetaPSICOV (13th compared to 4th on L/5 on
the FM targets and long-range contacts and 7th compared
to 3rd for long+medium-range contacts).
However, we were not able to perform our own exper-

iments using top CASP12 algorithms because standalone
versions of the top servers (RaptorX, iFold, MetaPSICOV)
were not available at the time of writing. Our intention
in this paper is to control for pipeline effects, such as
generated MSAs [23]. Thus, we used the same MSAs
as input to all algorithms to measure their performance
under the same conditions. RaptorX [60] does provide
a web service, but using their pipeline would no longer
allow us to control for pipeline effects. As standalone ver-
sions of the best CASP12 participating methods are not
yet available, we benchmark our algorithm against the best
algorithm from CASP11, which is the CASP11 version of
MetaPSICOV.
MetaPSICOV operates in two stages. Stage 1 is the

output of a neural network classifier. Stage 2 filters predic-
tions of stage 1. We will compare our method to MetaPSI-
COV stage 2 and will from now on refer to MetaPSICOV
stage 2 as MetaPSICOV. Our evaluation focuses on long-
range contacts since they are the most helpful in structure
prediction. We used the multiple sequence alignments
from the original MetaPSICOV paper [23] to ensure that
our results are comparable with this study.
In the second experiment, we analyze the importance

of features. We evaluate the reduced feature set in the
context of meta approaches. To show that the reduction
in dimensionality by excluding features is not detrimental
to the performance, we compare the performance of the
neural network with both the refined feature set and the
complete feature set.
In the third experiment we show data that combining

multiple sources of information improves the prediction
accuracy. We evaluate the performance of the individual
methods as well as their combinations. If the assump-
tion holds, performance should improve with additional
information sources.
Finally, we briefly discuss limitations of our approach.

Performance on test data sets
We will first evaluate contact prediction performance on
21 hard free modeling (FM) targets from the CASP11
experiment. Contact prediction is most useful for free
modeling targets because they cannot be modeled by only

using templates due to the lack of similar structures. In the
spirit of the CASP evaluation, we analyzed the results on
the basis of the 26 target domains.
Figure 1 and Table 2 summarize the performance on the

CASP11 set. EPSILON-CP achieves a mean precision of
0.305 on L/5, compared to 0.284 for MetaPSICOV. The
relative increase in mean precision on average over all
cut-offs compared to MetaPSICOV is roughly 12% and
72% over EPC-map. In general, the precision advantage
increases with longer cut-offs, see for instance 17% over
MetaPSICOV for 1.5L. We conducted a paired student
t-test to validate the significance of the results. The per-
formance improvement is significant on L and 1.5L, with a
p-value < 0.022 and 0.001 respectively. In practice, these

Fig. 1 Results for long-range contacts. EPSILON-CP outperforms the
other predictors on all three benchmark sets
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Table 2 Mean precision for long-range contacts on 21 CASP11
FM hard targets

L/10 L/5 L/2 L 1.5L

EPC-map 0.206 0.18 0.129 0.103 0.086

MetaPSCIOV (stage 1) 0.317 0.268 0.2 0.151 0.129

MetaPSICOV (stage 2) 0.322 0.284 0.216 0.159 0.132

EPSILON-CP 0.357 0.305 0.235 0.182 0.155

CCMpred 0.221 0.182 0.145 0.111 0.092

GaussDCA 0.209 0.186 0.135 0.104 0.087

GREMLIN 0.207 0.165 0.12 0.086 0.078

PSICOV 0.189 0.147 0.112 0.087 0.074

Precision is computed on the 26 domains of these targets for the top predictions
relative to the sequence length L

cut-offs are the most important for structure prediction.
Kamisetty et al. [30] observed better performance by using
at least L contacts, RBO Aleph [61] uses 1.5L contacts.
For additional comparisons on medium- and long-range
contacts to top 10 predictors from CASP11 consult the
supplementary section (Additional file 1). It also includes
a head-to-head comparison between EPSILON-CP and
MetaPSICOV on all 21 FM targets.
On the NOUMENON [47] dataset the difference in

performance is more pronounced. Here, EPSILON-CP
outperformsMetaPSICOV stage 2 on average by 65%. The
trend continues that the relative mean precision increases
over longer cut-offs from 37% on L/10 to 77% on 1.5L.
EPSILON-CP has an accuracy of 26.4% on 1.5L compared
to 14.9% for MetaPSICOV stage 2. Notably, MetaPSICOV
stage 1 outperforms stage 2 on this dataset. A possible
explanation are the low confidence predictions of stage
1 – on this data set even for short-range contacts. Since
stage 2 is essentially a filtering step, the performance may
further deteriorate because of false negatives.
We also see a strong decline in prediction accuracy

for the co-evolutionary methods (see Tables 3 and 4 for
comparison). Here, EPSILON-CP outperforms the co-
evolutionary methods 5-fold with an accuracy of 53.1% on
L/5 compared to 8.3% for GaussDCA. In general, there is
a big improvement over the co-evolutionary methods.
On the easier pooled data set the improvements are less

pronounced but EPSILON-CP still outperforms the sec-
ond best method by 10% on L/5 improving the accuracy
from 59.94% to 66.47% (see also Table 4 for a complete
overview, including results from co-evolutionary meth-
ods). The proteins are easier compared to CASP11 and
NOUMENON since most proteins have a lot of known
homologs.
Summarizing, our classifier improves contact predic-

tion over MetaPSICOV. Further, we could employ a simi-
lar strategy toMetaPSICOV stage 2 to boost performance.

Table 3 Mean precision for long-range contacts on the
NOUMENON data set

L/10 L/5 L/2 L 1.5L

EPC-map 0.487 0.445 0.355 0.265 0.21

MetaPSCIOV (stage 1) 0.473 0.403 0.287 0.217 0.184

MetaPSCIOV (stage 2) 0.419 0.341 0.243 0.183 0.149

EPSILON-CP 0.576 0.531 0.435 0.328 0.264

CCMpred 0.095 0.095 0.083 0.074 0.066

GaussDCA 0.084 0.083 0.077 0.07 0.065

GREMLIN 0.071 0.073 0.065 0.059 0.056

PSICOV 0.083 0.069 0.063 0.055 0.053

Precision of the top predictions relative to the sequence length L

Feature importance analysis reveals that AA composition is
obsolete in meta contact predictors
In the previous section, we have shown that our meta
prediction method generally improves contact prediction
results over MetaPSICOV. Combining multiple sources
of information can help to mitigate drawbacks exhibited
by individual methods. Similar to ensembling in machine
learning, to maximize the impact the sources should be as
diverse as possible. However, this approach of combining
information as features in a machine learning system also
has downsides. The concatenation of features increases
the dimensionality of the learning problem which might
lead to a harder learning problem and to diminishing
returns in prediction precision.
The increase in dimensionality introduces mainly two

problems. First, due to the curse of dimensionality the
training data that is necessary to generalize correctly
increases exponentially [34]. This results in a more com-
plex optimization problem as well as increased data size
and slower training. Second, most of the commonly used
feature sets have been devised to be used on their own
and not in the context of meta approaches. Therefore, the

Table 4 Mean precision for long-range contacts for proteins
from D329, SVMcon Test, PSICOV and EPC-map_test

L/10 L/5 L/2 L 1.5L

EPC-map 0.656 0.591 0.459 0.335 0.263

MetaPSCIOV (stage 1) 0.639 0.57 0.444 0.333 0.268

MetaPSCIOV (stage 2) 0.658 0.599 0.483 0.368 0.3

EPSILON-CP 0.723 0.665 0.542 0.409 0.325

CCMpred 0.511 0.456 0.345 0.249 0.197

GaussDCA 0.481 0.423 0.322 0.238 0.192

GREMLIN 0.5 0.448 0.338 0.243 0.192

PSICOV 0.452 0.39 0.285 0.203 0.163

Precision of the top predictions relative to the sequence length L
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features from different information sources might con-
tain information of the same subspace and thus their
combination might not contribute to learning.
To investigate this issue in the context of contact

prediction, we re-evaluated the features. In our initial
experiments, the training of the neural network suffered
especially from the large data set and the high dimen-
sional feature set which lead to slow training. Thus, we
conducted a feature analysis to potentially reduce the
dimensionality of our learning problem.
Using neural networks for feature selection was not

straightforward because there is no simple way of comput-
ing feature importance from neural networks and feature
selection experiments were unfeasible due to long training
times and the amount of features.
Thus, we employed XGBoost [62] for evaluating fea-

ture importance, which is a decision tree-based algorithm.
During construction, tree-based algorithms perform a
feature importance ranking. The feature importance can
be used as a starting point to evaluate the feature set.
Although interesting, the feature importance sometimes
lack meaningfulness. Correlation can inflate or deflate the
importance of a feature. XGBoost splits the data set recur-
sively. In each split, the feature that best separates the
two classes is chosen. Features used in earlier splits are
deemed more important. The specific feature importance
measure we use is called mean decrease of impurity [63].
Thus, the feature importance values need to be critically
analyzed.
An excerpt of the results is shown in the feature impor-

tance plot (see Fig. 2, average over 5-fold cross-validation).
We include the results of two co-evolutionary methods
to show the difference in importance depending on the
method. For the purpose of visibility, the rest are left out

and some features with fairly similar importance have
been aggregated and averaged (see for instance the global
features).
Strikingly, the feature importance of the amino acid

composition is the lowest of all features. Interestingly, this
feature has 485 dimensions and makes up 75% of the fea-
tures. Note that the real feature importance according to
XGBoost might be masked by the aforementioned covari-
ance issues. Nevertheless, we used this feature importance
information to refine our representation and re-train the
neural network model.
To test the utility of the amino acid composition in

our neural network model, we re-trained the system with
and without the amino acid composition. The result is
depicted in Fig. 3. Removing the amino acid composi-
tion does not harm performance. Performance actually
increases slightly by 1 − 2%, likely due to the easier opti-
mization problem (see Fig. 3 square and star marker). The
results are based on our original training set, a smaller
set where the feature set does not yet contain EPC-map.
The smaller training set is a strict subset of the final
training set, combining 557 proteins from EPC-map_train
with 100 randomly chosen proteins from the MetaPSI-
COV training set that exceed 200 amino acids. Due to
the aforementioned scaling issues, we cannot replicate the
experiment on the whole data set in a reasonable timewith
the neural network. With XGBoost however, we were able
to verify that the performance is not harmed. XGBoost
allowed us to test both configurations (with and without
amino acid composition) on the whole data set. The differ-
ence in performance is less pronounced because XGBoost
already largely ignores unimportant variables, but here
the accuracy improved as well or at least remained the
same (tested via 5-fold cross-validation). For instance on

Fig. 2 Simplified and aggregated depiction of the feature importance as emitted by XGBoost. The amino acid composition is attributed with the
least importance, although it makes up roughly 75% of the features. The different co-evolutionary information entries correspond to different
co-evolutionary methods. The feature importance depicted here is the average over a 5-fold cross-validation
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Fig. 3 Comparison of three neural networks with identical architecture
on EPC-map_test (long-range contacts). The baseline network (square
marker) uses the full feature set and is trained on 657 proteins. The
training proteins are a mix of EPC-map_train and MetaPSICOV
proteins. The square marker denotes the neural network that is
trained without the amino acid composition but on the same data
set. The second network (circle marker) shows the performance of the
neural network after increasing the training set size from 657 to 1479
proteins, which was possible because dropping the amino acid
composition reduced the dimensionality of the learning problem.
Note here that most of the new proteins are much more complex
and may not be helpful for predicting proteins in EPC-map_test

L/10 the accuracy increased from 53.96% to 54.57%, on
medium-range contacts the performance increased on
average by 0.5%.
Training on more data generally improves the perfor-

mance of neural networks [64]. The significant reduction
in dimensionality made it possible to increase the training
set size from the smaller, original training set to the final
training set described in Data and Training Setup. The
performance improvements are depicted in Fig. 3 (circle
marker compared to star marker). Here, we compare the
performance without the amino acid composition on the
original and the final training set. On EPC-map_test the
mean precision increased by 6% on long-range contacts.
Our assumption is that the introduction of evolutionary

information renders the amino acid composition redun-
dant.

Combination of different sources of information
In this section, we aim to quantify the benefit on contact
prediction accuracy of combining multiple information
sources. Figure 4 compares the performance of the indi-
vidual types of information on long-range contacts on the
EPC-map_test data set. We use the following abbrevia-
tions: S for sequence-based information, E for evolution-
ary information and P for physicochemical information.
S uses the feature set introduced in Features (see
“Features” section) without the input features obtained
from the co-evolutionarymethods and EPC-map.We pick

Fig. 4 Performance comparison of different information types on
long-range contacts on the EPC-map_test data set. S(equence),
E(volutionary), P(hysicochemical) and the respective combinations. S
uses the feature set described in Features minus EPC-map and the
co-evolutionary methods. E (GaussDCA) is the best evolutionary
method in our experiments. For P the representative is EPC-map

GaussDCA [51] as the representative for evolutionary
information because it had the highest feature importance
out of all the evolutionary methods in our experiment.
For physicochemical information we use EPC-map as the
representative algorithm. In this experiment, we removed
GREMLIN from the EPC-map algorithm. Strictly speak-
ing, the physicochemical predictor in EPC-map also con-
tains some sequence-based features and could also be seen
as a mix of sequence-based and physicochemical informa-
tion. The EPC-map_test set contains many small proteins
with rather small multiple sequence alignments [22]. EPC-
map performs well on this set with a mean accuracy of
50% [22] because the small protein size (smaller than 150
amino acids) enables generation of decoys with good qual-
ity which impacts physicochemical contact prediction.
Nevertheless, combining multiple sources of information
clearly improves the results. The performance increases
by almost 80% from 31.6% on L/5 for S to 56.8% for S,E,P.
The increase over P is 22%.

Limitations
The main limitation of our approach is that contacts are
predicted in isolation. Since there are reoccurring contact
patterns, it makes sense to try to incorporate predictions
of surrounding contacts. This could be done in a simi-
lar fashion to MetaPSICOV stage 2, where an excerpt of
the contact map is used as an input for a second model.
Ideally, this could be done with end-to-end learning and
include a feedback loop.
A second limitation concerns the feature set.Most of the

feature set is computed on a fixed window of the sequence
potentially ignoring useful information. More powerful
methods that work directly on sequences (convolutional
neural networks, recurrent neural networks) instead may
be able to lift this limitation.
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Conclusion
Wepresented EPSILON-CP, a contact predictor that com-
bines evolutionary information from multiple sequence
alignments with physicochemical information from struc-
ture prediction methods and with sequence-based infor-
mation. These three sources of information are combined
using a deep neural network model. We show that com-
bining multiple sources of information improves predic-
tion accuracy when compared to the CASP11 winning
version of MetaPSICOV.We use stacking and train a deep
neural network to derive on this relationship from data,
effectively learning when a specific source of information
is most likely to be effective.
The key to performance improvements achieved by our

method is the reduced and refined feature set. Due to
a careful feature analysis, we found that the amino acid
composition, a commonly used feature, can be removed
without harming the performance. Our hypothesis is that
the introduction of evolutionary methods make the amino
acid composition redundant. Our results show that com-
mon features must be re-evaluated in the context of meta
approaches so as to avoid redundant features that do
not contribute to learning. We removed features related
to the amino acid composition, reducing the size of the
feature set by 75%. This allowed us to train more com-
plex networks and to increase the size of the training set
considerably. Using this strategy, EPSILON-CP achieves
35.7% mean precision for the top L/10 predicted long-
range contacts on 21 CASP11 FMhard targets, 11% higher
than the second-best method. For the top 1.5L long-range
contacts the improvement is 17%.
Our study suggests that further improvements in con-

tact prediction will arise from adequately balancing
feature-set size and feature expressivity on the one hand,
and the size of the training data and the complex-
ity of machine learning algorithms on the other hand.
We demonstrated that a reduced feature set enables
an increased amount of training data, which leads to
improved contact prediction. We hypothesize that fur-
ther improvements will result from creating even more
powerful and compact feature sets that in turn enable
the expansion of the training set and the use of more
sophisticated learning methods.
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