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Abstract

Background: The demand for processing ever increasing amounts of genomic data has raised new challenges for
the implementation of highly scalable and efficient computational systems. In this paper we propose SparkBLAST, a
parallelization of a sequence alignment application (BLAST) that employs cloud computing for the provisioning of
computational resources and Apache Spark as the coordination framework. As a proof of concept, some
radionuclide-resistant bacterial genomes were selected for similarity analysis.

Results: Experiments in Google and Microsoft Azure clouds demonstrated that SparkBLAST outperforms an
equivalent system implemented on Hadoop in terms of speedup and execution times.

Conclusions: The superior performance of SparkBLAST is mainly due to the in-memory operations available through
the Spark framework, consequently reducing the number of local I/O operations required for distributed BLAST

processing.
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Background

Sequence alignment algorithms are a key component
of many bioinformatics applications. The NCBI BLAST
[1, 2] is a widely used tool that implements algorithms for
sequence comparison. These algorithms are the basis for
many other types of BLAST searches such as BLASTX,
TBLASTN, and BLASTP [3]. The demand for process-
ing large amounts of genomic data that gushes from NGS
devices has grown faster than the rate which industry can
increase the power of computers (known as Moore’s Law).
This fact has raised new challenges for the implementa-
tion of scalable and efficient computational systems. In
this scenario, MapReduce (and its Hadoop implementa-
tion) emerged as a paramount framework that supports
design patterns which represent general reusable solu-
tions to commonly occurring problems across a variety
of problem domains including analysis and assembly of
biological sequences [4]. MapReduce has delivered out-
standing performance and scalability for a myriad of
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applications running over hundreds to thousands of pro-
cessing nodes [5]. On the other hand, over the last decade,
cloud computing has emerged as a powerful platform
for the agile and dynamic provisioning of computational
resources for computational and data intensive problems.

Several tools have been proposed, which combine
Hadoop and cloud technologies. Regarding NGS we can
cite Crossbow [6] and for sequence analysis: Biodoop [7]
and CloudBLAST [8]. Further tools based on Hadoop and
related technologies are surveyed in [4].

Despite of its popularity, MapReduce requires algo-
rithms to be adapted according to such design patterns
[9]. Although this adaptation may result in efficient imple-
mentations for many applications, this is not necessarily
true for many other algorithms, which limits the appli-
cability of MapReduce. Moreover, because MapReduce is
designed to handle extremely large data sets, its imple-
mentation frameworks (e.g. Hadoop and the Amazon’s
Elastic MapReduce service) constrains the program’s abil-
ity to process smaller data.

More recently, Apache Spark has emerged as a promis-
ing and more flexible framework for the implementation
of highly scalable parallel applications [10, 11]. Spark
does not oblige programmers to write their algorithms in
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terms of the map and reduce parallelism pattern. Spark
implements in-memory operations, based on the Resilient
Distribution Datasets (RDDs) abstraction [11]. RDD is a
collection of objects partitioned across nodes in the Spark
cluster so that all partitions can be computed in parallel.
We may think of RDDs as a collection of data objects
which are transformed into new RDDs as the computa-
tion evolves. Spark maintains lists of dependencies among
RDDs which are called “lineage” It means RDDs can be
recomputed in case of lost data (e.g. in the event of failure
or simply when some data has been previously discarded
from memory).

In this paper we propose SparkBLAST, which uses
the support of Apache Spark to parallelize and man-
age the execution of BLAST either on dedicated clus-
ters or cloud environments. Spark’s pipe operator is used
to invoke BLAST as an external library on partitioned
data of a query. All the input data (the query file and
the database) and output data of a query are treated
as Spark’s RDDs. SparkBLAST was evaluated on both
Google and Microsoft Azure Clouds, for several con-
figurations and dataset sizes. Experimental results show
that SparkBLAST improves scalability when compared to
CloudBLAST in all scenarios presented in this paper.

Implementation

A design goal is to offer a tool which can be easily operated
by users of the unmodified BLAST. Thus, SparkBLAST
implements a driver application written in Scala, which
receives user commands and orchestrates the whole appli-
cation execution, including data distribution, tasks execu-
tion, and the gathering of results in a transparent way for
the user.

Two input files must be provided for a typical operation:
(i) the target database of bacterial genomic sequences,
which will be referred to as target database from now on,
for short; and (if) the query file, which contains a set of
query genomic sequences that will be compared to the
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target’s database sequences for matching. As depicted in
Fig. 1, SparkBLAST replicates the entire target database
on every computing node. The query file is evenly parti-
tioned into data splits which are distributed over the nodes
for the execution. Thus, each computing node has a local
deployment of the BLAST application, and it receives a
copy of the entire target database and a set of fragments of
the query file (splits).

Note that it is possible to apply different techniques
for task and data partitioning. Each data split (i.e., frag-
ment of the query file) can be replicated by the distributed
file system (DFS) on a number of nodes, for fault tol-
erance purposes. Spark’s scheduler then partitions the
whole computation into tasks, which are assigned to com-
puting nodes based on data locality using delay scheduling
[12]. For the execution of each task, the target database
and one fragment of the query file are loaded in memory
(as RDDs). The target database (RDD) can be reused by
other local tasks that execute in the same machine, thus
reducing disk access [11].

SparkBLAST uses Spark Pipe to invoke the local instal-
lation of the NCBI BLAST2 on each node, and execute
multiple parallel and distributed tasks in the cluster.

Spark can execute on top of different resource man-
agers, including Standalone, YARN, and Mesos [13]. We
chose YARN because it can be uniformly used by Spark
and Hadoop. It is important to avoid the influence of
resource scheduling in the performance tests presented
in this paper. In fact, YARN was originally developed for
Hadoop version 2. With YARN, resources (e.g., cpu, mem-
ory) can be allocated and provisioned as containers for
tasks execution on a distributed computing environment.
It plays better the role of managing the cluster configu-
ration, and dynamically shares available resources, pro-
viding support for fault tolerance, inter-, and intra-node
parallelism. Other applications which have been written
or ported to run on top of YARN include Apache HAMA,
Apache Giraph, Open MPI, and HBASE!.

Input S = {S1, Sz, Sn}
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Shared data into nodes

/

Fig. 1 Data distribution among n nodes: the target database (D) is copied on every computing node; the query file () is evenly partitioned into data
splits (51, ..., Sp) which are distributed over the nodes. Each split (S;) can be replicated on more than one node for fault tolerance
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Data processing in SparkBLAST can be divided into
three main stages (as depicted in Fig. 2): pre-processing,
main processing and post-processing. Such stages are
described in the following subsections.

Execution environment

In order to evaluate the performance and the benefits
of SparkBLAST, we present two experiments. The first
experiment was executed in the Google Cloud, and the
second experiment executed in the Microsoft Azure plat-
form. Both experiments executed with 1, 2, 4, 8, 16, 32,
and 64 virtual machines as computing nodes for scalability
measurement. For the sake of comparison, each experi-
ment was executed on SparkBLAST and on CloudBLAST.
The later is a Hadoop based tool designed to support high
scalability on clusters and cloud environments. For the
experiments, we used Spark 1.6.1 to execute SparkBLAST
on both cloud environments. To execute CloudBLAST,
we used Hadoop 2.4.1 on the Google Cloud, and Hadoop
2.5.2 on Azure Cloud. In any case, we configures YARN
as the resource scheduler, since our experiments focus on
performance. Further details on the experimental setup
will be provided in the results section.

Input data generation

This work was originally inspired and applied in a
radionuclides resistance study. Genome sequences of
several radiation-resistant microorganisms can be used
for comparative genomics to infer the similarities and
differences among those species. Homology inference is
important to identify genes shared by different species
and, as a consequence, species-specific genes can be
inferred. Two experiments are considered in this work.
The input data for Experiment 1 was composed of 11
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bacterial genome protein sequences, 10 of these are
radiation-resistant (Kineococcus radiotolerans - Acces-
sion Number NC_009660.1, Desulfovibrio desulfuricans
- NC_011883.1, Desulfovibrio vulgaris - NC_002937.3,
Rhodobacter sphaeroides - NC_009429.1, Escherichia coli
- NC_000913.3, Deinococcus radiodurans - NC_001263.1,
Desulfovibrio fructosivorans - NZ_AECZ01000069.1,
Shewanella oneidensis - NC_004349.1, Geobacter sul-
furreducens - NC_002939.5, Deinococcs geothermalis -
NC_008010.2, Geobacter metallireducens - NC_007517.1)
for Reciprocal-Best-Hit (RBH) processing.

For Experiment 2, the input query is composed of 10
radiation-resistant bacteria. (i.e., all species listed above
but E. coli). This similarity-based experiment consisted on
the search of potential protein homologs of 10 radiation-
resistant genomes in 2 marine metagenomics datasets.

Each input dataset was concatenated into a single
multifasta input file named queryl.fa (Experiment 1)
and query2.fa (Experiment 2). The files queryl.fa and
query2.fa had 91,108 and 86,968 sequences and a total
size of 36.7 MB and 35 MB, respectively. Two tar-
get metagenomic datasets obtained from MG-RAST
database? were used in Experiment 2: (i) Sargaso Sea
(Bermuda), coordinates: 32.17,-64.5, 11 GB, 61255,260
proteins (Ber.fasta) and (ii) Jodo Fernandinho (Buzios,
Brazil), coordinates: -22.738705, -41874604, 805 MB,
4795,626 proteins (Buz.fasta):

$ makeblastdb -dbtype prot -in database.fa -parse_seqids

Pre-processing

In this stage, implemented by SparkBLAST, the query file
is evenly partitioned into splits which are written to the
DES. The splits are then distributed among the computing
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Fig. 2 The workflow implemented by SparkBLAST: during each of the three stages, parallel tasks (represented as vertical arrows) are executed in the
computing nodes. Pre-processing produce the splits of the query file and copy them to the DFS. The main processing execute local instances of
BLAST on local data. Finally, the post processing merges output fragments into a unique output file
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nodes by the DFS, according to some replication policy
for fault tolerance. Each split containing a set of (e.g.,
thousands of) genome sequences can be processed by a
different task. Thus, the query file should be partitioned to
enable parallelism. Since the input file can be potentially
large, the partitioning operation can be also parallelized as
illustrated in the following commands:

conf.set ("textinputformat.record.delimiter", ">")

map(x => x._2.toString) .map(x=>x.replaceFirst("gil",">gi|"))

Main processing
This stage starts after all the input data (i.e., the target
database and query file splits) are properly transferred to
each processing node. Tasks are then scheduled to exe-
cute on each node according to data locality. The amount
of tasks executed concurrently on each computing node
depends on the number of processing cores available. As
soon as a computing core completes the execution of a
task, it will be assigned another task. This process repeats
until the available cores execute all tasks of the job.
During this stage, each individual task uses Spark pipe
to invoke a local execution of BLASTP as illustrated by the
following command line:

$ blastall -p blastp -d database.fa -e 1E-05 -v 1000 -b 1000 -m 8

Note that the query input file to be processed has been
omitted because it varies for each task.

In order to measure the scalability and speedup of Spark-
BLAST we carried out experiments on both the Google
Cloud and Microsoft Azure, increasing the platform size
from 1 to 64 computing nodes. For the sake of compari-
son, the same genome searches have been executed with
both SparkBLAST and CloudBLAST for each platform
size. Every experiment was repeated six times and and the
average execution time was considered in results.

For the sake of reproducibility, both experiments with
SparkBLAST and CloudBLAST were executed with the
following configuration parameters:

$ spark-submit --executor-memory $memory_per_node
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Therefore, each node will act as a mapper, producing
outputs similar to the unmodified BLAST.

Post-processing

During the previous stage each individual task produces a
small output file. During the post-processing stage, Spark-
BLAST merges all these small files into a single final
output file. For instance, experiment 1 produces a final
output file of 610 MB. All output data is written to the
DES, i.e., the Google Cloud Storage or Microsoft Azure’s
Blob storage service.

Added-value to SparkBLAST, similarity results were
obtained by (i) performing a Reciprocal Best Hit analy-
sis [14, 15] among pairs of species, or orthology inference
(Experiment 1) and (ii) searching for potential radiation-
resistant homologous proteins in 2 marine metagenome
datasets (Experiment 2), as described in the following
section.

Results

In order to assess the performance and benefits of Spark-
BLAST, we carried out experiments on two cloud plat-
forms: Google Cloud and Microsoft Azure. The same
executions were carried out on both SparkBLAST and
CloudBLAST.

Results for experiment 1 - executed on the Google Cloud
In Experiment 1, BLASTP was used to execute queries on
a 36 MB database composed of 88,355 sequences from 11
bacterial genomes, in order to identify genes shared by dif-
ferent species. Ten bacteria described in literature as being
resistant to ionizing radiation [16] and one species suscep-
tible to radiation were obtained from Refseq database. The
same dataset is provided as query and target database, so
that an all-to-all bacteria comparison is executed, produc-
ing a 610 MB output. BLASTP results were processed to
identify RBH among pairs of species.

Experiment 1 was executed on a platform with up to
64 computing nodes plus one master node. Each node is

--driver-memory $memory_node_master$ --num-executors $num_executors

—-—executor-cores $qtd_executor_core

--driver-cores $qtd_driver_core

--class sparkBLAST target/scala-2.10/simple-project_2.10-1.0.jar
$qtd_splits "blastall -p blastp -d /targetToDB/database.fa -e

1E-05 -v 1000 -b 1000 -m 8" $input $output

$ hadoop jar targetToHadoop/hadoop-streaming-X.X.X.jar

-libjars ./StreamPatternRecordReader.jar -input $input

-output $output -mapper "blastall -p blastp -d /targetToDB/database.fa

-e 1E-05 -v 1000 -b 1000 -m 8" -numReduceTasks O

-inputreader "org.apache.hadoop.streaming.StreamPatternRecordReader, begin=>"

-cmdenv BLASTDB=/targetToDB/db -jobconf mapreduce.job.maps= $qtd_maps
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a virtual machine configured as nl-standard-2 instance
(2 vCPUs, 7.5 GB memory, CPU Intel Ivy Bridge). The
virtual machines were allocated from 13 different avail-
ability zones in the Google Cloud: Asia East (3 zones),
Europe West (3 zones), US Central (4 zones) e US East
(3 zones). For this scalability test, both SparkBLAST and
CloudBLAST were executed on platforms with 1, 2, 4, 8,
16, 32, and 64 nodes. The experiment was repeated six
times for each platform size. Thus, Experiment 1 encom-
passes 2 x 7 x 6 = 84 executions in total, which demanded
more than 350 h (wall clock) to execute. As an estimate
on the amount of the required computational resources,
this experiment consumed 2.420 vCPU-hours to execute
on the Google Cloud.

The average execution times are presented in Fig. 3.
SparkBLAST achieved a maximum speedup (which is
the ratio between execution time of the one node base-
line over the run time for the parallel execution) of
41.78, reducing the execution time from 28,983 s in
a single node, to 693 s in 64 nodes. In the same
scenario, CloudBLAST achieved speedup of 37, reduc-
ing the execution time from 30,547 to 825 s on 64
nodes. For this set of executions, both SparkBLAST
and CloudBLAST used 2 vCPUs per node for tasks
execution. The speedup is presented in Fig. 4. As
shown, SparkBLAST presents better scalability than
CloudBLAST.

The average execution times and standard deviations
are presented in Table 1. Table 2 presents the execution
times for SparkBLAST when only one vCPU (core) of each
node is used for processing. Table 3 presents the total exe-
cution times for SparkBLAST when both cores of each
node are used for processing.

Table 4 consolidates results from previous tables and
presents mean execution times along with speedup and
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parallel efficiency figures for the CloudBLAST and Spark-
BLAST (1 and 2 cores) systems.

Figure 3 compares total execution times of Cloud-
BLAST and SparkBLAST (one and two cores configura-
tions), for platforms composed of 1 up to 64 computing
nodes. Execution times presented in correspond to the
average for six executions. Parallel efficiency is presented
in Fig. 5.

Results for experiment 2 - executed on the Microsoft Azure
Experiment 2 was executed on a total of 66 nodes
allocated on the Microsoft Azure Platform, being all
nodes from the same location (East-North US). Two A4
instances (8 cores and 14 GB memory) were configured
as master nodes, and 64 A3 (4 cores and 7 GB mem-
ory) instances were configured as computing nodes. Both
SparkBLAST and CloudBLAST executed queries on two
datasets (Buz.fasta, and Ber.fasta), varying the number of
cores allocated as 1 (BLAST sequential execution), 4, 12,
28, 60, 124 and 252. Every execution was repeated 6 times
for CloudBLAST and six times for SparkBLAST. Thus,
Experiment 2 encompasses 2 x 2 X 7 x 6 = 168 executions
in total, which demanded more than 8,118 h (wall clock)
to execute. An estimate on the amount of computational
resources, this experiment consumed more than 139,595
vCPU-hours to execute on the Azure Cloud.

For the Microsoft Azure platform, SparkBLAST out-
performs CloudBlast on all scenarios. Both datasets
(Buz.fasta and Ber.fasta) were processed, and results are
presented in Fig. 6 (speedup), Fig. 7 (total execution
time), Fig. 8 (Efficiency), Table 5 (Buz.fasta), and Table 6
(Ber.fasta). It is worth noting that the largest dataset
(Ber.fasta - 11 GB) was larger than the available memory in
the computing nodes. For this reason, CloudBLAST could
not process the Ber.fasta dataset, while SparkBLAST does
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not have this limitation. It is also worth mentioning that
larger speedups were achieved on Microsoft Azure when
compared to the Google Cloud. This can be partially
explained by the fact that all computing nodes allocated
on the Microsoft Azure are placed in the same location,
while computing nodes on Google Cloud were distributed
among 4 different locations.

Similarity-based inferences

In order to obtain added-value from the SparkBLAST
similarity results on the cloud, the output from Spark-
BLAST processing of Experiment 1 was used to infer
orthology relationships with the RBH approach. In
Table 7, numbers represent (RBH) orthologs found
between 2 species. Numbers in bold represent (RBH)
paralogs found in the same species. The higher num-
ber of RBH shared by two species was 264 between
Desulfovibrio vulgaris and Desulfovibrio desulfuricans,
and the lower was 15 between Desulfovibrio fructosivorans
and Deinococcus radiodurans. Among the same species,

Table 1 Execution times for CloudBLAST - Google Cloud

the higher number of RBH was 572 in Rhodobacter
sphaeroides and the lower 34 in Deinococcus geothermalis.
Regarding experiment 2: 1.27% (778,349/61255,260)
of the Bermuda metagenomics proteins and 1.4%
(68,748/4795,626) of the Buzios metagenomic proteins
represent hits or potential homologs to the 10 radiation-
resistant bacteria.

Discussion

In this paper we investigate the parallelization of sequence
alignment algorithms through an approach that employs
cloud computing for the dynamic provisioning of large
amounts of computational resources and Apache Spark
as the coordination framework for the parallelization of
the application. SparkBLAST, a scalable parallelization of
sequence alignment algorithms is presented and assessed.
Apache Spark’s pipe operator and its main abstraction
RDD (resilient distribution dataset) are used to per-
form scalable protein alignment searches by invoking
BLASTP as an external application library. Experiments

#nodes 1 2 4 8 16 32 64
Exec.time 1 29,921.40 19,018.00 11,324.00 6,204.00 2,866.00 1,680.00 794.00
Exec. time 2 30,256.23 18,550.25 13,799.23 5,779.21 2,959.65 1,828.23 900.00
Exec. time 3 31.016.85 19,221.81 12,580.32 5,700.52 3,004.52 1,597.00 815.21
Exec. time 4 31.350.25 19,102.68 10,489.53 5,850.02 2,961.23 1,806.25 842.30
Exec.time 5 30.726.89 18,981.32 12,721.23 5,780.34 2,990.81 1,780.32 799.21
Exec.time 6 30.012.14 19,118.72 11,820.85 5,900.64 3,008.15 1,753.23 802.98
Mean 30,547.29 18,998.80 12,122.53 5,869.12 2,965.06 1,740.84 825.62
Std. Dev. 576.25 235.28 1.164.02 177.70 5279 87.20 4032
Std.Dev./Mean 1.89% 1.24% 9.60% 3.03% 1.78% 5.01% 4.88%
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Table 2 Execution times - SparkBLAST 1 core - Google Cloud

# nodes 1 2 4 8 16 32 64
Exec. time 1 36,106.86 18,845.23 10,189.11 5,556.22 3,129.20 1,716.10 905.21
Exec. time 2 36,510.12 19,120.32 10,199.85 5,540.15 311512 1,730.58 899.84
Exec.time 3 36,720.86 18,952.15 10,170.23 5,560.88 3,140.01 1,790.96 894.76
Exec.time 4 38,120.25 18,998.06 10,200.01 5,543.62 3,120.58 1,694.69 90042
Exec.time 5 36,230.56 19,112.23 10,178.76 5,552.10 3,122.15 1,701.55 897.65
Exec.time 6 36,452.53 18,880.11 10,183.61 5565.11 3,127.58 1,710.68 890.25
Mean 36,690.20 18,984.68 10,186.93 5,553.01 3,125.77 1,724.09 898.02
Std.Dev 733.00 115.14 11.83 9.73 8.62 35.01 5.14
Std.Dev/Mean 2.00% 0.61% 0.12% 0.18% 0.28% 2.03% 0.57%
Table 3 Execution times - SparkBLAST 2 cores - Google Cloud

# nodes 1 2 4 8 16 32 64
Exec. time 1 28,915.52 14,500.86 793545 4,287.85 2,249.94 1,260.12 695.23
Exec. time 2 29,002.21 14,520.23 7,945.10 4,290.12 2,230.26 1,259.28 690.04
Exec.time 3 29,001.89 14,515.35 7,950.01 4,283.56 2,255.04 1,260.10 701.50
Exec.time 4 28,989.52 14,557.51 7,942.20 4,282.21 2,242.63 1,259.52 710.11
Exec. time 5 28,990.32 14,580.01 7,940.80 431012 2,249.26 1,259.82 680.80
Exec.time 6 29,001.15 14,520.23 7,950.12 4,295.56 2,251.08 1,262.15 682.10
Mean 28,983.44 14,532.37 7,943.95 4,291.57 2,246.37 1,260.17 693.30
Std.Dev 33.78 29.93 5.68 10.27 8.85 1.03 1137
Std.Dev/Mean 0.12% 0.21% 0.07% 0.24% 0.39% 0.08% 1.64%

Table 4 Mean execution times, speedups and parallel efficiency (Experiment 1 - query.fasta - 36 MB) - SparkBLAST vs CloudBLAST -

Google Cloud

# nodes 1 2 4 8 16 32 64
SparkBLAST

1 core

Exec. time 36,690.20 18,984.68 10,186.93 5,553.01 3,125.77 1,724.09 898.02
Speedup 1 193 3.60 6.61 11.74 21.28 40.86
Efficiency 1 0.97 0.90 0.83 0.73 0.67 0.64
SparkBLAST

2 cores

Exec. time 28,983.44 14,532.37 7,943.95 4,291.57 2,246.37 1,260.17 693.30
Speedup 1.00 1.99 3.65 6.75 12.90 23.00 41,81
Efficiency 1.00 1.00 0.91 0.84 0.81 0.72 0.65
CloudBLAST

Exec. time 30,547.29 18,998.80 12,122.53 5,869.12 2,965.06 1,740.84 825.62
Speedup 1.00 1.61 2.52 5.20 1030 17.55 37.00
Efficiency 1.00 0.80 0.63 0.65 0.64 0.55 0.58
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on the Google Cloud and Microsoft Azure have demon-
strated that the Spark-based system outperforms a state-
of-the-art system implemented on Hadoop in terms of
speedup and execution times. It is worth noting that
SparkBLAST can outperform CloudBlast even when just
one of the vCPUs available per node is used by Spark-
BLAST, as demostrated by results obtained on the Google
Cloud. In the experiments presented in this paper, the
Hadoop-based system always used all vCPUs available
per node.

From Table 4 it is possible to verify that both Speedup
and Parallel Efficiency are better for SparkBLAST when
compared to CloudBLAST for experiments executed on
both the Google Cloud and Microsoft Azure. This is true
for both scenarios of SparkBLAST on the Google Cloud
(1 and 2 cores per node). It is worth noting that even
when total execution time for CloudBLAST is smaller

than the 1-core SparkBLAST configuration, Speedup and
Parallel Efficiency is always worse for CloudBLAST. When
SparkBLAST allocates two cores per node (as Cloud-
BLAST does) execution times are always smaller when
compared to CloudBLAST.

For the Microsoft Azure platform, all measures (pro-
cessing time, efficiency and speedup) are better on Spark-
BLAST when compared to the corresponding execution
of CloudBLAST for the Buz.fasta (805 MB) dataset. It
is worth noting that the speedup difference in favor
of SparkBLAST increases with the number of comput-
ing nodes, which highlights the improved scalability of
SparkBLAST over CloudBLAST. As mentioned in the
“Results” section, it was not possible to process the larger
Ber.fasta (11 GB) dataset using CloudBLAST due to com-
puting node’s main memory limitation. This constraint
does not affect SparkBLAST, which can process datasets

253

m SparkBLAST (805MB)

203
m SparkBLAST (11GB)

CloudBLAST (805MB)
153

Linear speedup

Speedup

53

4 12 28

Fig. 6 Speedup - Microsoft Azure
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de Castro et al. BMC Bioinformatics (2017) 18:318

Page 9 0of 13

1850000

185000

m SparkBLAST (805MB)

CloudBLAST (805MB)

B SparkBLAST (11GB)

18500

Processing time(s)

) I i I I I I I I
185 : : : .
4 12 28 60

Number of cores

Fig. 7 Total execution time for CloudBLAST x SparkBLAST on Microsoft Azure

124 252

even when they are larger than the main memory available
on computing nodes. In the case of Spark, every process
invoked by a task (each core is associated to a task) can
use RDD even when database do not fit in memory, due
memory content reuse and the implementation of circular
memory [17]. It is worth noting that RDDs are stored as
deserialized Java objects in the JVM. If the RDD does not
fit in memory, some partitions will not be cached and will
be recomputed on the fly each time they are needed [10].
Indeed, one very important loophole of existing meth-
ods that we address in SparkBLAST is the capability of
processing large files on the Cloud. As described in this
paragraph, SparkBLAST can process much larger files
when compared to CloudBLAST, due to a more efficient
memory management.

The main reason behind the performance of Spark-
BLAST when compared to Hadoop-based systems
are the in-memory operations and its related RDD

abstraction. The reduced number of Disk 10 operations
by SparkBLAST results in a significant improvement
on overall performance when compared to the Hadoop
implementation.

It is clear that in-memory operations available in Spark-
BLAST plays a major role both in Speedup and Par-
allel Efficiency improvements and, as a consequence,
also in the scalability of the system. Indeed, the main
reason behind the fact that SparkBLAST, even when
it allocates only half of nodes processing capacity,
achieves performance figures that are superior of those
of CloudBLAST is the reduced number of local I/O
operations.

Another point to be highlighted is the scalability of
SparkBLAST on a worldwide distributed platform such as
Google Cloud. For the executions presented in this work,
64 nodes were deployed in 13 zones and it was achieved a
speedup of 41.78 in this highly distributed platform. Once

Number of cores
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N
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N
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Fig. 8 Efficiency - CloudBLAST x SparkBLAST - Microsoft Azure
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Table 5 Mean execution times, speedups and parallel efficiency (Experiment 2 - Buzfasta - 805 MB) - SparkBLAST vs CloudBLAST -

Microsoft Azure

# cores 4 12 28 60 124 252
SparkBLAST 143,228.95 47,031.62 24,850.51 11,692.45 6,041.64 3,138.64
Speedup 3.83 11.67 22.09 46.95 90.86 174.89
Efficiency 0.96 0.97 0.79 0.78 0.73 0.69
CloudBLAST 148,512.95 47,950.05 26,858.71 11,951.11 6,993.52 3,879.06
Speedup 37 11.45 2044 4593 7849 141,51
Efficiency 0.92 0.95 0.73 0.77 0.63 0.56

again, in-memory operations is a major factor related to
this performance.

For applications where the Reduce stage is not a bot-
tleneck, which is the case for SparkBLAST, it is demon-
strated in the literature that Spark is much faster than
Hadoop. In [18], those authors state that, for this class
of application, MapReduce Hadoop is much slower than
Spark in task initialization and is less efficient in mem-
ory management. Indeed, the supplementary document
“Execution Measurements of SparkBLAST and Cloud-
BLAST’, available in the online version of this paper,
presents several measurements performed during Spark-
BLAST and CloudBLAST executions on the Microsoft
Azure Cloud. These measurements show that task ini-
tialization in SparkBLAST is considerably faster than
CloudBLAST. It is also shown that SparkBLAST is more
efficient in memory management than CloudBLAST. The
effect of SparkBLAST’s more efficient memory manage-
ment can be observed in Additional file 1: Figures S5 and
S6 of the supplementary information document. These
figures show that Hadoop needs to use more memory
than Spark, while Spark can maintain a larger cache and
less swap to execute. Both factors - task initialization and
memory management - are determinant for the improved
scalability of SparkBLAST.

Furthermore, CloudBLAST makes use of Hadoop
Streaming. In [19], authors shown that the Hadoop
Streaming mechanism used in CloudBLAST can decrease
application performance because it makes use of OS pipes
to transfer input data to the applications’ (in this case

BLAST) standard input and from BLAST standard out-
put to disk storage. Data input to BLAST is done by
the option: “-inputreader org.apache.hadoop.streaming.
StreamPatternRecordReader”, which send lines from the
input file to BLAST one-by-one, which further degrades
performance.

Regarding extended scalability over larger platforms
than the ones considered in this paper, it should be high-
lighted that two authors of this paper have proposed
a formal scalability analysis of MapReduce applications
[5]. In this analysis the authors prove that the most
scalable MapReduce applications are reduceless applica-
tions, which is exactly the case of SparkBLAST. Indeed,
Theorem 5.2 of [5] states that the increase of amount of
computation necessary for a reduceless Scalable MapRe-
duce Computation (SMC) application to maintain a given
isoefficiency level is proportional to the number of pro-
cessors (nodes). This is the most scalable configuration
over all scenarios analyzed in [5]. Simulation results that
goes up to 10000 nodes corroborate the limits stated in
this and other theorems of [5].

Regarding Experiment 1 and RBH inference, we showed
that our SparkBLAST results can be post-processed to
infer shared genes, then generating added-value to the
similarity analysis. That also means that RBH experiments
using SparkBLAST are potentially scalable to many more
genomes, and can be even used as part of other Blast-
based homology inference software such as OrthoMCL
[20]. Considering Experiment 2, results indicate that
1.27% of the Bermuda metagenomics proteins and 1.4%

Table 6 Mean execution times, speedups and parallel efficiency (Experiment 2 - Ber.fasta - 11 GB) - SparkBLAST vs CloudBLAST -

Microsoft Azure

# cores 4 12 28 60 124 252
SparkBLAST 2,678,902.06 859,687.13 458,759.75 224,869.12 110,222.98 56,200.21
Speedup 3.73 11.61 21.76 444 90.57 177.64
Efficiency 093 0.97 0.78 0.74 0.73 0.7
CloudBLAST - - - - -

Speedup - - - - - -

Efficiency - - -
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of the Bazios metagenomic proteins represent potential
homologs to the 10 radiation-resistant bacteria, and as far
as we know no related studies have been published to date.
Those potential homologs will be further investigated in
another study.

Conclusion

In this paper we propose SparkBLAST, a parallelization
of BLAST that employs cloud computing for the pro-
visioning of computational resources and Apache Spark
as the coordination framework. SparkBLAST outper-
forms CloudBLAST, a Hadoop-based implementation,
in speedup, efficiency and scalability in a highly dis-
tributed cloud platform. The superior performance of
SparkBLAST is mainly due to the in-memory operations
available through the Spark framework, consequently
reducing the number of local I/O operations required for
distributed BLAST processing.

Availability and requirements

-Project name: SparkBLAST;

-Project home page: https://github.com/sparkblastproject/v2
-Operating system(s): Debian 8.1 and Ubuntu Server 14.02
-Programming language: Scala, Shell and Java

-Other requirements:

-Licence: BSD 3-clause Clear License

Endnotes
! https://wiki.apache.org/hadoop/PoweredByYarn
Zhttp://metagenomics.anl.gov/

Additional file

Additional file 1: Execution Measurements of SparkBLAST and
CloudBLAST. In this supplementary document we present performance
data collected during the execution of Experiment 2 on the Microsoft
Azure Platform. Figure S1. CPU utilization for the SparkBLAST execution.
Figure S2. CPU utilization for the CloudBLAST execution. Figure S3. CPU
utilization for one worker node running SparkBLAST. Figure S4. CPU
utilization for one worker node running CloudBLAST. Figure S5. Memory
utilization for SparkBLAST. Figure S6. Memory utilization for CloudBLAST.
Figure S7. Network traffic produced by SparkBLAST during its execution.
Figure S8. Network traffic produced by CloudBLAST during its execution.
(PDF 173 kb)
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DFS: Distributed file system; NGS: Next generation sequencing; RDD: Resilient
distribution datasets; RBH: Reciprocal best hits; SMC: Scalable MapReduce
computation; vCPU: Virtual CPU
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