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Abstract

Background: Linear scores are widely used to predict dichotomous outcomes in biomedical studies because of
their learnability and understandability. Such approaches, however, cannot be used to elucidate biodiversity when
there is heterogeneous structure in target population.

Results: Our study was focused on describing intrinsic heterogeneity in predictions. Because heterogeneity can be
captured by a clustering method, integrating different information from different clusters should yield better
predictions. Accordingly, we developed a quasi-linear score, which effectively combines the linear scores of clustered
markers. We extended the linear score to the quasi-linear score by a generalized average form, the Kolmogorov-
Nagumo average. We observed that two shrinkage methods worked well: ridge shrinkage for estimating the
quasi-linear score, and lasso shrinkage for selecting markers within each cluster. Simulation studies and applications to
real data show that the proposed method has good predictive performance compared with existing methods.

Conclusions: Heterogeneous structure is captured by a clustering method. Quasi-linear scores combine such
heterogeneity and have a better predictive ability compared with linear scores.

Keywords: Discriminant analysis, Heterogeneity, Kolmogorov-Nagumo average, Prediction

Background
In recent years, biomedical data have become compli-
cated and high-dimensional [1, 2]. For example, a single
human gene expression dataset contains tens of thousands
of features, many of which are highly correlated [3]. In
addition, large mixed datasets are crucial for personal-
ized treatment, in which the optimal treatment strategy is
determined based on a dataset that combines a very large
number of prognostic factors [4].
From the viewpoint of statistical machine learning,

supervised and unsupervised learning methods play cen-
tral roles in such biomedical studies [5]. In fact, shrinkage
methods such as ridge and lasso are frequently used in the
context of prediction [6], and clustering methods are used
in the context of interpretation [7], potentially revealing
novel findings.
Supervised learning methods are often used to esti-

mate risk scores when predicting dichotomous outcomes.
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Linear scores are among the most widely used forms
because it is easy to learn the predictive score from a train-
ing dataset. Moreover, it is easy to understand the esti-
mated score. Linear scores are often evaluated by linear
discriminant or logistic regression analysis, and achieve
not bad discriminative performance. For example, the
study of [8] used a linear score, and their discoveries led
to the development of Mammaprint, a diagnostic kit for
breast cancer metastasis.
Unsupervised learningmethods can also yield beneficial

insights in high-dimensional data analysis. For example,
[9] used biclustering to reveal more detailed subtypes in
breast carcinomas with distinctive gene expression pro-
files from a group that was previously regarded as a
homogenous unit. Their study revealed that in order to
understand biodiversity, the heterogeneous structure of
the targeted population must be considered, and that such
heterogeneity can be clarified by the clustering method.
Previously published reviews have described both cluster-
ing methods [10] and biclustering algorithms [11].
Several studies have combined supervised and unsuper-

vised learning methods. For example, [12] used clustering
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to discover different patterns of gene expression in differ-
ent subgroups. They then derived the respective scores for
these groups and achieved good specificity without loss of
sensitivity relative to existing diagnostic rules. Sample het-
erogeneity may result in marker heterogeneity. As a result,
different samples in different subgroups may have differ-
ent intrinsic characteristics in their environmental and
genetic factors as demonstrated by the motivated exam-
ple in the “Methods” section. Such heterogeneity may
have unexpected effects on a therapy or treatment which
is considered as best practice, and lead to an unfavor-
able risk in one part of the population. Bravo et al. [13]
focused on the marker heterogeneity by detecting the
genes that showed different variation between healthy and
disease samples. They then defined an anti-profile score
as the number of hyper-variable genes. Thus, more and
more studies have considered heterogeneous structure
and reflected this heterogeneity in their predictions. How-
ever, the risk scores highlighted by published papers are
linear, and heterogeneity is therefore not directly reflected
in the score form. In this study, we focused on heterogene-
ity and determined how to directly reflect this intrinsic
characteristic in the score form. We developed the quasi-
linear score as a result, which combines linear scores as
a Kolmogorov-Nagumo average [14, 15], enabling us to
reflect the clustering result naturally, because it is based
on separated feature vectors.
The rest of this paper is organized as follows. In the

“Methods” section, we first present a motivated example
of gene expression data and develop the quasi-linear score.
Heterogeneity is observed via the clustering method, and
we define the quasi-linear score to reflect gene clus-
ters with a generalized average form. We also formulate
the quasi-linear logistic model and discuss the difference
between the linear and quasi-linear scores. We subse-
quently evaluated our method by numerical simulations
and applications to real datasets. We refer to the rela-
tionship between the quasi-linear score and traditional
combined approaches in “Discussion” section. All technical
details given as Appendix are available in Additional file 1.

Methods
Motivation and derivation
We studied the gene expression dataset from [8]. This
dataset is derived from 51 non-metastatic and 46
metastatic breast cancer patients. In their study, the lin-
ear score was evaluated to discriminate metastatic events.
Because estimation of the predictive linear score is often
achieved by a diagonal Fisher’s linear discriminant anal-
ysis (DLDA) [16], we considered applying DLDA to this
dataset. Because the coefficients of the linear score esti-
mated by DLDA correspond to the t-statistic values, we
checked the t-statistics directly for the purpose of visual-
ization. If the data have heterogeneous structure, it can be

clarified by observing the difference between two divided,
independent datasets. Therefore, we divided the full data
into two independent sets, data1 and data2, before calcu-
lating the t-statistics for each of them separately. Figure 1
shows the correspondence of the t-statistics. Some genes
had no consistency in the signs of their t-values, indicating
that some samples from the metastatic group had higher
expression, whereas other samples had lower expression,
relative to the non-metastatic group. This phenomenon
may be caused by heterogeneous factors [17]. In fact,
due to the existence of multiple subtypes of breast can-
cer, this disease is known to exhibit heterogeneity [9]. For
such heterogeneous data, clustering methods should work
well, as shown in [9]. We applied clustering according to
the Ward’s method [18], as shown in Fig. 2, which high-
lights the results of clustering and the correlation matrix
arranged by the clustered genes. Although biclustering
result was not suggestive of the heterogeneity in appear-
ance, it was observed via the correlation matrix. Some
genes are strongly correlated with others in the same
cluster. Thus, we observed the existence of heterogene-
ity using a t-statistics plot and trends in the expression
patterns by clustering. Next, we developed an appropri-
ate score form for discriminating such heterogeneous data
based on clustering.
We assume to know decomposition of p biomarkers into

K groups by clustering. Based on these K sets of clustered
markers, we define a quasi-linear score as

Q = log
( K∑
k=1

exp(Lk)
)
, (1)

where Lk = αk + β�
k X(k) with the parameters αk ,βk ,

and the marker vector X(k) for the k-th cluster of k =
1, 2, · · · ,K . When K = 1, the quasi-linear score Q is
reduced to the linear score,

L = α + β�X, (2)

where α and β = (
β�
1 , · · · ,β�

K
)� are parameters, and X

is the full vector of X(1), · · · ,X(K). We note that the inter-
cepts αk ’s in (1) are reduced to the single intercept α in
(2). Additional file 1: Appendix A gives another parame-
terization for Q in which the intercepts αk are uniquely
decomposed to the overall intercept and weights of the K
clusters.
When determining how to reflect cluster information in

the score form, we had two main considerations: which
scores should be integrated, and how integration should
be performed. All the linear scores Lk are integrated in
the quasi-linear score Q. We believe that this is rea-
sonable because there are similar markers in each clus-
ter, and we expect that heterogeneity would be caused
by different mixed homogeneous features that are suffi-
ciently described by the linear form. Although such an
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Fig. 1 t-statistic values for two datasets from van’t Veer et al. (2002). The red points show the genes with sign mismatched t-values for these data

Fig. 2 The hierarchical clustering and the correlation matrix of 70 genes for the dataset from van’t Veer et al. (2002). The figure shows the clustering
result (upper) and the correlation matrix (lower). There are 70 rows representing genes and 78 columns representing samples (upper) and the gene
expression data ranging from green (negative) to red (positive) are displayed. Elements of the correlation matrix (lower) ranging from blue (negative)
to yellow (positive) are displayed
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idea of combining the linear scores has already been pro-
posed by [19] as a composite link, it is different from
the quasi-linear score in several ways. One of the most
significant differences between them is that the quasi-
linear score is defined by disjointed sets of markers. This
results in a small number of parameters for the predic-
tive score: the parsimonious expression. The difference
in these forms is mentioned in the Discussion. More-
over, the quasi-linear score Q summarizes Lk approxi-
mating the maximum function. In fact, (1) is equal to a
soft maximum function discussed by [20], which can be
approximated with

M = max
1≤k≤K

Lk . (3)

Therefore, the quasi-linear score Q respects the maxi-
mum of K linear scores from all clusters. See [21] for a
discussion of Eq. (3) as maxout in neural networks.
The relationships among Q, L, and M are clearly eval-

uated when a tuning parameter, τ , is introduced in the
quasi-linear score Q as

Qτ = 1
τ
log

( K∑
k=1

exp(τLk)
)
, (4)

where τ is a positive parameter. If Lk is fixed for all k, then
the form of (4) is defined solely by the tuning parameter τ .
When τ is equal to 1, Qτ is equal to the quasi-linear score
Q by definition. When τ goes to infinity, Qτ is simply the
maximum scoreM. When τ goes to 0, Qτ is equivalent to
the linear score L. Thus, these are unified by the hardness
of approximation to the maximum function. More details
are provided in Additional file 1: Appendix B. The char-
acteristics of the quasi-linear score Q are understood by
a more general expression of (1) : G = φ−1(

∑K
k=1 φ(Lk)),

where φ is an invertible function. We define G as a gen-
eralized quasi-linear score because the form is the gen-
eralized mean called the Kolmogorov-Nagumo average. If
we take a simple average, φ(z) = z, then the generalized
quasi-linear score G corresponds to the linear score L. In
this sense, the linear score L is a simple mean, and the
quasi-linear score Q is a generalized mean of linear scores
Lk averaged by the exponential function. Although the
simplest integration of clustered information is achieved
by a simple average, resulting in the linear score form, it
is intuitively unsatisfying because the predictive perfor-
mance of these linear scores Lk differs among the clusters.
A cluster that strongly discriminates the outcome on its
own should be respected in comparison with the other
clusters. If only the cluster with the highest linear score is
reflected in the prediction, it is described by themaximum
score M. However, this situation is still not ideal, because
only one cluster is reflected in the prediction, and form

(3) is difficult to handle mathematically because it is not
differentiable when two or more linear scores are equal.
Consequently, parameter estimation becomes impossible.
The quasi-linear score Q is therefore naturally derived,
and it is reasonable for discriminant analysis of the het-
erogeneous data because the quasi-linear scoreQ plays an
important role in cluster selection, as discussed later.
In the following sections, we let φ(z) = exp(z), both

because this form is approximated by the maximum func-
tion, and because it is optimal in the sense of Bayes risk
consistency when we consider the simple case in which
the label conditional random variables follow a mixture
of normal distribution and a normal distribution with
equal variance, respectively. Additional file 1: Appendix C
provides more detail about the Bayes risk consistency of
the situation. Moreover, the exponential function gives
us an understandable interpretation of the parameter
estimation.
Because we modify only the scoring form, the quasi-

linear score Q can be applied to all traditional settings in
biostatistics, as the generalized linear model with the L1
and L2 shrinkage methods. In particular, when we com-
bine the quasi-linear score Q with lasso shrinkage, the
important clusters and variables in each cluster are deter-
mined simultaneously because of soft maximum property
and L1 sparseness. This property provides good perfor-
mance for the discriminant problem when the data have
a much larger number of correlated markers than the
number of samples. Therefore, we derive the L1 and L2
shrinkage quasi-linear logistic model and display the per-
formance of the quasi-linear score Q when it is applied to
gene expression data.

Likelihood for logistic model andmaximum likelihood
estimation
Consider the data {(Xi,Yi); i = 1, · · · , n}, where Xi is a
covariate vector and Yi is a dichotomous outcome which
takes 0 or 1 with the i-th individual. Assume that we know
the decomposition of Xi as Xi(1), · · · ,Xi(K) with a fixed
cluster size K, and that this is identical among individu-
als. We denote the size of Xi(k) as pk , where

∑K
k=1 pk = p.

We note that the decomposition is given a priori by one of
clustering methods for {Xi; i = 1, · · · , n}.
We derive the likelihood for a logistic model of the

quasi-linear score because of versatility. Therefore, we
assume that Yi is independently distributed according to
the Bernoulli distribution with a parameter πi, and con-
sider the logistic model. Below, we denote the quasi-linear
score Q based on Xi(1), · · · ,Xi(K) as Qi for simplicity. The
association between πi and the quasi-linear score Qi is
described by

log
πi

1 − πi
= Qi. (5)
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In this setting, the unknown parameters are {αk ,βk ; k =
1, · · · ,K} which specify Qi’s over individuals as in
Eq. (1). The log-likelihood function of parameter θ =(
α1, · · · ,αK ,β�

1 , · · · ,β�
K

)� is

l(θ) =
n∑

i=1
YiQi − log(1 + exp(Qi)). (6)

The maximum likelihood estimator (MLE) of θ is there-
fore the solution of

∂l(θ)

∂θ
= W�(Y − 	), (7)

where W = (∂Q1/∂θ , · · · , ∂Qn/∂θ)�, Y = (Y1, · · · ,Yn)�
and 	 = (π1, · · · ,πn)�. The solution is calculated by
updating some initial value repeatedly by Fisher’s scoring
method as

θ(t+1) = θ(t)+
(
W (t)�V (t)W (t)

)−1
W (t)� (

Y − 	(t)
)
,

(8)

where W (t) = (∂Q1/∂θ , · · · , ∂Qn/∂θ)� |θ=θ(t) , V (t) =
diag

{
π

(t)
1

(
1 − π

(t)
1

)
, · · · ,π(t)

n
(
1 − π

(t)
n

)}
and 	(t) =(

π
(t)
1 , · · · ,π(t)

n
)�

. The R source code of the parameter
estimation of the quasi-linear logistic model is avail-
able in Additional file 2. In the framework of a gen-
eralized linear model, Z(t) = W (t)θ (t) + V (t)−1

(Y −
	(t)) is called the working response, and this algorithm
is referred to as the iteratively reweighted least-square
method [22] because the Eq. (8) is written as θ(t+1) =(
W (t)�V (t)W (t))−1W (t)�V (t)Z(t). Thus, the parameter
estimation strategy is very similar to the linear-logistic
model. However, the estimation is not stable in a high
dimensional setting. In such situation, W (t)�V (t)W (t)

becomes a singular matrix. It is thus difficult to com-
pute the inverse matrix in Eq. (8) for each step. We can
avoid the problem by regularizationmethod, just as for the
penalized linear logistic model [23, 24].

L1 and L2 regularization of the quasi-linear logistic model
The L2 penalized log-likelihood is described by

lridge(θ , λ) = l(θ) − 1
2
λ0

K∑
k=1

α2
k − 1

2

K∑
k=1

λkβ
�
k βk . (9)

We note that we regularized αk ’s by λ0 to avoid com-
putational difficulty in calculating the inverse matrix,
although the intercept parameters should not be regular-
ized in the linear logistic model.

A MLE with the ridge regularization of θ is calculated
by Fisher’s scoring method as

θ(t+1) =
(
W (t)�V (t)W (t) + R

)−1
W (t)�V (t)

×
{
W (t)�θ(t) + V (t)−1 (

Y − 	(t)
)}

. (10)

Here R = diag(λ0IK , λ1Ip1 , · · · , λK IpK ), where Im
denotes the identity matrix with sizem. The derivation of
the algorithm is described in Additional file 1: Appendix D
in greater detail.
Next we consider L1 regularization for the quasi-linear

logistic model. The L1 penalized log-likelihood is given by

llasso(θ , λ) = l(θ) −
K∑

k=1
λk|βk|. (11)

This form is compatible with the group lasso [25]. We
note that the group lasso has a very similar concept in that
regularizations are performed for each cluster. However,
the score forms are different between the two regulariza-
tion methods. The comparison of group lasso and quasi-
linear score are performed in the “Application” subsection
of the “Results”. For the quasi-linear score Q, it is compu-
tationally difficult to solve the problem of maximization
with (11) by a method that involves the inverse matrix.
Therefore, we applied the gradient ascent method of [26]
by using the directional derivative, which is a simple gradi-
ent ascent algorithm based on the components of a score
function:

θ(t+1) = θ(t) + min
{
topt

(
θ(t)

)
, tedge

(
θ(t)

)}
g
(
θ(t)

)
,

(12)

where g(θ) = (g1(θ), · · · , gp+K (θ))�,

tedge(θ) = min
1+K≤j≤p+K

(
− θj

gj(θ)
: sign(θj) = −sign(gj(θ)) �= 0

)

and

topt(θ) = |g(θ)|
g(θ)� ∂2l(θ)

∂θ∂θ� g(θ)
.

Here gj(θ) = lj(θ) for j = 1, · · · ,K and

gj(θ) =
⎧⎨
⎩
lj(θ) − λksign(θj) if θj �= 0
lj(θ) − λksign(lj(θ)) if θj = 0 and |lj(θ)| > λk
0 otherwise

for j = K + 1, · · · , p + K , where sign(z) is a sign function,
lj is the j-th component of Eq. (7) and k denotes the clus-
ter number the j-th marker belongs to. In each step, the
topt provides the optimal solution of the gradient descent
algorithm and tedge controls the direction of the gradient
so as to avoid changing the signs of the parameters. The
vector of the tuning parameters (λ1, · · · , λK )� is deter-
mined by a cross-validation method from candidate sets
of parameters.
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Non-linearity of the quasi-linear score
The quasi-linear score Q is non-linear by definition. The
non-linearity of the quasi-linear score Q can be demon-
strated by a simple illustration. Figure 3 shows the fitted
curve of Q when p = k = 2. In this figure, it looks
as if two linear planes, specialized to each sub-space, are
connected smoothly. In this case, the linear surface is
curved while still maintaining local linearity, thus form-
ing a quasi-linear surface. As an extreme case, let there be
only one cluster with strong markers. When all scores are
integrated, the information from this cluster should not
be affected by the others. The quasi-linear score Q makes
up this nature because this approximates the maximum
function. If there is an �, 1 ≤ � ≤ K such that

L� � Lk (13)

for k �= �, then
∑K

k=1 exp(Lk) ≈ exp(L�), so that Q almost
equals L� and the score is almost evaluated by the �-th
cluster. In such a case, the quasi-linear score Q achieves
the cluster selection. In the numerical sense, even if the
inequality (13) is not very evident, selection is considered
to be achieved because the exponential function inflates
the input sufficiently. For example, log{exp(5) + exp(2) +
exp(−1)+exp(−4)} = 5.051, which essentially means that
only the first term is reflected in the construction of the
quasi-linear score Q. Accordingly, Q ≈ L� if X is in a set
{X : L� = M}, say C�. We note that C� is expressed by the
intersection of K − 1 half planes, such that C� is a convex

polyhedron. Thus the quasi-linear score Q is locally lin-
ear over disjointed and exhaustive regions of the space of
all biomarkers :

⋃K
�=1 C�. Thus we observe that the quasi-

linear score Q is approximately equal to the linear score L
that dominates over the other K − 1 scores. This property
contrasts with the ordinary linear score, which is the sum
of K linear scores. In particular, the quasi-linear scoreQ is
advantageous in cases where there are predominant sets
of separate biomarkers within the space of all biomarkers.
Also, for both logistic models in the parameter esti-

mation steps, we can see the difference between the lin-
ear and quasi-linear models reflected in the derivative
term as:

∂lL
(
θL

)
∂θL

=
(
1,X�)�

, (14)

∂l(θ)

∂θ
=

(
S1, · · · , SK , S1X�

(1), · · · , SKX�
(K)

)�
, (15)

where lL(θL) is a log-likelihood function of the linear
logistic model with parameter θL = (α,β�)� and Sk =
exp(Lk)/

∑K
k=1 exp(Lk). A derivation of Eq. (15) is given

in Additional file 1: Appendix E. Thus, the data space is
decomposed by updated Sk and composed as one unit
in each learning step. This concept used in probabilistic
models is referred to as the divide and conquer strategy,
which is employed in many machine-learning studies as a
mixture of expert models [27].

Fig. 3 The boundary (upper) and contour (lower) of the quasi-linear score. Left and center; F(x1, x2) = log(exp(1 + x1) + exp(1 + x2)), the right;
G(x1, x2) = max(1 + x1, 1 + x2). The center panel is an expansion around the origin (0, 0) of the left panel
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Results
Simulation study
We examined the efficiency of the quasi-linear score Q
using logistic models (QL), compared with the linear score
L using logistic model (LL). We conducted simulations
with five different settings. For each dataset, the samples
were divided between the disease group (Y = 1) and
normal group (Y = 0).
First, to show the consistency of the quasi-linear logis-

tic model without regularization, we used a simple setting
that has an optimal solution of the quasi-linear form. In
this example, we simulated 1000 random datasets. Each
dataset was either small, containing 400 samples, or large,
containing 1600 samples. Next, we estimated the parame-
ters using Eq. (8) and checked the consistency.
Second, we examined four high dimensional settings

focusing on marker’s selection. The divided populations
were considered to have homogeneous or heterogeneous
structure, which were described by normal or mixed nor-
mal distribution. In these examples, we simulated 1000
random datasets, each containing either 400 or 200 sam-
ples for training and test datasets, respectively. For these

settings, we use the L1 and L2 shrinkage method in order
to avoid overfitting and hard computation. Below, we
define rp = (r, r, · · · , r) ∈ R

p for the simple notations.

Consistency
In this example, we assumed normality for the normal
group and mixture normality for the disease group.

X|(Y = 0) ∼ N
(
0�
2 , I2

)
, X|(Y = 1)

∼
2∑

g=1
τgN

(
μ1g , I2

)
,

2∑
g=1

τg = 1. (16)

We let μ11 = (−1, 0)� and μ12 = (0, 1.5)�. In
this setting, the Bayes optimal form is log(exp(α1 +
β1X1) + exp(α2 + β2X2)). Figure 4 shows box plots of
estimated parameters for 1000 trials. The optimal param-
eter derived from the true likelihood is (α1,α2,β1,β2) =
(−1.19,−1.82,−1.00, 1.50). The means of the estimated
parameters from 1000 trials are (α1,α2,β1,β2) =
(−1.28,−1.99,−1.07, 1.61) for the small datasets and
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Fig. 4 Box plot of the estimated parameters in the simple simulation. Left: small sample size setting (n = 400); right: large sample size setting
(n = 1600). The red lines show the optimal parameters derived from the true likelihood
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(α1,α2,β1,β2) = (−1.21,−1.85,−1.01, 1.53) for the large
datasets. We observed that parameter estimation was
more precise when the sample size was large, and that the
estimated parameters were consistent.

High dimensional settings
• (a): homo-homo

In this example we assumed normality for both
groups.

X|(Y = y) ∼ N
(
μy, Ip

)
(y = 0, 1). (17)

We had three settings: (1) p = 2,μ0 = 0�
2 ,μ1 = 1�

2 ,
(2) p = 100,μ0 = 0�

100,μ1 = 0.1�
100, (3)

p = 100,μ0 = 0�
100,μ1 = 0.5�

100. For the quasi linear
score Q, we assumed the misspecification of
heterogeneous structure, as K = 2 and p1 = p2 = 1
for (1) or p1 = p2 = 50 for (2) and (3).

• (b): homo-hetero
In this example, we assumed normality for the normal
group and mixed normality for the disease group.

X|(Y = 0) ∼ N(μ0, Ip), X|(Y = 1) (18)

∼
G∑

g=1
τgN(μ1g , Ip),

G∑
g=1

τg = 1.

We had four settings. In (1) and (2), we let G = 2,
p = 100, τ1 = τ2 = 0.5, μ0 = 0�

100. In (3) and (4), we
let G = 3, p = 100, τ1 = τ2 = τ3 = 1/3, μ0 = 0�

100.
The mean parameter for the disease group was set as
(1) μ11 = (−1, 099)�, μ12 = (050, 1.5, 049)�, (2)
μ11 = (−110, 090)�, μ12 = (050, 1.510, 040)�, (3)
μ11 = (−1.5, 099)�, (4) μ11 = (−1.53, 097)�,
μ12 = (034, 1.53, 063)�, μ13 = (067, 13, 030)�. For
the quasi-linear score Q we assumed the correct
specification of heterogeneous structure as K = G
and p1 = p2 = 50 or p1 = 34, p2 = p3 = 33.

• (c): hetero-hetero
In this example, we assumed mixed normality for
both groups.

X|(Y = y) ∼
G∑

g=1
τygN(μyg , Ip),

G∑
g=1

τyg = 1 (y = 0, 1). (19)

We used the following settings: G = 2, p = 100,
τyg = 0.5 (y = 0, 1, g = 1, 2), μ01 = 0�

100,
μ02 = (050, 0.310, 040)�, μ11 = (0.550, 050)�,
μ12 = (050, 0.850). For the quasi-linear score Q we
assumed to specify there are heterogeneous structure
as K = 2 and p1 = p2 = 50.

• (d): correlated
In this example, we assumed normality for the normal
group and mixed normality for the disease group.

X|(Y = 0) ∼ N(μ0,�), X|(Y = 1) (20)

∼
G∑

g=1
τgN(μ1g ,�),

G∑
g=1

τg = 1.

The variance assumption was based on a real dataset,
as shown in Fig. 2. We used the following settings: (1)
G=2, p=70, τ1 = τ2 = 0.5,μ0 = 0�

70,μ11 = (−0.55,

065)�, μ12 = (035, 15, 030)�, � =
(

�1 �2
��

2 �1

)
, where

�1 = 0.7I35 + 0.3J35,�2 = −0.15J35, where Jm is a
matrix of size m of which all components are 1. For
the quasi-linear score Q we assumed to specify there
are heterogeneous structure as K = 2 and
p1 = p2 = 50.

Table 1 (a) summarizes the AUC value of the test
datasets for the (a) settings. We note that the linear score
L is optimal, in terms of the likelihood ratio, under this
assumption. However, the quasi-linear score Q is not less
than the simple linear score L regardless of the misspec-
ified structure. This is because the quasi-linear score Q
includes the local linear boundary, and almost of all data
points are fitted to it. As a result, the predictions based
on the quasi-linear score Q were not so mismatched.
Table 1 (b) summarizes the AUC values of the test datasets
for the (b) settings. We note that the quasi-linear score
Q is Bayes-optimal under this assumption. Unlike in a
situation that involves checking for consistency, the quasi-
linear score Q succeeded in making a difference in per-
formance relative to the ordinary linear score L. As the
numbers of effective explanatory valuables increased, the
difference in predictive performance between the quasi-
linear and linear scores also grew. In these settings, the
L1 shrinkage method performed well, because the num-
ber of effective explanatory variables was small compared
to the number of noisy variables. Table 1 (c) summarizes
the AUC value of test datasets for the (c) setting.When we
assumed normal heterogeneity for both groups, the opti-
mum form of the score was no longer simple, and differs
from the linear and the quasi-linear forms. However, the
quasi-linear score Q also worked well in this setting. This
result indicates that the quasi-linear score Q should have
good predictive performance relative to the linear score
L in complex heterogeneous settings like real datasets.
Table 1 (d) summarizes the AUC value of the test datasets
for the (d) setting. The quasi-linear score Q also worked
well in this setting.
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Table 1 Estimated AUC (standard deviation) of 1000 repetitions

LL QL LR

Ridge Lasso Ridge Lasso No penalty

(a) Homo-homo (1) 0.841 (0.027) 0.840 (0.027) 0.818 (0.029) 0.818 (0.029) 0.842 (0.027)

(2) 0.690 (0.039) 0.665 (0.040) 0.679 (0.041) 0.685 (0.029) 0.760 (0.033)

(3) 0.999 (0.001) 0.997 (0.002) 0.999 (0.001) 0.999 (0.001) 0.999 (0.001)

(b) Homo-hetero (1) 0.641 (0.040) 0.675 (0.038) 0.659 (0.039) 0.725 (0.036) 0.754 (0.034)

(2) 0.953 (0.014) 0.960 (0.013) 0.985 (0.007) 0.963 (0.016) 0.986 (0.006)

(3) 0.616 (0.040) 0.642 (0.040) 0.634 (0.040) 0.668 (0.040) 0.740 (0.035)

(4) 0.757 (0.033) 0.796 (0.032) 0.817 (0.029) 0.827 (0.029) 0.890 (0.022)

(c) Hetero-hetero (1) 0.713 (0.039) 0.697 (0.047) 0.766 (0.035) 0.752 (0.039) 0.824 (0.029)

(d) Correlated (1) 0.762 (0.034) 0.741 (0.037) 0.781 (0.033) 0.736 (0.055) 0.841 (0.024)

Application
We applied our method for two datasets, namely breast
cancer and prostate cancer data. For both types of
datasets, two independent datasets were used as training
and testing to evaluate the predictive ability by test AUC.
First, we compared the test AUC among decision tree
(DT), random forest (RF), support vector machine (SVM),
naive Bayes (NB), group lasso (GL), neural network (NN),
L1 or L2 penalized linear logistic (LL1, LL2) and L1 or L2
penalized quasi-linear logistic (QL1, QL2). Performance
was evaluated by the test AUC and the 95% CIs of the test
AUC based on 2000 bootstrapping sampling, as described
in [28]. The tuning parameters were determined with a
grid search and resampling method as needed. Second,
the stability for marker selection was compared among
LL1, QL1 and GL. We used a similarity index proposed by
[29] defined by S(A,B) = |A ∩ B|/|A ∪ B|, where A and B
are subsets of marker index set, and |A| is a cardinality of
the setA. S takes a value between 0 and 1 whose high value
means high stability. We evaluated the stability measure
by 2

R(R−1)
∑R−1

i=1
∑R

j=i+1 S(Mi,Mj), whereM1, · · · ,MR are
sets of the selected marker for R bootstrap sample sets
from the training data set. R was set to 100 below.

Breast cancer data
The training dataset was taken from [8] and the test
datasets were from [30]. Yan et al. [28] used these datasets
and compared the AUCs by the linear score L, which they
evaluated by traditional methods as well as methods they
proposed. We focused on the 70 genes detected by [8], as
in [28]. These datasets include 78 patients in one and 307
patients in the other. For QL, grouping of 70 genes was
based on the Ward’s clustering method only by training
dataset. We had two options for dividing all the genes into
clusters. In the first option, the 70 genes were divided into
two clusters, one with 36 and the other with 34 genes. In
the second option, the 70 genes were divided into three

clusters of 36, 16, and 18 genes. For GL, We used two
clusters option.
Figure 5 displays the estimated AUC for the test dataset.

QL1 and QL2 performed better than LL1, LL2 and any
other non-linear methods, and the highest test AUC was
obtained when we used QL1 based on two clusters. The
test AUC of the quasi-linear score did not change for dif-
ferent cluster sizes (K = 2 and K = 3). The numbers
of selected markers in LL1, QL1 (K = 2), QL1 (K = 3)
and GL were 14, 14, 24 and 70, respectively. Similarly,
the stability measures were 0.323, 0.320, 0.399 and 0.960,
respectively. The stability did not differ between LL1 and
QL1 greatly. We note that GL almost did not shrink any
coefficients to zero in this setting.
When we use the linear score L, the absolute value of

the coefficients of eachmarker reflects the order of impor-
tance of all markers for prediction. Therefore, the linear
score is understandable in the sense that we can recognize
strong markers. This is no longer a consideration when
we use a generalized non-linear score. However, the quasi-
linear score enables us to compare coefficients within the
same cluster. An example is shown in Fig. 6, which dis-
plays the ranking of the absolute values of the estimated
coefficients by the ridge regularization method based on
the existence of two clusters. The gene labels are arranged
in order of the rankings. We observed that Q and L gave
quite different rankings. This result shows that the quasi-
linear score would produce different interpretations for
the relationship between the markers.
Figure 7 shows learning and fitting of the quasi-linear

score Q using the lasso regularization method. The score
distributions in the training and test datasets were quite
well-matched. Figure 7 shows that the quasi-linear score
of two clusters with L1 regularization will work well if
we give a cut-off value for binary decisions. For exam-
ple, the test error rates of Q and L were 37.8% and 45.0%,
respectively, when we used the Youden-index [31].
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Fig. 5 Box plots of the test AUC for all comparative methods by breast cancer data

Fig. 6 Ranking of the absolute values of the coefficients within the cluster with ridge regularization
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Fig. 7 Learning and fitted plot for the training and test dataset when using the quasi-linear score of two clusters with lasso regularization. The
horizontal and vertical axis are the linear scores of the first and second cluster. Red points indicate the metastatic group and black points indicate the
control group. Curve lines are contours of the quasi-linear score and blue line shows cut-off value based on Youden-index

Although the quasi-linear score Q is approximately
equivalent to the maximum function, the two are numer-
ically different. In fact, the test AUC of the quasi-linear
score with the lasso regularization method when we
assumed two clusters was 0.752, and the corresponding
maximum score M is 0.745, so that the smooth non-
linearity of the quasi-linear form produced good predic-
tive performance
The elastic net shrinkage method [32], which com-

bines the lasso and ridge shrinkage methods, is among
the most frequently used. When we combined the quasi-
linear score and the elastic net regularization, the number
of the tuning parameters was inflated. Although we used
the elastic net experimentally for the application for some
selected parameters, the predictive performance was not
significantly different from the performance obtained
with either the lasso or ridge. Detailed results are sum-
marized in Table 2. Moreover, to check the utility of
the unsupervised clustering, we randomly divided the 70

genes into two subsets of 36 and 34 genes, and applied
QL2 for the test dataset (2000 times). Figure 8 shows that
clustered subsets (red line) performs better than randomly
divided subsets. Thus, unsupervised clustering naturally
benefits supervised learning via the quasi-linear form.

Prostate cancer data
The data set was taken from [33] which contains expres-
sion data for 6144 genes obtained from 455 prostate

Table 2 Estimated AUC (95% confidence interval) by elastic net
shrinkage; training dataset from [8], test dataset from [30]

LL QL(K = 2)

ε = 0.25 0.732 (0.665, 0.796) 0.755 (0.691, 0.814)

ε = 0.50 0.723 (0.655, 0.788) 0.754 (0.691, 0.813)

ε = 0.75 0.707 (0.636, 0.776) 0.748 (0.684, 0.807)

A parameter ε denotes the proportion of ridge regularization to lasso regularization
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Fig. 8 Test AUCs by the quasi-linear score for the dataset from Buyse et al. (2006). The score is learning by randomly divided genes subsets for the
dataset from van’t Veer et al (2002). The red line is the test AUC by the quasi-linear score, which consists of subsets of genes clustered by
unsupervised learning

cancer tumors. The tumors were from 103 subjects deter-
mined to be fusion status-positive and 352 subjects deter-
mined to be fusion status-negative. We randomly divided
the whole dataset into two independent datasets with the
same number of tumor samples (training and test data)
whilemaintaining the ratio of positive to negative statuses.
First, we selected 100 relevant genes which had top 100
absolute value of t-statistic between the two statuses using
only the training dataset. Such marker preselection has
been performed in many studies [34]. For QL, grouping
of 100 genes was based on the Ward’s clustering method
only by training dataset. We had two options for divid-
ing all the genes into clusters. In the first option, the 100
genes were divided into two clusters, one with 81 and the
other with 19 genes. In the second option, the 100 genes
were divided into three clusters of 25, 56, and 19 genes.
For GL, We used two clusters option. We then compared
the test AUC among all comparative methods. Figure 9
displays the estimated AUC for the test dataset. As well
as the application for breast cancer data, QL1 and QL2
performed better than any other comparative methods.
The numbers of selected markers in LL1, QL1 (K = 2),

QL1 (K = 3) and GL were 31, 38, 67 and 100, respec-
tively. Similarly, the stability measures were 0.361, 0.993,
0.982 and 1.00, respectively. The stability of QL1 was
higher than LL1. We note that GL almost did not shrink
any coefficients to zero as application for breast cancer
data set.

Discussion
We focused on heterogeneous structure and determined
how to reflect such heterogeneity in the score function
defined in (1). For this purpose, the quasi-linear score was
derived as the generalized mean called the Kolmogorov-
Nagumo average. The quasi-linear form is also called a
soft maximum function or log-sum-exp function [35].
In machine learning, the softmax function is often used
as a differentiable approximation of the maximum. In
computer science, the log-sum-exp function is used to
avoid computational problems such as overflow. The non-
linearity of the quasi-linear score is explained by the soft
maximum function. The quasi-linear score achieves clus-
ter selection because of the soft maximum property as
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Fig. 9 Box plots of the test AUC for all comparative methods by prostate cancer data

discussed in the subsection of “Non-linearity of the quasi-
linear score”. This formulation does not require any prior
information or assumption to separate markers into clus-
ters, because this is achieved by the unsupervised learning
step.
The quasi-linear score is based on the idea of combin-

ing predictors, which is related to several ideas in the
literature. For example, a mixture of expert models sug-
gest the idea of decomposing input space [27], in which
the model divides the problem space probabilistically and
the scores learned in all sub-spaces are combined. The
quasi-linear score utilizes the information given by the
clustering method to reflect the heterogeneity of mark-
ers and combines the linear scores of all clusters. Hence,
it relies on the disjointed decomposition of the markers.
The method of combining linear scores was also dis-
cussed in [19], known as composite links, which assumes
that the score is formed by a weighted sum of block-wise
markers. Unlike the generalized linear model, the com-
posite link model does not restrict the use of the single
link function. In a special case, the composite link logis-
tic model corresponds to the quasi-linear logistic model.
However, these ideas differ in that the composite link con-
siders the sum of the linked linear scores whereas the

quasi-linear score considers a linkage of the summariza-
tion of linear scores in all clusters. The key in our proposal
is tomodel heterogeneity using information from the clus-
tering method, thereby connecting supervised learning
with unsupervised learning without any assumption via a
change in the score form from the simple average to the
Kolmogorov-Nagumo average.
For future work, we intend to extend some fixed settings

presented in this report. These include the choice of the
clustering method, the size of the markers and clusters,
the set of tuning parameters, the type of outcomes, and
the format of the targeted data. Because the quasi-linear
score can be defined by any decomposition ideas, the
performance should be evaluated by clustering methods
other than Ward’s method, such as the k-means method
[36]. Moreover, we need to investigate the sizes of markers
and clusters, and the number of candidate sets of tun-
ing parameters in addition to the parameter τ in (4), to
obtain a more flexible form of the quasi-linear function.
Although we applied and evaluated the proposed method
after marker preselection in Application, the performance
should be evaluated in much higher dimensional setting.
An especially big concern is how to decide the clus-
ter size for the quasi-linear score. As described in the
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“Application” subsection, the quasi-linear score by clus-
ter size 2 gave the best predictive performance for breast
cancer data, and addingmore clusters yielded no improve-
ment. Figure 2 supports this result because whole markers
were divided into two primary clusters. It is necessary to
develop an objective index of definite cluster size selection
for general applications.
The quasi-linear score would be also applicable in a case

of the continuous outcomes and in a regression model,
although we focused on binary outcomes and the logistic
model in this study. The performance of the quasi-linear
score would be exhibited in the mixed large dataset, which
would play an important role in biomedical studies in the
near future, because such data must be heterogeneous.
Furthermore, our method is not limited to biomedical
data, and could also be beneficial for analyzing any data
that have heterogeneous structure.

Conclusions
In this paper, we focused on heterogeneous structure.
Such heterogeneity was captured well by a clustering
method. The quasi-linear score was naturally derived
by Bayes risk consistency between mixed and standard
normal distributions. Moreover, the quasi-linear score
approximates the maximum function and plays an impor-
tant role in selecting the most effective cluster for predic-
tion from given clusters. The quasi-linear score has better
predictive ability compared to linear score as shown in
simulation studies and applications to real data.
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technical derivations and evaluations for quasi-linear score:
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